
Abstract: In this paper, a novel design of a TFET structure using Ge-source and extending a part of the channel 
into the source is proposed. The DC performance is analyzed by evaluating the ON current, ION/IOFF ratio and 
subthreshold swing (SS). Moreover, the high-frequency performance is inspected in terms of transconductance (gm) 
and unit-gain cutoff frequency (fT). All simulations are performed utilizing 2D SILVACO TCAD. It is 
demonstrated that the ON current and the cut-off frequency can be simultaneously improved by appropriate design 
of the proposed structure. 
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1. Introduction 
The continuous scaling down of the conventional MOSFET leads to a superior behavior regarding higher speed, 

improved high frequency (HF) performance and lower operational power [1, 2]. However, the miniaturization is 
obstructed by several unwanted effects that arose in the MOSFET as the device size goes on shrinking [3]. CMOS 
technology shows certain conditions as the device is scaled more and more in the nanometer regime, out of which 
power dissipation is an important issue. To overcome the issues regarding power dissipation, specific low power design 
techniques using CMOS are implemented [4]. Reduction of power dissipation could be achieved by reducing the supply 
voltage, but this has a disadvantage of increasing the delay. 

New devices are being proposed in the literature to overcome the disadvantages resulted from miniaturization. One 
of the most promising devices in this regard is the tunneling FET (TFET). A TFET is a gated PiN diode that is turned 
on by applying a gate bias [5]. The gate voltage is used to modulate the width of the tunneling barrier, as the width is 
controlled by the electric field in the tunneling junction. 

The current in conventional MOSFETs is based on the thermionic emission mechanism of charge carriers over a 
potential barrier. Consequently, keeping the power consumption within an acceptable boundary is one of the most 
severe difficulties for the conventional MOSFETs at advanced technology nodes. But TFETs avoid this issue by using 
the band-to-band tunneling (BTBT) mechanism rather than thermal injection to inject carriers into the channel of the 
device. The result of these mechanisms shows that the minimum subthreshold swing (SS) of the MOSFET is about 60 
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mV/decade at room temperature. In comparison, the SS of TFETs is generally less than 60 mV/decade at room 
temperature [6]. 

Besides exhibiting SS lower than 60 mV/decade, TFETs also have the following advantages: reduced leakage 
current by using the BTBT mechanism and the similarity in the fabrication process compared with MOSFET [7]. 
However, TFETs have two critical drawbacks: low ON-current level and ambipolar behavior [8]. 

The coupling of the gate voltage with the channel potential has a profound impact on the ION of the TFET. This has 
motivated researchers to design the transistor gate to improve ION using some techniques like employing multiple gate 
structures [9, 10] or using a semiconductor heterojunction of different materials to have lower effective bandgap and 
hence higher ION and lower subthreshold swing [11]. In this respect, low bandgap semiconductors, such as InAs [12]  
and Mg2Si [13], have been utilized. Such materials demonstrated higher tunneling rates than those in silicon because of 
their small bandgap, leading to a higher ON/OFF current ratio [14, 15]. 

One of the most attractive alternative materials used in TFETs is Germanium (Ge). Ge has attracted the attention of 
device engineers due to having a low bandgap (Eg = 0.67 eV) and high carrier mobility. These characteristics result in a 
higher ION [16, 17]. Some research works have considered the transfer characteristics and capacitance of Ge TFET but 
did not investigate the transconductance and the cutoff frequency of the device that are considered the main analog/RF 
parameters [18, 19]. 

In this paper, a new design of a TFET structure is proposed in which a part of the channel is extended into the 
source. The Ge material is used to serve as a source, while silicon is employed as the channel and drain material. By 
using the proposed structure, the ON current of Ge-source TFET is improved as well as the transconductance. The 
enhancement in transconductance boosts the cutoff frequency, as will be shown herein. 

The paper is structured as follows. Following the introduction, section 2 presents the simulation methodology and 
device structure. The simulation results are discussed in section 3. Section 4 is devoted to the parametric analysis. The 
final section is devoted to the paper conclusion. 

 
2. Simulation Methodology and Device Structure 

All simulations, presented in this work, have been performed using SILVACO 2D ATLAS device simulator. The 
models used in the simulations are listed in Table 1. Firstly, the BTBT model is calibrated against the work in [20], Fig. 
1 shows the calibration results. The electron and hole tunneling masses have been refined as me = 0.11 and mh = 0.17, 
respectively. These values are adjusted to achieve best-fit between simulation and fully quantum simulation results in 
[20]. 

