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1. Introduction

Understanding the energy expenditure of human locomotion has been an area of great interest in gait analysis [1].

Energy expenditure can be determined either by quantifying the metabolic or mechanical energetic cost. The first o ne is 

the most direct approach. It is derived from the prediction of metabolic function of the body th rough proxies such as the 

body demand for adenosine triphosphate (ATP) during an activ ity, which is reflected in the change in volumetric rate of 

oxygen consumption. The rate of oxygen consumption signifies the rate of cellu lar respiration, which is directly 

proportional to the intensity of the activity  [1]. However, th is method only measures how much  energy is expended by 

Abstract:  

Purpose: Human body constantly adapts to optimise the energy expenditure. A better understanding of the 

mechanical energetic costs in lower extremit ies helps identify the compensatory mechanism adopted in 

asymmetrical gait. This paper proposes the use of instantaneous segmental energy and normalised symmetry index 

(SInorm) to examine asymmetrical gait. Th is approach can provide better overview of gait quality allowing 

identification of change in segmental energy during d ifferent gait  phases and contribution of each segment in  

compensating abnormal walking.  

Method: An experimental study was carried out to validate this method. Twenty healthy subjects were recruited. 

Asymmetrical gait was simulated by restricting knee motion during walking using a knee brace. Mechanical 

energy was determined for each segment of the left and right limbs. Normalised Symmetry  Index (SInorm) was then 

calculated to examine bilateral differences in segmental energy during stance phase and swing phase. Statistical 

analysis using ANOVA and Tukey-Kramer mult iple comparison test to identify asymmetry of the segmental 

energy (p-value < 0.05). 

Result: Significant asymmetry of segmental energy occurred during swing phase. Greater asymmetry was observed 

in kinetic energy than in potential energy. The affected limb segments produced lower kinetic energy than the 

normal limb. At asymmetrical state, potential energy of the affected limb’s foot and thigh were lower than that of 

the normal segments while the inverse was true for thigh segment. 

Conclusion: These results suggested that in asymmetrical gait, a  form of compensatory mechanism is adopted to 

walk. This can be observed in the change of instantaneous segmental energy during walking. 

Keywords: gait symmetry, energetic cost, normalized symmetry index 
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the whole body as a single system without differentiating the source of energy expenditure. The second method can 

overcome this limitation. Mechanical energetic cost is derived from the interaction between potential and kinetic 

energies during walking. It can measure the instantaneous energy profile of human lower ext remity and their changes in 

gait. Several studies reported the relationship between the mechanical and metabolic energ ies [2]. It was found that 

metabolic energetic cost increases when there is an increase or decrease in stride  rate from the preferred rate of the 

subjects for different reasons [3]. This change is attributed to an increase in the mechanical work done by the lower 

extremity to propel the body forward. 

Human gait is defined as a cyclical movement pattern of the limbs during locomotion. The most important and 

commonly  studied gaits are walking and running gaits. Walking gait is d ivided into two main phases of swing phase 

and stance phase. These phases are defined using the toe off and heel strike events [4]. They are then further divided 

into several key events and periods as shown in Figure 1. 

Fig. 1 - Key events and phases in a complete gait cycle. Modified from [5]. 

Gait o f a healthy indiv idual is fairly symmetrical with small deviations.  Patients with musculos keletal disorders 

(e.g. lower limb joint immobilisation due to applicat ion of p laster cast [6], un ilateral osteoarthritis [7] and patients with 

neurological disorders e.g. stroke [8, 9]) generally exh ibit asymmetrical gait. Significant bilateral differences between 

left and right limbs during locomotion can be observed in these patients. Several indices have been proposed to define 

gait asymmetry, such as symmetry rat io [9, 10] and symmetry index [9, 11, 12], in patients with stroke [10], cerebral 

palsy [13] and amputation [14]. Despite their wide adoption in clinical and rehabilitation settings, these indices are 

subjected to artificial inflation, especially when the gait parameters are close to zero. Normalised Symmetry Index 

(SInorm) was reported to be able to overcome this limitation and assess gait parameters with continuous waveform 

without being subjected to this artifact [12].  

