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Abstract: In sports training, fatigue management is very important to avoid muscle injury and chronic fatigue 

syndrome. It occurs due to untreated normal fatigue (NF) which leads to a higher level of fatigue. This paper refers 

to the higher level of fatigue condition as prolonged fatigue (PF). Fatigue can be identified based on musculoskeletal, 

physiological, psychological, immunological and endocrinal system condition. Presently, musculoskeletal or muscle 

condition can be accessed quantitatively based on an invasive technique known as biopsies. It is accurate to evaluate 

muscle condition, but not suitable for frequent meas urements. The non-invasive method used through self-evaluation 

tools such as questionnaire is not a quantitative measurement and sometimes is difficult to quantify. There are other 

non-invasive methods to evaluate muscle condition known as surface electromyography (SEMG). Before this, 

SEMG were only widely used to classify between non-fatigue and NF conditions. However, NF prediction might  

not be accurate and suitable to be used on athletes since they are required to undergo high -intensive training every 

day and this involves PF condition. Recently, SEMG signals characteristics found out to be able to evaluate ionic 

concentration changes in the muscle due to intensive training. The signals characteristics are different compared to 

NF identification. Therefore, high quality SEMG plays an important role in PF detection  to avoid misinterpretation. 

In this study, twenty healthy participants were recruited and performed five consecutive days of intensive training to 

induce PF symptoms. The training was based on Bruce Protocol treadmill test and SEMG data were collected from 

the participants’ rectus femoris muscle. This paper pre-processed SEMG signals using Stationary Wavelet Transform 

(SWT) ‘db’ 45 with different threshold estimation techniques of de-noising such as RigRSURE, HeurSURE, 

minimax, universal threshold and a new estimation of threshold method. The new method able to overcome the 

limitation of conventional methods which estimate threshold based on statistical principles. Most importantly, the 

new method can preserve significant SEMG information, remove corner frequency and mitigate baseline nois es. The 

performance of conventional and propose methods can then be evaluated based on PF classification performance. 

The de-noised signals extracted based on time, frequency and time-frequency features. Naïve Bayes classification 

results using time and frequency features indicate that the new estimation of threshold method with time and 

frequency features have the highest accuracy (98%), compared to RigRSURE (85%), HuerSURE (68%), Universal 

Threshold (74%) and minimax (76%) in PF identification. 

Keywords: De-noising, Wavelet Transform, surface electromyography, muscle fatigue, overtraining, sports  
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1. Introduction 

Sports training is vital for athletes in maintaining and improving their performance. It commonly involves high 

resistive training and leads athletes to extreme fatigue. Fatigue is a natural physiological sign showing the limitation of 

human body. During resistive training, fatigue management is very important to avoid muscle injury and chronic fatigue 

syndrome (CFS). CFS is a major threat among athletes that could lead to an end of their career. This syndrome occurs 

due to untreated normal fatigue (NF) which progresses to a higher level. Fatigue condition commonly involves 

biochemical reactions and rest period allows it to return to its normal level [1]. However, inadequate recovery period will 

make it unable to return to its normal level which leads to maladaptive biochemical accumulations. Consequently,  

athletes may experience prolonged fatigue (PF) and they will take a longer period to recover [2]. The signs and symptoms 

experienced by the athletes may indicate the degrees of PF or overtraining. Proper fatigue management in the early stage 

of PF may help athletes to enhance performance. However, continuous sports training or competitive matches under this 

condition may expose athletes to injury, underperformance and development of more serious degree of PF, CFS[3].  

 Degrees of PF can be evaluated based on musculoskeletal, physiological, psychological, immunological and 

endocrinal system conditions. The evaluation is done through invas ive and non-invasive methods. Invasive methods such 

as blood test and muscle biopsies are accurate since it employs quantitative measurements, but they are not preferred for 

frequent use. Non-invasive methods such as training log and 24-hours training distress questionnaire gave advantages 

since they can be evaluated daily compared to invasive method. Even so, experts are required to monitor closely the PF 

degree of the athlete and some of the questions in the questionnaire are difficult to be quantified especially in evaluating 

musculoskeletal condition.  

