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1. Introduction 

According to World Health Organization, cardiovascular disease causes 17.7 million deaths annually [1]. Sudden 

cardiac death (SCD) accounts for half of the death caused by cardiovascular disease while malignant ventricular 

arrhythmia (mVA) causes 80% of SCD [2], [3]. Malignant ventricular arrhythmia is life-threatening arrhythmia 

originating from ventricles, comprising of ventricular tachycardia and ventricular fibrillation. It is vitally important for 

the patient to receive prompt medical intervention when mVA occurs for prevention of SCD. Prediction of imminent 

mVA in advance is even better, by enabling earlier attention to the problems or allowing more time for preventive 

measures. Hence, there have been a number of researchers investigating electrocardiogram (ECG) changes preceding 

the mVA events which could be precursor of imminent mVA. 

Based on literature review, heart rate variability (HRV) have been studied the most as a prognostic feature for 

prediction of imminent mVA [4], [5]. Various approaches in time, frequency, time-frequency and nonlinear domain 

were employed [6]–[11]. Recently, more features were extracted, such as homogeneity index of wavelet-transformed 
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ECG [12], pattern of approximate entropy of EMD reconstructed T-Wave [13], statistical measures of box count of 

phase space plot [14] and so on. Although the current ECG features seemed to provide a reasonable amount of useful 

information regarding the occurrences of mVA, previous studies showed confounding results on the predictive power 

of HRV [4], [15] while the other features were comparatively new and need to be further investigated.  

Among the previous works on mVA prediction, box counting method of phase space reconstruction (PSR) 

employed in [14] reported superior performance of 98.44% accuracy, 96.88% sensitivity and 100% specificity. The 

result implied the potential usage of nonlinear dynamic techniques for prediction of imminent mVA. However, this 

method was relatively new in prediction work and was only tested with PTBDB as the control database, using 32 

subjects' ECG segments. This database was without standard annotation and was not widely used database distributed 

by MIT-BIH laboratory, making it hard to verify and benchmark the reported performance of this algorithm. Even the 

authors [14] recommended to conduct testing with a larger database to further examine its predictive power. Anas et al. 

[16] also pointed out the higher possibility of misclassification of mVA from other arrhythmia using PSR technique 

while the authors discarded certain mVA records due to signal noises in the study. 

Nonetheless, box counting method of PSR could be potentially useful for prediction of imminent mVA, despite 

that no studies further improved, examined or even utilised this technique for mVA prediction. Hence, our work is 

aimed to further investigate and improve this technique by (1) altering windowing and data representation of phase 

portrait in box counting method and identify the prediction performance after modification (2) verify the versatility of 

this technique by testing against more databases with standard annotation. We intend to identify the reliability and 

possible improvement of this technique, besides enabling future benchmarking against other works. 

 

2. Methodology 

Phase space reconstruction was used to examine the nonlinear dynamics and random behaviour in time series data 

using phase space diagram. By inserting k time delay (τ) to a time series data, k-dimensional phase space diagram was 

constructed [17]. In this work, only two-dimensional phase space diagram, named phase portrait, was used. One of the 

ways to extract information from phase portrait was box counting [18], where box count was used to estimate the 

degree of complexity of the signal [19]. While box count gave an estimation of signal complexity, statistical analysis of 

box count helped to characterise the complexity and to identify the underlying desynchronisation phenomenon of ECG 

signal. In this work, descriptive statistics including coefficient of variation and kurtosis were explored. Coefficient of 

variation (CV) was the ratio of standard deviation (σ) to mean (µ), which described the relative dispersion of a time 

series data. Kurtosis (κ) was the fourth standardised statistical moment, which described the tail extremity of the 

probability distribution of a time series data [20]. 