Change in the gait can affect the mechanical energetic cost of walking. In normal gait, energy is continuously 

optimized by the selection of a nominal gait to minimise the energy expenditure [ 6, 15]. As such, individuals tend to 

have their own preferred  gait parameters. One simple and quantifiable mechanical energetic cost of the lower extremit y 

is the instantaneous kinetic and potential energies of the limb segments [16]. When asymmetrical gait is present, the 

normal gait parameters and subsequently the energetic cost will be disrupted. It also induces additional stress to the 

limbs.  

Although the underlying pathological and neurological conditions that lead to asymmetrical gait has been studied, 

the bilateral energy distribution between the two lower limbs remain unclear. Moreover, despite extensive studies on 

gait asymmetry, most of them are limited to gait spatial and temporal parameters such as gait phase time [9, 17], step 

length, and ground reaction force profile [9]. None of them involves mechanical energy of the lower ext remity. This 

study is a continuation of our prev ious works reported in [18] and [19]. In [18], we presented the kinematic and kinetic 

aspects of the asymmetrical gait, while in  [19], we determined the bilateral difference between left  limb and right limb 

in asymmetrical gait  and examined the change in mechanical energy of each segment  (foot, shank and thigh). From 

these studies, we hypothesize that there will be significant difference between segmental energies of the left and right 

limbs during certain period of the gait cycle in asymmetrical gait. Therefore, statistical analysis was performed here to 

further examine the significance of the asymmetrical gait throughout the gait cycle and to determine the period in 

which the energy interaction between left and right limbs might have occurred. It is expected that this s tudy can help 

researchers to gain better understanding on asymmetrical gait  and devise better treatment and rehabilitation plan and 

engineers to design better orthoses or prostheses with improved gait symmetry, g reater stability and less stress on the 

patients’ lower extremity joints. 
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2. Methods 

Ten male and ten female healthy subjects (Age: 22.4 ± 1.96 years o ld; Height: 165.7 ± 10.16 cm;  Weight: 61.16 ± 

14.06 kg) with no known history of lower ext remity in juries were recru ited. This study was approved by Monash 

University Research Ethics Committee. The gait data were collected using six Oqus ® infrared camera motion capture 

system (Qualisys Inc.) and two forceplates (Bertec Co.) with sampling frequency of 100 Hz.  

Thirty four reflect ive passive markers were p laced on the subjects’ lower extremit ies (from waist to toe) according 

to a modified Cleveland Clinical markers system (Figure 2) before any trials. The subject was then requested to walk as 

naturally as possible on a flat 10m platform embedded with two force plates at a comfortable walking speed  of their 

own choice while barefooted under 3 different conditions: without brace on (Normal), with orthopaedic knee brace 

(Trom Advance Knee Brace, DonJoy) one limb at a time on the left  (AbLeft) and right lower limb s (AbRight). The 

orthopaedic knee brace  was set to a fixed  degree to restrict knee movement and to simulate stiff knee condition. For 

each condition, 10 walking trials and one static trial were taken. The subjects were allowed to rest between each 

conditions’ trials. 

Gait data were imported into Visual 3D (C-Motion Inc.) to derive relevant gait parameters. Gait events such as 

heel-strike and toe-off were determined using method described in [20]. They were also used to partition the data into 

two main phases: stance phase and swing phase. The kinetic and potential energies of foot, shank and thigh were 

calculated as described below.  

 

             

Fig. 2 - Markers positions on the lower extremities of a subject with no knee brace on (Normal condition) (a) 

in front, (b) back, (c and d) side views 
 

The kinetic energy (T) comprises of translational (TT) and rotational kinetic energies (TR), as defined in (1) and (2).  

 2

2

1
mvTT   (1) 

Where: v 222

xxx vvv  , vx = Velocity in x-axis direction, vy = Velocity in y-axis direction and vz = Velocity in z-axis 

direction. 

