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1. Introduction 

The existence of fluvial rivers in Malaysia has been known to be an area for leisure activities and popular retreat 

among the local tourist. The presence of large boulder and gravel surrounded by tropical rain forest with various types 

of flora and fauna surrounding the area makes it unique and naturally beauty. Therefore, the beauty of nature and the 

freshness of river in the area need to be preserved. The clear and fresh of river water are continuously flow many 

kilometers to the downstream thus reduce the risk of water pollution. Fluvial geomorphology is a study related to the 

Abstract: The fluvial geomorphological descriptions of rivers are very important to maintain the natural presence 

through studying the river stability and sediment transport research. Lack of knowledge on fluvial characteristics 

will lead to improper water resources management in long term. This research was focused to determine the fluvial 

river characteristics, to identify the management interpretation of the river stability and to assess the variation of 

flow regime and equilibrium geometry. The assessment of Rasau River was taken at different morphological 

appearance such as bedrock, cascade, pool, plain and step-pool. At station data collection were river width, 

velocity, bed materials, slope of the channel, bank slope and longitudinal profile. Classification of Rasau River 

were found that RCS1, RCS2, RCS3, RCS4, RCS5, RCS6, RCS7, RCS8 are classified as B4, B3, G4, F3b, F2b, 

E5b, B5 and B5 respectively. Based on the river classification, the conditions of cross sections RCS4 and RCS5 are 

not stable with sediment load low to very high and the energy of water to the stream also shows low to moderate. 

Low energy of water flow can lower sediment transport rates thus in long term will cause aggradation and channel 

narrowing. At RCS1, 2, 3, 6, 7 and 8 are classified as a stable cross section with bank vegetation as a component of 

the cross-section stability. The energy of water is in a range of high to moderate and the sediment load is in a range 

of low to moderate.  On the assessment of the equilibrium geometry, Width, B = aQb, Depth, D = cQf, and 

Velocity, v = kQm. This study was found that hydraulic geometry equations for Rasau River are B = 12.3Q0.2,        

D = 0.9Q0.5, V = 0.09Q0.3. It was successfully verified that the hydraulic geometry parameters satisfy continuity 

equation where the summation of the exponents and the multiplication of the coefficients must give a mathematical 

value of unity thus specify that Q = BDV. The coefficient of width (a value) shows the highest, this shows that the 

widening of the river can increase the significant change of the flowrate of the river. 
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formation and function of streams and the interaction between streams and the landscape around them. It is associated 

with the relationship of flowing water, earth formation and channel shape [1,] [14].  The fluvial geomorphological 

descriptions of rivers are important through studying the river stability and sediment transport research. Therefore, this 

research is focused to determine the fluvial river classification, to identify the management interpretation of the river 

stability and to assess the variation of flow regime and equilibrium geometry for the river. It is critical for engineers 

who constructing highways near rivers and bridge over the rivers because those construction activities will disturb the 

earth formation, streamflow and channel shape. Many greatest problems related to water arise because of the 

construction activities would transport the sediment and deposition happen at nearby river. Knowledge of the principles 

of fluvial morphology is often necessary. Failure to acknowledge the existence of those structures may deteriorate the 

river stability and its original landscape of the fluvial system thus affected the quality of water resources to the 

downstream flow. The restoration and rehabilitation work can be performed by knowing the existence of fluvial 

geomorphology of the river.  

 

2. The Fluvial Geomorphology 

River stability is very complex where all the components are interconnected to each other. The river stability is 

often described in terms of the channel form geometry surrounded by materials of riverbed and bank, under affection of 

water discharge and sediment load transportation [1,] [3], [4], [6], [13].  In general, a stability river may adjust their 

boundaries but do not exhibit trends in changes to their channel shape. One form of instability occurs when a river is 

unable to transport its sediment load or the energy of water too low, then the sediments deposited within the channel, 

leading to the condition referred as aggradation.  When the ability of the stream to transport sediment exceeds the 

availability of sediments within the incoming flow, and stability thresholds for the material forming the boundary of the 

channel are exceeded, erosion occurs. Most of the fluvial streams which are not affected by human interferences can be 

said to be graded or in equilibrium [1], [16], [17]. Construction of dams, withdrawal or addition of clear water, addition 

of sediment load, contraction of stream and cutting off the bends are some the ways in which the equilibrium of the 

fluvial river is disturbed by human activities. 