 

2.1 Data 

Four databases from Physionet were used in this study. Pre-mVA signals were acquired from Creighton University 

Ventricular Tachyarrhythmia Database (CUDB) and Sudden Cardiac Death Holter Database (SDDB) while control 

signals were acquired from Physikalisch-Technische Bundesanstalt Diagnostic ECG Database (PTBDB) and MIT-BIH 

Normal Sinus Rhythm Database (NSRDB). CUDB comprises 35 eight-minute ECG records from subjects who 

experienced sustained ventricular tachycardia, ventricular flutter, and ventricular fibrillation. According to [14], 

‘CU21’, ‘CU33’ and ‘CU35’ were corrupted with excessive signal noises and hence they were discarded in our study to 

enable direct comparison of analysis results. SDDB contains 23 Holter ECG records from subjects with sustained 

ventricular arrhythmia. Three records from SDDB without annotation of VF onset time (‘40’, ‘42’, ‘49’) were 

discarded. PTBDB contained 52 ECG records from healthy subjects and the same 32 PTBDB records that were 

included in [14] were used for analysis. NSRDB comprised 18 ECG records from subjects without significant 

arrhythmia respectively and all of them were used for analysis. 

For prediction purpose, ECG signal before mVA onset was extracted from each record of CUDB and SDDB before 

being used for analysis, as depicted in Fig. 1. ECG records in SDDB were long recordings lasting around 24 hours, 

while only 10-minute ECG signal before onset of each record was used in this study for the examination of feature. 

ECG records in CUDB were short recordings lasting around eight minutes and the whole signal before onset of each 

record was used in this study. 

There were multiple lead signals in PTBDB and lead I signal was chosen for analysis in this work to enable 

comparison with the previous studies in [14]. NSRDB signals used for analysis were starting from the first annotated 

normal beats after QRS-like artefacts. Besides, ECG records in NSRDB were long recordings lasting around 24 hours, 

while only 10-minute ECG signal of each record was used in this study for examination of the feature. Standard 

annotations in the database were used to identify the onset of mVA in CUDB and QRS-like artefacts in NSRDB. 

 

2.2 Procedure 

Fig. 2 shows the complete workflow to carry out the prediction of mVA in this work. ECG signals in CUDB, 

SDDB, NSRDB and PTBDB were recorded at sampling frequency of 250 Hz, 250 Hz, 128 Hz and 1000 Hz 

respectively. To enable fair comparison, signals in CUDB, SDDB and NSRDB were upsampled to 1000 Hz. After the 
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upsampling, all ECG signals were filtered using fourth order Butterworth filter with passband ranging from 1 Hz to 30 

Hz [14] to remove baseline wandering and high-frequency measurement noise. The R peaks of ECG signals were 

detected using Hamilton-Tompkins algorithm [21], [22] which was enhanced version of Pan-Tompkins algorithm. 

 

 
 

Fig. 1 - ECG signal before mVA onset (shown in red box) is extracted from each mVA record for mVA 

prediction. 

 

 
 

Fig. 2 - Workflow for prediction of malignant ventricular arrhythmia in this work. 

 

To construct a phase portrait of ECG, a window of 10 successive RR segments was chosen. ECG signals in each 

window were normalised and a 20-ms delay was applied to obtain a total of 10 trajectories in the two-dimensional 

phase portraits. The phase portrait was exported as a high-resolution grey-scale image of pixel size 1024x1024 as 

shown in Fig. 3. Once the phase portrait was constructed, box counting was employed whereby the pixels through 

which at least one trajectory had passed were considered as boxes and the others were not. A sliding window of 10 

beats was moved consecutively by one beat throughout the whole record (Fig. 4) and this resulted in a series of box 

count for each record (Fig. 5).  

Parametric statistical analysis was carried out on each window of 25 successive box count visited by trajectories 

and CV or κ of the box count were estimated. A sliding window of 25 box count was moved consecutively by one box 

count throughout the whole record (Fig. 5) and this resulted in a series of CV or κ for each record. The value located 

nearest to the upper left corner of Receiver Operating Characteristics (ROC) curve was chosen as the optimal threshold 

of CV or κ because it gave high and balanced sensitivity and specificity. The whole series of CV or κ of box count for 

each record was passed through the optimal threshold. Once the threshold was exceeded, the record signal was 

categorised as ‘going-to-mVA’ signal, otherwise the signal was deemed as ‘normal’.  

 

 
 

Fig. 3 - Each window of 10 RR segments results in one phase portrait and one box count. 
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Fig. 4 - Sliding windows of 10 RR segments. 

 

 
 

Fig. 5 - Sliding windows of 25 phase portraits (box count) for the whole record ‘P173/s0305l. 