 

Table 1 - Physical models used in the simulation 
Physical Model Description 

Mobility CVT: Enables transverse field, doping and temperature-dependent parts of mobility 
Statistics FERMI: To consider the highly doped regions, Fermi-Dirac statistics are adopted 
Tunneling BBT.NONLOCAL: The nonlocal BTBT model is used to consider the lateral tunneling through the 

channel. 
Drift-Diffusion Used for the transfer of holes and electrons 

 

 

Fig. 1 - TCAD model simulation calibrated vs the full quantum simulation in REF [20] 
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A cross-sectional schematic of an n-type double gate (DG) TFET is shown in Fig. 2. The structure comprises a Ge 
p+ source, Si intrinsic channel, and Si n+ drain. All the junctions are assumed to be abrupt with uniform doping profiles. 
Further, in the proposed structure, the channel is extended into the source region with a length defined by Lov. Fig. 2(a) 
presents the schematic diagram showing different regions and the design parameter Lov. Lov affects the band bending at 
the interface between the source and channel regions and hence the tunneling rates. As a result, Lov has a direct 
influence on the electrical behavior of the transistor. Its value can be varied from 0 up to the source length. In the 
following simulation, Lov is varied from 0 (conventional case) to 16 nm. 

The biasing conditions are VDS = 0.5V and −0.2 < VGS < 0.5 V at T = 300 K. The geometrical parameters and 
doping levels are listed in Table 2. A high doping concentration of 1×1020 cm-3 is adopted for the source region to 
enhance the tunneling current [21]. Meanwhile, the channel doping is low enough (1×1016 cm-3) to produce a p-i-n 
configuration. Further, the drain doping is not so high to suppress the ambipolar current [22]. Its value is 1×1018 cm-3, 
which is relatively high, to ensure a drain electrode Ohmic contact [22]. The work function of the gate is taken to be 4.4 
eV to ensure that the current starts to increase after VGS = 0 V [23]. Moreover, the gate oxide material used  is SiO2  
(with dielectric constant = 3.9) whose thickness is tox = 1 nm. 

 

a b 
 

Fig. 2 - Proposed TFET device Structure (All dimensions are given in μm) (a) Schematic diagram showing 
different regions and the design parameter Lov and (b) Output structure from SILVACO device simulator 

 
Table 2 - Main design parameters in device simulation 

 

Parameter Value 
Source Length (Ls) 20 nm 
Channel Length (Lch) 50 nm 
Drain Length (Ld) 50 nm 
Gate oxide thickness (tox) 1 nm 
Source doping (p-type) (Ns) 1×1020 cm-3 
Drain doping (n-type) (Nd) 1×1018 cm-3 
Channel doping (p-type) (Nch) 1×1016 cm-3 
Gate work function (Φg) 4.4 eV 

 
3. Simulation Results 

In the following simulations, the overlap distance (Lov) of the channel into the source is varied to inspect its 
influence on the device electrical behavior. Firstly, the nonlocal BTB tunneling rates are shown in Fig. 3 for two values 
of Lov (6 nm and 12 nm) compared to the conventional structure with no channel extension. It can be inferred that the 
proposed structure provides much higher rates than the conventional one (either for holes or electrons). These high 
tunneling rates indicate higher ON current when using the proposed structure. 

Now, a comparison between the transfer characteristics of the conventional and proposed TFET for two values of 
Lov is shown in Fig. 4. It is observed that by increasing the overlap length, the ON current becomes higher. The ON 
current is doubled at VGS = 0.5 V and Lov = 12 nm. At the same time, the OFF current substantially remains constant, so 
the ON/OFF current ratio increases by the same factor when the overlapping increases. The results indicate that, at Lov 
= 12 nm, the ON current is about 2.5 of the conventional ON current at the ON state for which VGS = 0.5 V. 
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Fig. 3 - BTB electron and hole tunneling rates for the proposed structure with different values of Lov (at VDS 

= 0.5 and VGS  = 0.5 V) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 
 

Fig. 4 - Transfer characteristics of the conventional and proposed TFET structures with different overlap 
lengths at VDS = 0.5 V (a) log scale and (b) linear scale 

