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Abstract: In this paper, finite element analysis software, ANSYS, is used to calculate mode I, mode II and mode 

III SIFs for a single semi-elliptical surface crack located on a thick cylinder. Two crack positions were examined, 

external and internal cracks investigated under remote bending and torsion loading, separately. The ratio of the 

crack depth to crack length ranging from 0.4 to 1.2, while the ratio of crack depth to cylinder wall thickness vary 

between 0.2, 0.5 and 0.8, and the ratio of the cylinder’s internal radius to the cylinder’s wall thickness is 4. It is 

found for both bending and torsion, SIFs distributed symmetrically along the crack front, and the crack aspect ratio 

strongly affect the location of the maximum value. Generally, external cracks showed slightly higher SIFs than that 

of internal cracks. For bending loading, the effect of relative crack depth is higher than to that of torsion loading for 

the same crack configurations. For mode III, internal cracks showed a resistance to crack growth, dissimilar to 

external crack. 
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1. Introduction 

Cylindrical structures, for example, pressure vessels and hollow pipes, are among the commonly used mechanical 

component in the industry. Similar to any other component, these structures expected to fail after approaching its 

designed service life. Sometimes, these structures do not withstand until reaching the estimated life, and a premature 

failure occurs. Practically, many reasons can accelerate the collapse of the pipe, for instance, improper operating, 

manufacturing errors or defects, and the existence of cracks. Surface cracks act as a stress concentration role in the 

component; therefore, the stress state in the crack region is higher than elsewhere on the element. Due to this increment 

in stress, which may exceed material yielding and lead to failure or break. 

Basically, the original or the initial shape of the crack is irregular, but the crack taking an approximate semi- 

elliptical shape after few cyclic loadings [1]. In order to describe the structural integrity of a cracked structure, the 

stress intensity factor (SIFs) must be known. In fracture mechanics field, SIFs considered a fundamental parameter 

which is used to assess the crucial state of a crack [2]. 

The evaluation of stress intensity factor took a great interest in the research field due to its importance for fatigue 

life estimation. Abundant studies conducted for cracked plates, solid and hollow cylinders. In [3] performed the first 

attempt to resolve the problem of a cracked cylinder, where an engineering estimation has been applied. 

In [4] determined the SIFs of surface cracks in plates and cylinder, besides the effect of the residual stress along 

with geometry on SIFs distribution. Meanwhile, [5-6] numerically investigated the problem of a slanted edge crack in 

plates, where tension and bending loadings were deemed. 
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Another study [7] applied 3-D finite element analysis (FEA) to determine SIFs coefficients for a wide range of 

surface crack located on pipe and rod, a focus was on the surface and deepes[t points on the crack front. In [8] obtained 

the value of SIFs of a semi-elliptical crack in a solid pipe, where tension, torsion and combination of both loadings 

were considered. In other hand, [9-10] applied FEA to compute the SIFs of a single crack in round bar under bending, 

torsion and combination of both loadings. 
 

 

 

 

(a) (b) 

 

 (c) 

Fig. 1 - The problem outline (a) inner semi-elliptical crack; (b) outer semi-elliptical crack; (c) cross-sectional 

description of the crack geometry 

 

Besides, [11] utilized 3-D finite element method to calculate the influence coefficients for mode I of a single 

longitudinal crack located internally and externally on thin and thick pressurized cylinders. 3-D FE has been performed 

in [12-13] to analyze the problem of hollow cylinder containing single edge crack subjected to bending and axial 

tension separately. In addition, [14-15] introduced composite theoretical and numerical method to evaluate SIFs of high 

aspect ratios of inner surface cracks in hollow cylinders. 

Weight function method has been utilized in [16] to derive a closed form to determine SIFs at the deepest point on 

the crack front of a single circumferential interior crack in a thin cylinder, this study applicable to cracks with high 

aspect ratios. Whilst [17] solved mode II and mode III of externally cracked hollow cylinder problem under torsional 

loading by the use of FEM. While in [18] applied 3-D FEA to computed all the three modes of failure for a hollow 

cylinder with an external crack subjected to different types of loadings. 

Recently, [19-20] performed a three-dimensional analysis to calculate SIFs for external and internal crack located 

on thin and thick cylinder exposed to internal pressure and tension loadings. 

However, despite the available solutions in the literature, a hollow cylinder with an outer and inner semi-elliptical 

crack subjected to bending and torsion appears to be very scarce. 

This study investigates all three modes of failure for a thick cracked hollow cylinder with a single external and 

internal crack. Bending and torsion loadings deemed, where each load applied separately through remote point. To 

involve an ample assortment of crack geometry, crack aspect ratio, a/c, (ratio of crack depth to half of crack length), 

vary from 0.4 to 1.2. While, relative crack depth, a/t, (ratio of crack depth to pipe wall thickness), changes between 0.2, 

0.5 and 0.8. The finite element software, ANSYS utilized for each modelling and analysis procedures. The results 

presented in the form of normalized SIFs to provide more generalization. 