The three systems consist in the fluvial geomorphological processes which are morphological systems, cascading 

system and process response system [3]. A morphological system is the landform process like channel, hillslopes and 

floodplain.  The components of the morphological system are linked by a cascading system which refers to the flow of 

water and sediment through the morphological system. These flows follow interconnected pathways from hillslopes to 

channel and through the channel network. The adjustments between the processes of the cascading system and the 

forms of the morphological system interact as a process response system where with its own inputs and outputs through 

sediment production zone, sediment transfer zone and sediment deposition zone as shown in Fig. 1. The three zones are 

interconnected by the factors of river equilibrium which are the sediment supply, size of particles, water discharge and 

the slope of channel.  

 

 

Fig. 1 - Process response systems are divided by production, transfer and deposition zone along the fluvial 

geomorphology process. 

 

Lane [7] stated the relationship of equilibrium factor in fluvial morphology expressed the four variables which are 

by Qs*d   Qw*S, where Qs is quantity of sediment, d is particle size of sediments, Qw is water discharge and S is the 

slope of the channel.   In a channel at equilibrium, if any of the four variables is altered, it indicates the changes which 

are necessary in one or more of the others to restore equilibrium [7]. This relationship provides a useful concept to 

describe the capability of a stream to adjust its morphology through sediment erosion, transport and deposition 

processes. Philip [8] stated that a change in sediment load, relative to changes in bed material size, suggests the river 

will compensate by adjusting its sediment transporting capacity during a period of instability until the relationship 
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balances once more. For example, if the volume of sediment supplied to a reach over a given time period is less than 

the capacity of the reach to transport the volume of sediment through, then erosion of the channel boundary will be 

occurred. This would lead to channel instability through bed scour or channel widening. Conversely, if the sediment 

supply is greater than the transporting capacity, then sedimentation processes are likely to predominate with potential 

channel instability through aggradation or channel narrowing.  

2.1 River Classification 
The study of river classification will enable to group the stream having similar characteristics. According to 

Rosgen [2], the classification often helps in (i) prediction of river behavior from its appearance; (ii) development of 

specific hydraulics and sediment transport relations for a given stream type; (iii) extrapolating site specific data to 

stream reaches having similar characteristics and; (iv) providing a frame of reference for communicating about stream 

morphology among different disciplines. Rosgen classification can be determined by the diagram through a hierarchical 

assessment of channel morphology measured based on bankfull geometry dimensions as shown in Figure 2. 

Level I classification were based on geometry measurement such as entrenchment ratio (ER), water-depth ratio 

(W/D), sinuosity, channel slope and pattern. Rosgen [2] name the classification in nine types designated as A (relative 

straight), B (low sinuosity), C (meandering), D (braided), DA (anastomosed-multiple channel), E (tortuously 

meandering), F (entrenched meandering) and G (entrenched gulley). Rosgen [2] mentioned the entrenchment ratio were 

calculated as width of flood prone area divided by bankfull surface width of the channel, flood prone area is defined as 

the width measured at an elevation which is determined at twice the maximum bankfull depth. Water-depth ratios were 

calculated as bank full channel width divided by bank full mean depth and sinuosity were calculated as stream length 

divided to valley length [15]. Channel slope were calculated as the difference of water surface elevation divided by 

stream length.  

Level II classification subdivides the streams in each class into a maximum of six categories symbols with 

numbers depending on the channel bed materials such as 1 (bed rock), 2 (boulders), 3 (cobbles), 4 (gravel), 5 (sand), 6 

(silt and clay). Level III classification is aimed to provide the description of stream condition as related to stability 

condition, recovery potential, and the stream function. These were based on additional inputs about hydrology, biology, 

ecology, and human activity. It evaluates and quantifies the channel stability, bed-stability (aggrading, degrading or 

stable), and bank erosion. Level IV classification is based on reach specific observations for verification of process 

based on Level III analysis.  

                                                

Fig. 2 - Key to the Rosgen’s classification of natural river [2]. 

 

2.3 Variation of Flow Regime and Equilibrium Geometry  
This chapter were described the streamflow and channel geometry relationship. It provides a set of empirical 

relationship between the discharge and its hydraulic variables i.e. channel width, flow depth and flow velocity. The 

important of determining the geometrical characteristics of Rasau River may be helpful in designing of hydraulic 

structures, river rehabilitation works, defining the deformation of the river channel and other regional works [5], [9]. 