 

2.3 Experiment 

Three experiments were carried out to study the effect of different windowing methods, data representation 

methods of phase portrait and testing databases on the prediction performance of PSR box counting. The same 

workflow in Fig. 2 was implemented with slight variation in the PSR box counting method as well as the database 

utilised for analysis. Each experiment is briefly explained below. 

The first experiment investigated the effect of different windowing methods on prediction performance. For phase 

space reconstruction, a fixed duration of a signal, for example, eight-second signal in [18], was usually employed to 

construct the phase portraits. Considering that fixed duration of signal may result in half a beat or some extra parts of 

beat that may break the trajectories periodicity, phase space reconstruction using fixed number of beats was proposed in 

[14] . The authors used a signal spanning over 10 heartbeats. In this experiment, windowing of signal using RR 

segments was studied and compared with that of using heartbeats and fixed duration. RR segment was chosen as the 

new basis for construction of phase portraits instead of beat because it required detection of only R peaks instead of the 

onset of P wave and offset of T wave. It was less prone to signal noise and misdetection. Since time window was the 

most used windowing method, it was implemented as a baseline comparison to the proposed method. Window length of 

10 seconds was chosen, and a sliding window of 10 seconds was moved in steps of 1 second throughout the whole 

record. The three different types of windowing method based on time, heartbeat and RR segment are illustrated and 

juxtaposed in Fig. 6. To benchmark the performance against work in [14], CUDB and PTBDB were used in this 

investigation. 

 

 
Fig. 6 - Windowing methods based on (a) time (signal spanning over 10 seconds), (b) heartbeat (signal 

spanning over 10 heartbeats) and (c) RR segment (signal spanning over 10 RR segments). 
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The second experiment examined different data representation methods of phase portrait. Linking and unlinking 

phase portrait were two different data representation of phase portrait. Linking phase portrait was constructed by 

connecting all the ECG data points on the portrait by curves (using matplotlib.pyplot.plot function) while unlinking 

phase portrait was constructed using only the positions of each discrete ECG data points without connecting them. Fig. 

7 illustrates the examples of linking and unlinking phase portraits. Amann et al. [18] suggested that connected data 

points in phase portrait, which is linking phase portrait, might decrease the quality of box counting. Besides, linking 

and unlinking phase portraits were used in different works, for example, linking phase portraits in [19], [23] and 

unlinking phase portraits in [18], [24]. Their effect on the performance of box counting had not been studied and hence 

was investigated in this experiment. Using window of RR segments, both linking and unlinking phase portraits were 

constructed. Their performances were then evaluated using data from CUDB and PTBDB, as in the first experiment. 

Most prediction works were using NSRDB instead of PTBDB (Table 1) for the control signal. Hence, to further 

investigate the performance of linking and unlinking phase portrait, data analysis was also performed on CUDB and 

NSRDB.  

 

 
Fig. 7 - (a) Linking phase portrait. (b) Unlinking phase portrait. 

 

The third experiment was about investigation on different testing databases. Some previous works of mVA 

prediction obtained arrhythmic signals from SDDB instead of CUDB (Table 1) and hence SDDB was included in this 

experiment. In our previous experiment, control signals were obtained from either PTBDB or NSRDB. They were both 

included in this experiment. The PSR box counting was applied on signals from NSRDB, PTBDB, CUDB and SDDB 

to examine its performance and versatility over the different databases. In this experiment, the work of [13] was 

selected for benchmark because it reported analysis results on multiple databases while other works only compared 

signals from one arrhythmic database and one control database, as summarised in Table 1.  

Table 1 - Previous works acquired arrhythmic and control signals from different databases. 