 )(
2

1 222

zzzyyyxxxR IIIT    (2) 

Where: Ixx = Inertia of moment about x-axis, Iyy = Inertia of moment about y-axis , Izz = Inertia of moment about z-axis, 

ωx = angular velocity in x-axis, ωy = angular velocity in y-axis and ωz = angular velocity in z-axis. The potential energy 

(U) of each body segment is defined in (3). 

 

 mghU   (3) 

Where: m = segment mass, g = gravity (9.81 m/s) and h = the position of the segment COM (Center of Mass) in the 

vertical direction (COMz). 

 

A script written in MATLAB® R2017a (MathWorks, Inc) was used to further process the gait data. Translational 

and rotational energies were normalised by the segment mass while potential energy was normalized  by the segment 

mass and the segment height measured from the ground.  

The normalized kinetic energy (Tnorm) was then obtained using (4) where TTnorm and TRnorm are the normalized 

translational energy and rotational energy respectively. 

d c b a 
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RnormTnormnorm TTT   (4) 

The gait cycle was then divided and segmented into two phases: swing phase and stance phase. Each phase was 

interpolated to 100 data points. The means of each data point of the segmental energ ies were calcu lated and normalised 

using min-max normalisation as described in (5) with the corresponding left limb segment’s energy being the reference. 

 

 1,_
minmax

min 





EE

EE
EEnergyNormalised n

norm
 (5) 

Where: En = Energy at n point (n = 1, 2, 3… 100), Emin = Minimum energy of left limb segment of corresponding gait 

condition, Emax = Maximum energy of left limb segment of corresponding gait condition.  

 

Normalised symmetry index (SInorm) of each data points of each subject was then calculated using (6). 

 

 

)()((5.0

)()(

tEtE

tEtE
SI

RnormLnorm

RnormLnorm
norm




  (6) 

Where: )(tELnorm
= Normalised energy of left segment, )(tERnorm

 = Normalised energy of right segment, t = Time 

(percentage of gait phase, t = 1, 2, 3 … 100). 

 

To further examine significant differences of the three gait conditions, ANOVA was used. The significance level 

(alpha value) was set at 0.05. Tukey-Kramer multip le comparison test was performed  for the data points with p  < 0.05 

to further examine the pairwise differences at different walking conditions. 

 

 

3. Results 

The normalised kinetic and potential energies  of one subject are presented in Figure 3. The change in kinetic 

energy is more apparent during the swing phase rather than the stance phase  (Figure 3(a) and (b)). The kinetic energy 

reaches its maximum during the early swing phase in Normal condition (approximately 12.5 J/kg) and in AbLeft 

(approximately 11 J/kg). No such peak is observed in AbRight condit ion – The kinetic energy remains relatively 

constant throughout the swing phase. On the other hand, during stance phase, the differences among the three walking 

conditions can be observed in the early and end of stance phase.  

Greater shank potential energy was recorded during AbRight than during Normal and AbLeft throughout the whole 

gait cycle. For potential energy, the braced leg of AbRight recorded higher potential energy in the shank compared to 

unbraced leg of AbLeft and Normal throughout the whole gait cycle. A peak occurred in Normal during the initial 

swing phase to about 38 J/kgm whereas for AbLeft, the peak occurred  earlier in the swing phase and was lower (35 

J/kgm). 

Figure 4 and 5 depict the graphical comparison of the mean of the SInorm of segmental kinetic  and potential energies 

of the foot, shank and thigh at three different walking conditions . It can be observed that the mean of the SInorm in 

normal walking condition are near zero  throughout the stance and swing phases. These results indicate that there are 

minor differences between right and left segments, and thus implying that the segmental energy is symmetrical. They 

match the convention that the gait of healthy individual is symmetrical with minor deviations. It also shows that both 

limbs are contributing an equal amount of mechanical energy needed for walking and neither one of the limbs is 

stressed more than the other.  

From the means of the SInorm for AbLeft and AbRight, it was noted that there were some asymmetry of segmental 

energies, with the kinetic segmental energies showing greater asymmetry than the potential segmental energ ies (except 

for the foot segment) especially during swing phase. The waveforms for the means of the SInorm for AbLeft and 

AbRight were noted to be almost mirrored around the x-axis. Due to the equations used, positive SInorm means that the 

energy of the left limb segment is greater than that of the right limb segment. 