Many researchers had done their research to determine the exponent value of the flow regime based on their selective 

area. Leppold and Maddock [10] expressed the hydraulic geometry relationship for a channel in the form of power 

function of discharge: 
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B = aQb, D = cQf, v = kQm (1) 

 

where B is the channel width; D is the flow depth; v is flow velocity; Q is flow discharge, b, f, m is the exponent value 

represent the rate of change of the hydraulic variables B, D and v; and a, c and k is coefficient value represent as the 

scale factors that define the values of B, D and v. The hydraulic variables B, D and v satisfy for continuity equation of: 

 

Q = BDv (2) 

 

Therefore, the summation of the exponents and the multiplication of the coefficients must give a mathematical value of 

unity. Summation of exponent value:   

 

b+f+m = 1 (3) 

 

Multiplication of the coefficients: 

 

a*c*k = 1 (4) 

 

As presented in Table 1, numbers of the exponent values from other researchers are gathered from the literature by 

Singh [11].  

 

Table 1 - Variation of exponent value of flow regime [11]. 

Source b f m Sum 

Leopold and Maddock (1953) 0.500  0.400 0.100 1.000 

Wolman (1955) 0.340  0.450  0.320  1.110 

Leopold and Milner (1956)  0.290  0.150  0.580  1.020 

Miller (1958) 0.380 0.250 0.390 1.020 

Brush (1961) 0.550 0.360 0.090 1.000 

Ackers (1964) 0.420 0.430 0.150 1.000 

Carlston (1969) 0.461 0.383 0.155 0.999 

Thornes (1970) 0.400 0.340 0.250 0.990 

Ponton (1972) 0.600 0.400 -0.010 0.990 

Knighton (1974) 0.610 0.310 0.080 1.000 

Smith (1974) 0.600 0.300 0.100 1.000 

Parker (1979)  0.500 0.415  0.085 1.000 

Allen, Arnold and Byers (1994) 0.557  0.341   0.104 1.002 

George (1980) 0.480 0.480 0.110 1.070 
 

 

3. Site Description and Research Methodology 

A fluvial river in Malaysia has been selected called Rasau River. Rasau River is located in Peninsular of Malaysia, 

in Ayer Hitam Forest Reserved in the state of Selangor. Originally the area covering about 4270 hectares and gazette as 

a forest reserve way back in 1906, it has suffered from a series of degradation and encroachment throughout the years. 

As now, covering an area of about 1248 hectare the forest is bordered in the north by Bandar Puchong Jaya and to its 

south by Putrajaya administrative township. The eastern part of the forest is bordered by the town of Seri Kembangan 

and to the west by the massive housing and business centre of Puchong. Rasau River was gazette under Sultan Idris 

Shah Forestry Education Centre (SISFEC).   

The channels are flowing to the downstream heading to Puchong Lake. The channels are considered as low flow 

and most of the tributaries dried up during drought season. The location of study area has been shown in Figure 3; the 

elevation of study area which is located at high elevation in the surrounding area with rainforest has been shown in 

Figure 4; and the site photo of the channel at RCS1 looking upstream has been shown in Figure 5. As the surrounding 

of the site area is a rapid development area, the fluvial geomorphology of Rasau River is believed was disturbed.  

This study was based on an extensive field sampling and data analysis. The data collection involves by two main 

themes which are river surveys and hydraulics data. Total of eight cross-section surveys were measured using auto 

level, elevation staff, measuring tape and velocity meter. The cross sections were selected at different types of 

morphological channel such as bedrock, pool, plain and riffle. The size of bed materials was measured using Wolman’s 

pebble count. About 100 samples were collected longitudinally from one cross section to another cross section. Each 

samples size is measured using pebble count for small size like gravel ar small cobblers; or using measuring tape for 

bigger size like bedrock, boulder or cobbles. For sand and clay, the samples were analyzed using dry sieving analysis.  
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Fig. 3 - The location of Rasau River. 

 

  

Fig. 4 - Topography of Rasau River. 

 

                                        

Fig. 5 - Site photo of Rasau River, looking upstream. 