 

2. Finite Element Modeling 

This research, utilizes ANSYS, Finite element software [21], to model and analyze the cracked thick hollow 

cylinder, as shown in figure 1. A hollow cylinder with length, L, internal radius, Ri, external radius, Ro, and cylinder 

wall thickness, t, comprising single semi-elliptical crack of depth, a, and length of 2c, placed on the inner and outer 

surfaces of the cylinder as shown in figure 2. 
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(a) (b) 
 

Fig. 2 - Description of cylinder geometry with (a) external, and (b) internal peripheral semi-elliptical crack 

 

 

(a) 
 

 
(b) 

 

(c) 

Fig. 3 - Detail of mesh where (a) the entire cylinder; (b) zone around the crack tip; (c) close-up to the crack tip
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Commonly, in order to illustrate the geometry of the crack, two dimensionless parameters are required, they are, 

a/c, defining the crack shape, and, a/t, demonstrating the depth of the crack with respect to the cylinder wall thickness, 

which is also known as crack aspect ratio and relative depth of crack, respectively. Another dimensionless factor used 

to define the position on the crack front, which is called normalized crack front, 2φ/π, where φ, is the parametric angle 

of elliptical crack. The shape ratio for the crack assumed to change from 0.4 to 1.2, and for each value of shape ratio, 

three values of depth ratio vary between 0.2, 0.5 and 0.8. For all the considered cases in this study, Ri/Ro =0.8, and Ri/t 

=4, while the Poisson’s ratio assumed to be 0.3, and Young’s modulus is 200GPa. 

The cylinder with the abovementioned parameters and properties modelled, which is the initial stage, the next step 

is to insert the crack and then mesh the overall model. For the mesh, due to the rapid changes in the region nearby the 

crack front, which is the area of interest, a very fine mesh-element used for this region, whilst a coarse mesh-element 

used for the remaining model as shown in Figure 3. In the final stage, the boundary conditions applied and 

postprocessing, then extract the results. For the all considered loading conditions, one of the cylinder ends is fixed, and 

the other end connected to a remote point, where the load applied through this point to the model. It is noteworthy that 

the applied load maintained in the elastic limits to avert large plastic deformations. 

One of the built-in features in ANSYS is the capability to generate number of contours around the crack tips along 

the crack front, as shown in Figure 4, where SIFs for each contour is determined. The outmost contour with respect to 

the crack tip always provide more reliable results, and vice versa for the nearest one which gives unreliable results due 

to material shrinkage in this region [22]. For this study, six contours created, and since no difference between the 5 th 

and 6th contour results, the result of the fifth contour was nominated. 

 

 

Fig. 4 - Orientation of generated contours around the crack tip 

 
 

3. Evaluation of SIFs 

The calculated values of SIFs that have been extracted from ANSYS were used to produce the SIF coefficients for 

bending and torsion, in term of mode I, mode II and mode III. For bending loading, the normalized SIF coefficient can 

be calculated as following [7] : 

 

        (1) 
 

 

 

Where FI,B is the normalized mode I SIF coefficient under bending loading, KI,cal is the calculated mode I SIF by 

ANSYS under bending loading, is the maximum  bending stress,  a, crack  depth and Q, is the shape  factor for an 

elliptical crack, which is determined by the subsequent formula [7] : 

 
 

𝑄 = 1 + 1.464 (𝑎 𝑐)1.65 for a/c ≤ 1 (2) 

𝑄 = 1 + 1.464 (𝑐 𝑎)1.65 for a/c > 1 (3) 

 

On the other hand, under unadulterated torsional loading conditions, mode I SIFs = 0 [17], therefore, only mode II 

and mode III are calculated and then normalized according to following [23]: 
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        (4) 

 

 

        (5) 

 

Where FII,T and FIII,T are the normalized mode II and mode III SIFs coefficients under torsion loading respectively. 

While KII,cal and KIII,cal denoting to the calculated values of stress intensity factors for mode II and III severally, and  

max, is the maximum shear stress. 

 

 

4. Result and Discussion 

4.1 Model validation 

Before proceeding the analysis procedure, a fundamental task is to investigate whether the proposed model for this 

study appropriates to perform the analysis. Furthermore, the capability of this model examined in term of accuracy with 

respect to those of the available models in the literature. To do so, the normalized SIFs coefficients of an axial crack, 

Faxial, exposed to internal pressure loading were compared to those of [11]. Figure 5 illustrates the comparison of both 

models for the same crack configurations, where the distribution of normalized SIFs plotted against the normalized 

crack front. Based on the results, it can be inferred that both models offering good agreement and the current suggested 

model is decent to carry out the analysis for the remaining crack configurations. 