Table 1 presents the summary  of time duration  in  the gait  cycle where null hypothesis was rejected in  ANOVA  (p 

< 0.05) for the SInorm of kinetic and potential energy for the segments of interest. ANOVA only indicates significant 

differences among the three conditions and does not describe whether there is significant asymmetry in the abnormal 

conditions. Since the mirrored AbRight and AbLeft are  vastly different, it causes a false positive to be detected in 

ANOVA as the significant d ifferences from ANOVA might only be caused by differences between the AbRight and 

AbLeft conditions. Thus, pairwise Tukey-Kramer mult iple comparison test was conducted for the period when p < 

0.05. Table 2 and 3 present the summary  of t ime duration and gait events where null hypothesis was rejected in 

pairwise Tukey-Kramer mult iple comparison test between the SInorm of kinetic and potential energ ies  respectively for 

the segments of interest for abnormal conditions (AbRight and AbLeft) against the Normal condition. 
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Fig. 3 - Normalised (a, b) kinetic energy of the right thigh and (c, d) potential energy of the right shank of 

one subject against gait phase (% ). (Solid line – Normal; Dashed line – AbRight; Dotted line – AbLeft) 

 

Table 1 - Summary of Kinetic and Potential Energy SInorm ANOVA. 

Energy Segment Time duration where p < 0.05 

Swing phase (% ) Stance phase (% ) 

Kinetic Foot 1 – 13 

21 – 83 

91 – 100 

1 – 2 

87 – 100  

Shank 1 – 49 

75 – 100 

7 – 18 

30 – 69 

84 – 100 

Thigh 1 – 32 

37 – 96 

4 – 37 

47 – 60 

76 – 100 

Potential Foot 1 – 54 

61 – 75 

90 – 100 

Shank 6 – 60 - 

Thigh 1 – 92 57 – 80 

94 – 100 
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Fig. 4 – Kinetic energy SInorm against gait phase (% ) of the (a, b) foot, (c, d) shank and (e, f) thigh segments. 

Shaded area represents the %  phase where significant asymmetry of kinetic energy occurred. (Solid line – 

Normal; Dashed line – AbRight; Dotted line – AbLeft) 

 

 

 

 

 

 

 



Yi Ting Yap et al., Int. J. of Integrated Engineering Vol. 11 No. 3 (2019) p. 139-148 

 

 

 145 

Table 2 - Summary of Kinetic Energy SInorm Tukey-Kramer multiple comparison test pairwise comparison of 

abnormal gaits (AbLeft and AbRight) with normal gait (Normal). 

Pairwise 
comparison 

Segment 
Time duration where p < 0.05 

Swing phase (%) Stance phase (%) Gait event 

AbLeft with  
Normal 

Foot 1 – 4 

30 – 80 

94 – 99 

1 

91 – 100 

Heel strike, pre-swing, toe off, mid  
swing, terminal swing 

Shank 1 – 37 

86 – 93 

8 – 17 

33 – 68 

88 – 100 

Loading response, mid stance, 
terminal stance, pre swing, toe off, 
initial swing, terminal swing 

Thigh 1 – 32 

42 – 91 

7 – 9 

24 – 26 

82 – 100 

Loading response, mid stance, pre 
swing, toe off, in itial swing, mid  
stance, terminal swing 

AbRight with  
Normal 

Foot 1 – 12 

24 – 75 

93 – 97 

91 – 100 Pre swing, toe off, initial swing, mid  
swing, terminal swing 

Shank 1 – 36 

76 – 89 

45 – 57 

86 – 100 

Mid stance, terminal stance, pre 
swing, toe off, init ial swing, terminal 
swing 

Thigh 1 – 28 

38 – 89 

7 – 11 

19 – 36 

83 – 100 

Loading response, mid stance, pre 
swing, toe off, in itial swing, mid  
stance, terminal swing 

 

   
Fig. 5 - Potential energy SInorm against swing phase (% ) of the (a) foot, (b) shank and (c) thigh segments. Dashed 

lines represents the standard deviations of the data. Shaded area represents the %  phase where significant 

asymmetry of potential energy occurred. (Solid line – Normal; Dashed line – AbRight; Dotted line – AbLeft) 
 

Table 3 - Summary of Potential Energy SInorm Tukey-Kramer multiple comparison test pairwise comparison of 

abnormal gaits (AbLeft and AbRight) with normal gait (Normal). 