 

The surveys data were analysed using microsoft excel and HEC-RAS 5.0.3 to acquire hydraulics data as required 

for river classification such as bankfull cross-sectional area (A), bankfull wetted perimeter (P), width depth ratio (W/d), 

average velocity (V), size of bed material (D50 and D84), slope of water surface (Sw), slope of bed surface (Sb), hydraulic 

radius (R) and longitudinal profile 

 

4. Results and Discussion  

4.1 River Classification and Particle Size Distribution 
The geometry of river such as bankfull width, bankfull depth, bank slope at left and right side, flood prone width, 

entrenchment ratio, width/depth ratio, channel length, valley length, sinuosity have been calculated and the result of 

classification Level I as shown in Table 2. Level II classifications were based on the group of average bed materials, 

D50. The particles size was analyzed by Particles Size Distribution (PSD) Curve [12]. For RCS1 the average types of 

particles are very fine gravel, RCS2 is small cobbles, RCS3 is medium gravel, RCS4 is small cobbles, RCS5 is large 

boulder, while RCS 6, 7 and 8 have same average particles which is sand.  
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Therefore, RCS1, RCS2, RCS3, RCS4, RCS5, RCS6, RCS7, RCS8 have been classified as B4, B3, G4, F3b, F2b, 

E5b, and B5 respectively as shown in Table 3. Classification of B4 indicate that the cross section is low sinuosity with 

gravel as bed materials at slope range 0.02 to 0.039, B3 indicate that the cross section is low sinuosity with cobbles as 

bed materials at slope range 0.02 to 0.039, G4 indicate that the cross section is entrenched gully with gravel as average 

bed materials at slope range 0.02 to 0.039, F3b indicate that the cross section is entrenched meandering with cobble as 

average bed materials at slope range 0.02 to 0.039, F2b indicate that the cross section is entrenched meandering with 

boulder as average bed materials at slope range 0.02 to 0.039, E5b indicate that the cross section is tortuously 

meandering with sand as bed materials at slope range 0.02 to 0.039, B5 indicate that the cross section is low sinuosity 

with sand as bed materials at slope range 0.02 to 0.039. Then, at Level III, the descriptions were based on the group of 

classification referring to the conditions of river stability as shown in Table 4.  

 

Table 2 River Classification at Level I. 

Cross 

section 

Entrenchment  

Ratio (± 0.2) 

W/d  

(± 2.0) 

Sinuosity 

(± 0.2) 

Stream Type 

Level I 

RCS1 1.43 > 1.4 22 > 12 

1
.2

1
 

<
1

.2
 

B 

RCS2 1.41 > 1.4 20 > 12 B 

RCS3 1.12 < 1.4 7 < 12 G 

RCS4 1.08 < 1.4 34 > 12 F 

RCS5 1.13 < 1.4 50 > 12 F 

RCS6 1.49 > 1.4 9 < 12 E 

RCS7 1.57 > 1.4 16 > 12 B 

RCS8 1.47 > 1.4 13 > 12 B 

 

Table 3 – River Classification Level II. 

Cross 

section 

D50 

(mm) 

Average Bed 

Materials 

Slope of Channel 

(m/m) 

Stream Type 

Level II 

RCS1 2.83 Gravel 

0
.0

3
2
 

B4 

RCS2 119 Cobble B3 

RCS3 8.62 Gravel G4 

RCS4 81.98 Cobble F3b 

RCS5 2168 Boulder F2b 

RCS6 0.857 Sand E5b 

RCS7 0.857 Sand B5 

RCS8 0.857 Sand B5 

 

Table 4 - River Classification Level III. 

Cross 

section 

Sediment 

supply 

Streambank 

erosion 

Sediment load Energy to 

stream 

Morphology Features 

RCS1 Moderate Low Low to 

moderate 

High Riffle-pool  

RCS2 Low Low Low to 

moderate 

High Riffle-pool  

RCS3 Very high Very high Low to very 

high 

Moderate to 

high 

Rapids predominate with 

occasional pool 

RCS4 Very high Very high Low to very 

high 

Low to 

moderate 

Riffle-pool 

RCS5 Moderate Moderate Low to very 

high 

Low to 

moderate 

Riffle-pool 

RCS6 Moderate High Very efficient at 

carrying 

sediment 

Low Riffle-pool 

RCS7 Moderate Moderate Low to 

moderate 

High Plain pool 

RCS8 Moderate Moderate Low to 

moderate 

High Plain pool  
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Most of the cross sections in Rasau River have been shown as riffle-pool morphology. At RCS4 and RCS5 the 

conditions of cross sections are not stable with sediment load low to very high, sediment supply very high to moderate, 

and the energy of water to the stream also shows low to moderate. Low energy of water flow can lower sediment 

transport rates thus in long term will cause aggradation and channel narrowing. At RCS1, 2, 3, 6, 7 and 8 are classified 

as a stable cross section with bank vegetation as a component of the cross-section stability. The energy of water is in a 

range of high to moderate and the sediment load is in a range of low to moderate.   