 

 
Fig. 5 - The validation of the proposed model with respect to [11] 

 
4.2 SIFs coefficients under bending loading 

A thick hollow cylinder with single surface crack, examined under bending moment loading applied remotely to 

the model. The crack positioned on the external and internal surface of the cylinder respectively. Five values of crack 

shape ratio, a/c, starting with 0.4 until 1.2 with 0.2 increments were tested to explore the effect of this ratio on the 

distribution of SIFs, while three values for the relative depth ratio, a/t, 0.2, 0.5 and 0.8 to check the impact of crack 

depth.
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Fig. 6 - Distribution of mode I influence coefficients with respect to the crack front, for an 

external crack subjected to bending, where (a) a/c=0.4, (b) a/c=0.6, (c) a/c=0.8, (d) a/c=1, and (e) 

a/c=1.2 

 

Figure 6 illustrates the allocation of the normalized mode I SIFs in term of normalized crack front position for an 

external surface crack, subjected to bending. It can be inferred that SIFs distribution is symmetric and the application of 

various aspect ratios, produces several curve profiles shapes. This is due to the change in the location where the 

maximum value of SIFs attained. This is a well-known phenomenon called as transition effect, where the location of 

the maximum value of SIF shifted from the deepest point (B) to the surface point (A) Figure 2, (0.0 and 1.0) in the 

graph, respectively. A same transition effect noticed for same crack configurations but with different types of loading in 

[19] and [20]. Furthermore, it can be deduced that for slender cracks under bending moment, the propagation occurs at 

point (B) rather than at point (A), whereas for other crack shapes, the propagation appears clearly at surface points 

instead of deep points of the crack front. 
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Fig. 7 - Behavior of SIFs in term of the relative depth of crack under bending at (a) surface point (A), (b) deepest 

point (B) on the front of an external crack 

 

Figure 7 reveals the behavior of the surface point (A) and the deepest point (B) for an external crack with respect 

to the relative depth ratio of the crack in term of SIFs. At point (A), a direct proportion between shape ratio and SIFs, 

where any increase in the aspect ratio generates an increment in the SIFs, except for high aspect ratio, a/c > 1, which 

exhibited less values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 - Distribution of mode I SIFs with respect to the crack front, for an Internal crack subjected to bending, 

where (a) a/c=0.4, (b) a/c=0.6, (c) a/c=0.8, (d) a/c=1, and (e) a/c=1
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On the other hand, at point (B), SIFs showed an opposite behavior to that exhibited at point (A), where an inverse 

proportionality between the aspect ratio of the crack and the SIFs. In addition, at point (B), for the relative depth of 

crack with values less than 0.45, no significant effect on SIFs, while, this effect is more noticeable for deep cracks. 

Figure 8 presents the orientation of the SIFs along the crack front for an internal crack under bending loading. 

Based on the results, the behavior, for mode I was the same to that of external crack, where, a symmetric SIFs 

distributed along the crack front. Furthermore, the utilized shape ratio controlling the curve shape depending on the 

location of the maximum value of SIF. A noticeable transition effect was detected also, and generally internal crack 

results found to be slightly less than those of external crack. This could lead to an impression that external crack could 

be treated as a serious crack compared to internal crack. 

In figure 9, the behavior of the SIFs coefficients at point (A) and (B) with respect to a/c, is shown for an internal 

surface crack exposed to bending loading. The internal crack showed a typical behavior to that of external crack, except 

at point (A), deep cracks, a/t=0.8, presented convergence values of mode I SIFs, while this effect noticed on a/t=0.2 at 

point (B). 

 
 

 

 

 

 

Fig. 9 - The disposal of SIFs against the relative depth of crack exposed to bending at (a) surface point (A), (b) 

deepest point (B) on the front of an internal crack 

 

 

4.3 SIFs coefficients under torsion loading 

In this section, external and internal crack analyzed under unadulterated remote torsion. For this type of loading, 

mode I SIFs is zero, therefore, only mode II and mode III is presented for different values of crack aspect ratio and 

relative depth of crack. 

Figure 10 exhibits the orientation of mode II SIFs, FII,T , for an external crack along the crack front, where it 

behaved in a symmetric manner. It is noteworthy that the negative value of FII,T, denoting to the closing of the crack. In 

addition, a/c, exhibited direct proportion with FII,T, where any rise in a/c, produces an increment in FII,T, and vice versa, 

this is valid for cracks with a/c ≤ 1, while higher values of aspect ratio, granting a noticeable reduction in SIFs values. 

All the three values of a/t presented an approximate similar result, which can lead to a conclusion, there is no 

significant effect for the relative crack depth on mode II SIFs under torsion loading. Figure 10- (f) reveals the disposal 

of the FII,T at point (A) for different values of aspect ratios, where an emphasis on the insignificant effect of a/t is 

shown. 