Signal Type Database Previous Work 

Arrhythmic 
CUDB [13], [14], [25] 

SDDB [6], [8], [12], [26], [27] 

Control 

PTBDB [14] 

NSRDB [6], [8], [12], [26], [27] 

Others [11], [13], [28] 

 

3. Result 

3.1 Investigation Windowing Method: Windows of Fixed Duration, RR segments and 

Heartbeats 

All the three windowing methods were tested using linking phase portraits on the 32 CUDB records and 32 

PTBDB records. Table 2 presents the prediction performance achieved by PSR box counting using the different 

windowing methods. The highest prediction performance was achieved through our method of using RR segment as the 

basis of PSR window. Firstly, taking CV of box count as the sole feature for mVA prediction, windowing method using 

RR segment achieved higher accuracy and sensitivity than that of using fixed duration and heartbeat. Besides, 

compared to [14] which predicted mVA events using two features (CV and kurtosis of box count), the equivalent 

accuracy, sensitivity and specificity were achieved by our RR-segment-windowing method which utilised only a single 

feature (CV of box count) for prediction. The average prediction time achieved by CV feature in our study was 16 

seconds earlier than that of combination of CV and kurtosis features in the previous research.  
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Table 2 - Investigating the effect of different windowing methods on the prediction performance using PSR box 
counting. 

Windowing 

Method 

Heartbeat window [14] Fixed Duration Window RR Segment Window 

Box Count 

Feature 

CV Kurtosis CV and 

kurtosis 

CV Kurtosis CV Kurtosis 

Accuracy, 

% 

96.88 95.31 98.44 92.19 90.63 98.44 92.19 

Sensitivity, 

% 

93.75 90.63 96.88 87.5 81.25 100 87.5 

Specificity, 

% 

100 100 100 96.88 100 96.88 96.88 

Prediction 

Time 

- - 4 min 31 sec  

(±2 min 30 

sec) 

3 min 56 sec  

(±3 min 1 

sec) 

3 min 8 sec  

(±2 min 8 

sec) 

4 min 47 sec  

(±2 min 8 

sec) 

3 min 12 sec  

(±2 min 34 

sec) 

 

3.2 Investigation on Data Representation Method of Phase Portrait: Linking and Unlinking 

Phase Portrait 

Firstly, control signals and pre-mVA signals were obtained from PTBDB and CUDB respectively. Using CV 

threshold of 0.104 and 0.092, accuracy, sensitivity and specificity are calculated and shown in the left two columns of 

Table 3. The average prediction time achieved by linking phase portrait was nine seconds earlier than that of using 

unlinking phase portraits while their accuracy, sensitivity and specificity were identical. The only false positive case for 

linking phase portrait happened in ‘P150/s0287lre’, a control record, due to a larger drop of box count resulted from the 

presence of ectopic beats.  

Table 3 - Performance comparison of CV feature extracted from PSR box counting using linking and 
unlinking phase portraits on ECG data from CUDB and PTBDB (left) or NSRDB (right). 

Windowing Method RR Segment window 

Feature CV of box count 

Data Representation 

Method 

Linking phase 

portrait 

Unlinking phase 

portrait 

Linking phase 

portrait 

Unlinking phase 

portrait 

Database (Number of 

Records) 
CUDB (32), PTBDB (32) CUDB (32), NSRDB (18) 

Accuracy, % 98.44 98.44 92 68 

Sensitivity, % 100 96.88 87.5 78.13 

Specificity, % 96.88 100 100 50 

Prediction Time 
4 min 47 sec  

(±2 min 8 sec) 

4 min 38 sec  

(±2 min 18 sec) 

3 min 24 sec  

(±2 min 34 sec) 

3 min 28 sec  

(±2 min 42 sec) 

 

For further investigation, control signals and pre-mVA signals were obtained from NSRDB and CUDB 

respectively. On the right two columns of Table 3, the accuracy, sensitivity and specificity were obtained using 0.14 

and 0.167 as the CV threshold for linking and unlinking phase portrait respectively. Both data representation methods 

showed performance decline and it could be attributed to the different database being used for control signal 

acquisition, which was a non-noisy database (PTBDB) in previous testing and a relatively noisier database (NSRDB) in 

current testing. Smaller amplitude variation of box count due to the signal noises in NSRDB was observed in linking 

phase portrait method and its prediction performance was 33% higher than that of using unlinking portraits under this 

experimental setup. Linking phase portrait demonstrated more consistent performance over both noisy and non-noisy 

database. 