Pairwise 
comparison 

Segment 
Time duration where p < 0.05 

Swing phase (%) Stance phase (%) Gait event 

AbLeft with 
Normal 

Foot 7 – 51 - Initial swing, mid swing 

Shank 17 – 56 - Initial swing, mid swing 

Thigh 1 – 37 96 – 100 Toe off, initial swing 

AbRight with 
Normal 

Foot 1 – 50 98 – 100 Toe off, initial swing, mid swing 

Shank 7 – 52 - Initial swing, mid swing 

Thigh 2 – 30 100 Toe off, initial swing 
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For kinetic energy of the foot segment, energy asymmetry occurred during pre -swing, toe off and during most of 

the middle part of the swing phase of the gait cycle. At the end of stance phase, when the significant asymmetry  of 

SInorm between Normal with AbRight and AbLeft occurred, the SInorm peak and through for AbRight and AbLeft were 

0.2 and -0.2 respectively. While for shank, prominent asymmetry occurred starting from pre-swing until the end of the 

initial swing phase. As in the foot segment, the highest discrepancy of SInorm between Normal with AbRight (highest 

peak ≈ 0.25) and AbLeft (lowest trough ≈ -0.25) also occurred during end of stance phase and start of swing phase. In 

thigh segment, only during the in itial stance phase that asymmetry was not significant . The greatest significant 

asymmetry recorded was when the AbRight peak and AbLeft trough reached over 0.2 and -0.2 respectively during the 

initial swing phase. The kinetic energy of the segments of the abnormal limb were noted to be less than that of the 

normal limb’s during phases when there was s ignificant asymmetry, except during the mid  to terminal swing phase for 

the thigh segment energy where the opposite is true (Figure 4). 

The asymmetry of potential energy was not as significant as compared with that of kinetic energy because change 

in COMz  was not large. For foot and shank segmental potential energy, significant energy asymmetry occurred from 

the initial swing to mid swing in the gait cycle. In the thigh segment, the asymmetry of potential energy SInorm occurred 

during toe off to the end of the in itial swing phase. The potential energy SInorm AbRight peak (0.2) and AbLeft t rough (-

0.2) of for foot segment were g reater than that of shank (AbRight peak ≈ 0.04 and AbLeft trough ≈ -0.04) and thigh 

(AbLeft peak ≈ 0.02 and AbRight trough ≈ -0.02) segment. During durations of asymmetry, potential energy of the foot 

and shank segments of the affected limb were lower than that of the normal limb. While for thigh segment the inverse 

was true (Figure 5). 

 

 
4. Discussion 

This study shows that identifying asymmetrical gait using the mechanical energy for SInorm is plausible. It allows 

the asymmetrical behavior of the instantaneous energy of the limb segments to be easily identified. It also offers a 

different way  of interpret ing asymmetrical gait, instead of the usual temporal and  kinematic  gait  parameters. 

Instantaneous energy gives a better understanding on the effects of asymmetrical gait on the energetic cost of the lower 

limbs. 

The mirroring of the waveforms for the means of SInorm for AbLeft and AbRight implies that the changes in the 

segmental energies caused by the abnormality were similar regardless of whether the abnormality occurs on the left or 

right limb. Th is was due to the fixed reference side (left limb segment) used in the calculations. Selecting one side of 

the limb to be the reference segment is reasonable because in an uncontrolled environment, the affected and the non-

affected limb may be unknown. 