Figure 11 showing the trend of mode III SIFs, FIII,T, for an external crack subjected to torsion loading. Again, 

insignificant effect for a/t is noticed along with an inverse proportion between a/c, and FIII,T. It is noteworthy for all 

examined crack aspect ratios, the location of the maximum FIII,T attained on the deepest point (B) of the crack front. 

Figure 11-(f) showing the behavior of FIII,T at point (B), the highest value of FIII,T attained for a/c=0.4, while the 

minimum approached at a/c=1.2, in addition, the trivial impact for a/t for all the considered aspect ratios. 

Figure 12 describes the trend of the mode II SIFs, FII,T, for an internal crack exposed to torsion loading. Again, the 

internal crack showed a typical behavior to that of external crack, where, insignificant effect for a/t on FII,T distribution. 

Whereas, the FII,T behavior at the point (A) for internal crack, figure 12-(f), was the inverse to what has been seen for 

the external crack. Where, higher values of a/c, gave the highest value of FII,T, this also valid for a/c ≤ 1, but for higher 

values of aspect ratio, FII,T comes with a reduction in its values. 
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Fig. 10- Distribution of mode II SIFs along crack front for an external crack under torsion, 

where (a) a/c=0.4, (b) a/c=0.6, (c) a/c=0.8, (d) a/c=1, (e) a/c=1.2 and (f) SIFs behavior at 
surface point 
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Fig. 11 - Trend of mode III SIFs of un external surface crack under torsion loading, where (a) a/c=0.4, (b) 

a/c=0.6, (c) a/c=0.8, (d) a/c=1, (e) a/c=1.2 and (f) SIFs behavior at deepest point 
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Fig. 12 - Orientation of mode II SIFs along crack front for an internal crack under torsion, where (a) a/c=0.4, (b) 

a/c=0.6, (c) a/c=0.8, (d) a/c=1, (e) a/c=1.2 and (f) SIFs behavior at surface point 

 

Figure 13 depicts the dissemination of the normalized mode III SIFs influence coefficients FIII,T, for an inner 

surface crack exposed to remote torsion load. Remarkable behavior found for the internal crack, where for mode III, the 

crack showed resistance against crack propagation, which was not seen for the external crack. Furthermore, under 

torsion loading, an internally cracked cylinder will never fail with mode III type of failure because of the resistance of 

crack faces to the crack propagation. The position where the maximum value of FIII,T on the crack front is attained 

always laying on the deepest point (B). In term of value, an obvious inversely proportion relationship can be seen 

between crack aspect ratio and the maximum value of FIII,T, where the highest value achieved at a/c=0.4, while 

gradually the value of FIII,T decreasing with the increase of the aspect ratio. The relative depth of the crack showed 

significant effect especially for a/c ≤ 1, figure 13- (f). 
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Fig. 13 - Trend of mode III SIFs for an internal surface crack under torsion loading, where (a) a/c=0.4, (b) 

a/c=0.6, (c) a/c=0.8, (d) a/c=1, (e) a/c=1.2 and (f) SIFs behavior at deepest point 

 

5. Conclusion 

In this paper, a thick cylinder with an internal and external surface crack examined under the effect of remote 

bending and torsion loading conditions. A linear elastic fracture mechanics parameter, stress intensity factor (SIFs) was 

calculated along the crack front for each considered crack configurations. The shape ratio of the crack or crack aspect 

ratio, a/c, assumed to change from 0.4 to 1.2, and for each value of shape ratio, three values of depth ratio, a/t, vary 

between 0.2, 0.5 and 0.8. For all the considered cases in this study, Ri/Ro =0.8, and Ri/t =4. Under bending loading 

condition only mode I SIFs presented, while mode II and III presented for torsional loading. Based on finding for both 

external and internal cracks under bending loading, SIFs distributed symmetrically along the crack front and the point 

where the maximum value of SIFs attained laying either at the surface point or at the deepest point of the crack front. 

The location where maximum SIFs approached, strongly depend on the crack aspect ratio, therefore, a transition effect 

noticed. The behavior of SIFs at the surface and deepest point with respect to crack aspect ratio is the opposite. 

Whereas for torsion loading, the orientation of mode II and mode III SIFs found to be symmetric along the crack front 

for both external and internal cracks. Mode II for both cracks approximately is similar, indicating to the insignificant 

effect for the relative depth of the crack. A remarkable behavior can be deduced from mode III for both cracks, where 

the external crack showed an opposite trend manner to that of internal, which means an internally cracked cylinder will 

never fail under mode III of failure, due to the resistance of the crack to propagates. Finally, for torsion loading, the 

effect of relative crack depth is slightly higher than those of bending moment. 
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