The schematic cross section representations of fluvial geomorphology of Rasau River and the elevation have been 

shown in Fig. 6 and Fig. 7.  At the north part of the site area, where it is near RCS8, 7 and 6 were disturbed due to the 

vicious development. Due to deforestation activities, the bed materials at RCS8, 7 and 6 were dominated by sand. The 

amount of sediment in the cross section becomes high when some of the trees have been destroyed causing the soil to 

be exposed to direct rainfall splash and flowing as a runoff along with the sediment into the river. The average bed 

materials at RCS1 to 5 were dominated by various sizes such as boulders, cobbles and gravels which are not much 

affected. 

 

 

  

 

Fig. 6 - Schematic cross section. 
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4.2. Hydraulic Geometry  
The coefficient and exponents value were determined by plotting of power law function of the hydraulic variable 

and flow discharge. The hydraulic variables are mean depth, mean velocity and width of the fluvial river. The 

hydraulics data, value of exponent and coefficient of hydraulic geometry have been shown in Table 5.    

 

Table 5 - Variation of flow regime and hydraulics geometry. 

Cross Section 
Flowrate 

(m3/s) 

Water 

Surface 

Width 

(m) 

Mean 

Depth 

(m) 

Mean 

Velocity 

(m/s) 

RCS1 0.064 9.85 0.29 0.05 

RCS2 0.050 8.90 0.32 0.02 

RCS3 0.314 12.40 0.89 0.03 

RCS4 0.079 6.00 0.13 0.12 

RCS5 0.086 6.00 0.04 0.32 

RCS6 0.074 5.85 0.42 0.03 

RCS7 0.037 8.30 0.26 0.02 

RCS8 0.065 8.50 0.39 0.02 

 

Relationship of discharge and hydraulic geometry were plotted as in Fig. 7. Based on hydraulic geometry relationship 

for a channel in the form of power function of discharge, the exponents, b, f, m and the coefficients, a, c, k of the 

hydraulic geometry parameters of the Rasau River were found to be 0.2, 0.5, 0.3 and 12.3, 0.9, 0.09, respectively as 

shown in Table 6.Thus, the hydraulic geometry for Rasau River as in Eqn. (1) can be written as below:  

 

B = 12.3Q0.2, D = 0.9Q0.5, v = 0.09Q0.3 (5) 

 

The exponents and coefficients values have been found to be consistent with previous studies. Also, it has been verified 

that the parameters satisfy the continuity equation as in Equation (3) and Equation (4).  

 

   
 

 

Fig. 7 - Relationship of discharge and hydraulic geometry. 
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Table 6 - Exponents and coefficients of hydraulic geometry parameters. 

Exponents  b+f+m  

b 0.2 

1.0 f 0.5 

m 0.3 

Coefficients a*c*k 

a 12.3 

0.996 c 0.9 

k 0.09 

 
 

5.    Conclusion 
The condition of stability along the study area of Rasau River has been identified. It has been shown at RCS4 and 

RCS5 were not stable with sediment load in a range of low to very high, sediment supply in a range of very high to 

moderate, and the energy of water to the stream also shown a range of low to moderate. Low energy of water flow can 

decrease sediment transport rates thus in cross section will cause aggradation and channel narrowing in a long term. At 

RCS1, 2, 3, 6, 7 and 8 were classified as a stable cross section with bank vegetation as a component of the cross-section 

stability. The energy of water is in a range of high to moderate, the sediment load is in a range of low to moderate and 

the sediment supply is in a range of low to very high.  

On the assessment of the hydraulic geometry, the study has been found that the exponents, b, f, m and the 

coefficients, a, c, k of the hydraulic geometry parameters of the Rasau River were 0.2, 0.5, 0.3 and 12.3, 0.9, 0.09, 

respectively. Hydraulic geometry equations for Rasau River are B = 12.3Q0.2, D = 0.9Q0.5, v = 0.09Q0.3. Besides, it has 

been verified that, the parameters satisfy continuity equation where the summation of the exponents and the 

multiplication of the coefficients give a mathematical value of unity thus satisfy the continuity equation and specify that 

Q = BDv.  

 Coefficient of width is the highest value compare to other exponents or coefficients. This means that the widening 

of the river can increase the significant change of the flowrate [18], [19]. Therefore, it can give benefit to the restoration 

and rehabilitation of the river. The results can be used to predict the cross-sectional parameters of any branch of the 

Rasau River or other rivers where the hydrological properties are similar. The relationships obtained can be used for 

watershed management, flood control and hydropower generation in the catchment basin. 
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