 
Next, the high-frequency parameters are inspected. The high-frequency performance is studied considering the 

transconductance (gm) and gate capacitance (Cgg). Then, the unit gain cutoff frequency (fT) is calculated based on the 
previous two parameters. Fig. 5(a) illustrates the variation of the intrinsic total gate capacitance (Cgg) of the proposed 
structure at VDS = 0.5 V. The result is compared with the gate capacitance of the conventional TFET structure. It is 
evident from the figure that Cgg of the proposed structure is lowered with the increase of overlap length. When Lov = 12 
nm, Cgg is lowered by about 7% from its value for the conventional structure with no overlap (Given VGS = 0.5 V). 

The transconductance is given by the rate of increase of the drain current with the gate-to-source voltage  [24]. It 
can be formulated as, 

 

gm = 
∂I D 

 

∂V 
(1) 

GS 

The variation in transconductance is shown in Fig. 5(b). The proposed structure shows higher transconductance as 
compared to conventional TFET because of an increase in tunneling volume in the channel. Now, the cutoff frequency 
is approximated by the ratio of the transconductance to the total gate capacitance [25]. It can be given as, 
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2πC gs      1+ 2C gd   / C gs 

 
 

f   = 
gm

 ≈ gm 
= gm  

 

(2) 
T 2π (C +C   ) 2πC 

gd gs gg 

 

Where gm is the transconductance and Cgg is the overall gate capacitance. From the previous equation, fT is improved by 
increasing the transconductance and reducing the total gate capacitance [26, 27]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 
 

Fig. 5 - (a) Variation of the intrinsic total gate capacitance and (b) transconductance as a function of gate 
voltage for the proposed structure (at VDS = 0.5 V) 

 
 

Fig. 6 shows the variation of the cutoff frequency of the proposed structure as a function of gate voltage at VDS = 0.5 V. 
The cutoff frequency of the proposed structure increases with the increase of Lov. fT is increased by a factor of 2.7 at VGS 
= 0.5 V and Lov = 12 nm. This behavior is due to increasing the ratio of gm and Cgg (as can be depicted from Fig. 5). 

 

 

Fig. 6 - Cutoff frequency variation vs gate voltage at VDS = 0.5 V 
 

4. Parametric Analysis 
In order to design the proposed structure, we examine the variation of Lov from 6 nm to 16 nm to investigate the 

influence of the channel extension into the source. The main parameters studied to measure this impact are SS, ION and 
fTmax. The SS can be defined as the gate voltage required to change the drain current by one decade. It can be determined 
as the inverse of the slope of the (log ID) vs VGS curve in the subthreshold exponential region [28]. It can be formulated 
as, 
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SS = 

 
∂VGS 

 

∂(log ID ) 

 
(3) 

 

Where the slope is determined by the partial differentiation of (log ID) w.r.t. VGS. Fig. 7(a) shows the SS variation 
with Lov. As can be seen, SS decreases when increasing Lov. So, there is an improvement in SS as a smaller SS leads to 
more improved dynamic performance. Moreover, Fig. 7(b) and Fig. 7(c) show an improvement in the ON current and 
the maximum cutoff frequency, fTmax, with increasing the overlapping length. By increasing the overlapping length from 
6 nm to 16 nm, SS is decreased from 33 mV/decade to less than 30 mV/decade, ION is increased from 1 µA/µm to 5 
µA/µm and fTmax is increased from 10 GHz to 65 GHz. 

a         b           c  
 

Fig. 7 - Variation of performance parameters with Lov (at VDS = 0.5 V and VGS = 0.5 V): (a) sub-threshold swing, 
(b) ON current and (c) maximum cut-off frequency 

 
 

5. Conclusion 
In this paper, by using 2D TCAD simulations, the impact of extending the channel into the Ge-source region of 

TFET has been studied to control the ON current while improving the high-frequency performance. It is demonstrated 
that by overlapping a part of the channel into the source region in a TFET, the ON current increases. In addition, the 
capacitance, transconductance and, in turn, the cutoff frequency are improved. By increasing the overlapping length, 
Lov, from 6 nm to 16 nm, SS is decreased from 33 mV/decade to less than 30 mV/decade, ION is increased by a factor of 
5 and fTmax is increased by a factor of 6.5. Based on this TCAD simulation study, the proposed structure could be used 
effectively for low power applications. 
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