Using kurtosis threshold of 7.6, 6.5, 7.6 and 9.54, accuracy, sensitivity and specificity are calculated and shown in 

Table 4. Linking phase portrait yielded higher performance than unlinking phase portrait regardless of the database 

used for control signal acquisition. Furthermore, similar performance decline was observed during evaluation of 

kurtosis feature using NSRDB instead of PTBDB. The accuracy drops for linking phase portrait (15%) was lower 

compared to unlinking phase portrait (20%) and it confirmed the higher noise resistance of linking phase portrait. 
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Table 4 - Performance comparison of kurtosis feature extracted from PSR box counting using linking and 
unlinking phase portraits on ECG data from CUDB and PTBDB (left) or NSRDB (right). 

Windowing Method RR Segment window 

Feature Kurtosis of box count 

Data Representation 

Method 

Linking phase 

portrait 

Unlinking phase 

portrait 

Linking phase 

portrait 

Unlinking phase 

portrait 

Database (Number of 

Records) 
CUDB (32), PTBDB (32) CUDB (32), NSRDB (18) 

Accuracy, % 92.19 84.38 78 68 

Sensitivity, % 87.5 81.25 87.5 62.5 

Specificity, % 96.88 87.5 61.11 77.78 

Prediction Time 
3 min 12 sec  

(±2 min 34 sec) 

3 min 23 sec  

(±2 min 56 sec) 

3 min 12 sec  

(±2 min 34 sec) 

1 min 37 sec  

(±3 min 12 sec) 

 

3.3 Investigation on Testing Database: CUDB, PTBDB and NSRDB 

Based on the results of experiment 1 and 2 (Section 3.1 and 3.2), we selected windows of RR segments and linking 

phase portrait for PSR implementation in this experiment. This improved PSR method was evaluated using signals 

from PTBDB, NSRDB, CUDB and SDDB. We selected CV of box count as the sole feature due to its higher prediction 

performance. The same threshold obtained from the experiment using NSRDB and CUDB (0.14) was used to obtain the 

related performance metrics in Table 5. CV achieved high sensitivity (87.5% on CUDB, 90% on SDDB) and specificity 

(100% on both PTBDB and NSRDB) across the four different databases including the signals from SDDB and PTBDB 

which are excluded from the threshold derivation and selection. 

Although [13] reported a slightly higher sensitivity, only 18 CUDB records were selected without stating the 

reasons for inclusion or exclusion, nor specifying the records used for analysis. In contrast, our study clearly specified 

the records used for analysis and a more balanced data sets were used, in which 51% were mVA records and 49% were 

control records. The performance was comparable to the previous research work [13] despite the inclusion of more 

mVA and control records in our analysis. Besides, our modified algorithm performance using CV as single feature 

attained similar performance as [14] that required two features, as shown in Table 2. Table 5 also demonstrates that our 

modified method is comparable to [29] which employed four nonlinear ECG features and machine learning technique 

on the same 20 SDDB and 18 NSRDB record signals.  

Table 5 - Prediction performance of CV feature on ECG data from (a) multiple databases and (b) from SDDB 
and NSRDB. 

Study (a) Our Study (a) [13] (b) Our Study (b) [29] 

Method Modified PSR method 

with maximum 

thresholding 

Complexity analysis of T 

wave with maximum 

thresholding 

Modified PSR 

method with 

maximum 

thresholding 

ECG nonlinear method 

with support vector 

machine 

Feature Box count CV T wave approximate 

entropy 

Box count CV Hjorth mobility, 

complexity, wavelet 

band energy, fuzzy 

entropy 

Database 

(Records) 

CUDB (32), SDDB 

(20), PTBDB (32), 

NSRDB (18) 

CUDB (18), 

NSRDB+CINC 

Challenge database (40) 

SDDB (20), NSRDB (18) 

Accuracy, % 94.12 93.10 94.7 94.7 

Sensitivity, % 88.46 88.89 90 95 

Specificity, % 100 95 100 94.4 

Prediction 

Time 

4 min 11 sec  

(±3 min 12 sec) 

- 5 min 26 sec  

(±3 min 46 sec) 

3 min 

 

4. Discussion 

Our result confirms that CV of box count of phase portrait is potentially one of the useful predictors for imminent 

mVA and the result is supported by [14]. CV describes the variation of box count relative to the mean in each window. 