The lower kinetic energy of the abnormal limb implies that the abnormal limb moved at a lower velocity than the 

normal limb during their respective swing phases. Therefore, to maintain  the same walking speed as in normal gait, the 

normal limb moved at higher velocity, which in turn increases the energetic cost of walking. Despite so, the walking 

speed during abnormal conditions were still lower than the normal condition. This is consistent with past findings that 

recorded an overall decrease in walking speed in stroke patients [21], patients with stiff knee gait  (SKG) [8] and 

subjects with simulated SKG [22].  

Even though the normal limb’s thigh segment had higher kinetic energy than that of the affected limb’s at the 

beginning of swing phase, by the second half of the swing phase to the early stance phase (Figure 4(c)), its kinetic 

energy was lower than that of the affected limb’s. This means that the normal limb was able to brake much more 

efficiently than the affected limb to slow down the movement before heel strike. Therefore, from this observation, it 

can be said that the efficiency of the braking mechanis m of the affected limb has been reduced.  For stroke patients, 

there is absence of braking mechanis m at the knee. The braking mechanis m at the knee is pro duced by thigh muscles . 

In a patient, the function of the thigh muscles will be impaired  [23]. Based on the findings from literature, this trend 

should have been seen in the shank segment. Instead, for this experiment, the impaired braking mechanis m was 

observed in the thigh segment while it was not present in the shank segment. One of the possible reasons could be the 

participants were healthy with normal functioning thigh muscles and thus the segment where the braking mechanis m 

was affected differed from that of a stroke patient’s. 

A greater potential energy meant that the COMz o f the segment and thus the limb segment was lifted higher above 

the ground. This implied  that the foot and shank segments of the affected limb were lower than that of the normal li mb 

during the same period in the gait cycle respectively while the inverse was true for the thigh segment. This is consistent 

with past studies that found that in SKG, due to the knee flexion  being limited and thus the affected limb’s knee not 

being able to flex to lift the shank and foot (accounting for the lower COM z). To avoid foot drag, compensation in the 

form of hiking of the pelvis and increased hip circumduction on the affected side (higher COM z of the affected limb’s 

thigh segment) was observed [22]. There will also be contralateral vaulting gait which is characterised by the artificial 

lengthening of the contralateral (normal in this case) limb by raising the heel and keeping the knee joint locked in full 

extension to compensate for the increased length of the swinging limb caused by the rigid and extended knee joint [22]. 
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This vaulting would explain why the potential energy of shank and foot segments of the normal limb in AbRight and 

AbLeft trials were higher than that of the abnormal limb. 

This study was limited to the simulation of SKG by limiting knee flexion in healthy subjects, patients with the 

SKG may have different walking patterns. The patients feel pain, tire easily due to increased energetic cost of 

locomotion [22] and walk at a slower pace [8, 21]. Thus, further studies on these patients are needed. Nonetheless, the 

results obtained in this study suggested that SKG was sufficiently simulated in the healthy subjects such that the 

subjects displayed several traits seen in real patients , including reduced velocity and energy (Figure 4) of the affected 

limb which  in  turn caused a decrease in  the subjects’ walking  speed during the AbRight and AbLeft t rials compared to 

the normal trials. The subjects also displayed some forms of compensation seen in real patients.  The advantage of 

using healthy subjects is that the normal gait trials will provide a good baseline to compare with that of the simulated 

abnormal gait trials since this will eliminate inter-subject deviation. Another limitation would be that instantaneous 

energy does not really give a clear p icture of the transfer and generation of energy and their interactions between the 

segments and joints in gait. To  better understand the energy flow between the segments, a 3D musculoskeletal model  of 

the lower extremity is required and will be explored in our future study.  

 

5. Conclusion 

Asymmetrical gait was successfully simulated in this study. It shows that it is possible to identify  asymmetrical 

gait using the lower limb segmental mechanical energy and SInorm. In a simulated SKG, significant asymmetry  of 

segmental energy occurs during the swing phase of the gait cycle. Greater asymmetry was observed in the kinetic 

energy than in the potential energy. To compensate for the bilateral differences between the limbs, the affected shank 

and foot produce lower kinetic energy and potential energy than the unaffected limb  while  the affected thigh generates 

lower kinetic energy and higher potential energy than the unaffected thigh.  
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