Higher CV indicates higher complexity of signal and its underlying desyncronisation. This relative measure is 

particularly useful to investigate ECG data which differs in amplitude and morphology for each person. The versatility 

of this method is demonstrated by testing against multiple databases. However, the reduced performance on NSRDB 
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shows that more consideration about noises, ectopic beats and so on need to be taken so that CV can be used in the 

practical situation of mVA prediction.  

On the other hand, our result demonstrates the limited utility of kurtosis because it achieves lower prediction 

performance and requires higher computational effort. Kurtosis measures the individual deviation from the mean which 

are then raised to the power of four. Hence, it is heavily affected by the outliers of box count data. Signal noises may 

cause more, or more extreme outliers and hence high kurtosis of box count does not necessarily imply the signal 

desynchronisation for imminent mVA but a false alarm due to signal noises. More than 15% drop of accuracy during 

evaluation of kurtosis using NSRDB exhibits the low noise resistance capability of kurtosis. A more advanced signal 

filtering technique is required to make kurtosis a useful predictor.  

In our work, ten RR segments are used for the construction of phase portrait in PSR because only detection of R 

peaks instead of heartbeat boundaries are required. It could be done reliably using well-known delineation algorithm 

[21] and have higher reliability in noisy data. Our work produces a better overall prediction performance compared to 

the windowing methods based on time and heartbeat in the previous work while reducing the complexities of 

computation for delineation and higher order statistics (kurtosis) compared to heartbeat-windowing method. The 

improved result could be attributed to more accurate segmentation of windows and hence more accurate phase space 

representation based on RR segment. Owing to RR segment's high noise resistance ability and low computational 

efforts, it would be interesting to investigate it as a new windowing method for extraction of other non-morphological 

features. 

Based on our experimental results, for box counting of PSR diagrams, linking phase portraits are more resistant to 

signal noises. This is probably because linking phase portrait shows the underlying dynamics of data using trajectories 

instead of only the random points. It smoothens out the time series data and minimizes the consequence of small-

amplitude noises, hence more resistant to noise. However, linking phase portraits are more vulnerable to the presence 

of ectopic beats which might also happen in normal rhythm.  When ectopic beats happened, the box count and the CV 

increased much significantly in linking phase portrait method, raising the chances of false positive. Detection of ectopic 

beats followed by rectification or extended analysis on their characteristics could possibly increase the method’s 

performance as well as versatility. Conversely, unlinking phase portrait is more sensitive to signal noises. Signal noises 

caused larger amplitude variation of box count in unlinking phase portrait and resulted in higher coefficient of variation 

which implied higher complexity of signal. This increased complexity of signal might not be due to the physiological 

changes leading to imminent mVA but because of the electromyographic noises in signal. The signal noises increased 

the chances of false alarm and hence decreased the performance of unlinking phase portrait on a noisy database. 

Unlinking phase portrait could possibly achieve higher performance by incorporating more advanced signal 

preprocessing method for filtering or transformation. 

Furthermore, the findings of the current study prove the importance of testing the prediction algorithm against 

more databases to ensure the general performance. It is obviously noticeable from the significant drop in performance 

of unlinking phase portraits when testing against NSRDB instead of PTBDB. It is due to the high variability of 

different subjects capturing their ECG signal at different conditions and hence high variance in the ECG data [30]. 

However, the use of different databases might reduce the comparability among the various prediction algorithms in 

different studies. Hence, we suggest while testing algorithm against multiple databases, the individual performance of 

an algorithm on each database could be reported (as in our work, sensitivity and specificity over each database were 

reported) to make it comparable to other studies wherever possible and to expose any issues on performance 

consistency of the algorithm. 

 

5. Conclusion 

This study was designed to investigate the feasibility of box counting technique of PSR. The analysis revealed that 

high prediction accuracy of 94.12%, sensitivity of 88.46% and specificity of 100% were achieved using coefficient of 

variation of box count derived from phase portraits constructed by windows of RR segments and represented by linked 

data and trajectories. The predictive power and versatility of this technique were corroborated by testing against 

multiple databases which included signal noises and ectopic beats. This improved technique is envisaged to be 

incorporated in future implementation of mVA prediction to enable timely diagnosis while different parameters such as 

time delay and window length could be tested for optimal performance. 
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