 There is a quantitative method known as surface electromyography (SEMG) that can evaluate musculoskeletal 

condition, specifically in muscles. The signal can distinguish between non-fatigue and normal fatigue (NF), and the 

signals discovered recently may indicate several biochemical reactions and concentrations under NF and PF conditions. 

Previous findings demonstrated that glycogen breakdown may decrease amplitude of SEMG and lead the frequency 

signals shift to upper band [4]. Large glycogen breakdown commonly followed by presence of lactate, and the existence 

of lactate at high concentrations may increase amplitude and frequency information of SEMG signals [5], [6]. The 

alteration of these biochemicals in human body may lead to PF symptoms such as muscle soreness and pain, performance 

reduction,  lethargy and increasing blood pressure [7]–[9]. Investigation of SEMG under PF condition requires good 

quality of SEMG since the behavior of its amplitude and frequency may indicate the degree of fatigue experienced by 

the athlete. 

 SEMG signals are easily disturbed by interferences and noises widely known as corner frequency, 50/60 Hz 

powerline interference and baseline noises. These noises come from various sources. Baseline wander, motion artefacts, 

interference at electrode-skin interface, unstable, fluctuate unpredictably and firing rates commonly known as corner 

frequency noises [10]. There are no standard range for frequency noises but they have been discussed in many 

investigations reports [11].  Few corner frequency ranges that are recommended to be removed are 5 Hz [12], 10-20 Hz 

[13]  and 20 Hz [10]. The different ranges of corner frequency are due to application, and movement during SEMG 

recording EMG [14]. More vigorous movements commonly involve wider range of corner frequency [11]. However, 

selecting corner frequency below 20Hz is not recommended as  the SEMG energy is weak in this frequency range, and 

strong energy corresponds to firing rates or motor units and artefact effects [14].  

 Quality of SEMG signals determined by their signal-to-noise ratio (SNR) and baseline value [15]. Smaller baseline 

values indicate higher quality SEMG signals. The baseline noises may come from powerline interference, cable motion 

artefact, electronics circuit design and skin-electrode interface [16]. Filtering baseline noises through digital or active 

filter is not possible since there is no specific frequency range and it may interfere at strong SEMG energy frequency 

range [15]. Thus, time-frequency wavelet de-noising method can be employed to remove irrelevant signals. In de-noising 

process, SEMG will decompose into several levels of frequency bands and certain threshold at each decomposition level 

will be determined. The signals below the threshold (baseline noise) will be removed or suppressed, while signals above 

the threshold (SEMG contraction) will be preserved. In general applications, there are conventional estimation methods 

commonly used such as Stein’s Unbiased Risk Estimate (SURE), minimaxi and universal threshold method. These 

thresholds are estimated based on statistical approach to minimize risk and error in eliminating unwanted signals [15]. 

However, these methods are not suitable for SEMG because it tend to remove significant SEMG information and keeping 

noises [16], [17]. To improve the method, modified universal threshold method Donoho’s and Baseline Adaptive 

Denoising Algorithm (BADA) were introduced [16]. Both demonstrate higher efficiency in SEMG de-noising compared 

to conventional methods. Although SEMG signals de-noising through conventional methods, modified Donoho’s and 

Bartomoleo’s methods will certainly increase SNR of the signals and classification, these methods are used to reduce 

baseline noises only. To remove corner frequency noises, the system needs to be added with extra digital or active high 

pass filter. Previous research in [11] demonstrates that corner frequency noises can be removed through wavelet de-

noising, but did not demonstrate how to remove baseline noises. The research in [11] was extended to remove baseline 

noises using the similar technique and presented in [15]. Thus, this paper will combine both techniques to remove corner 

frequencies and baseline noises holistically through wavelet de-noising. The performance of the propose technique will 
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be compared to conventional techniques in removing the stated noises. To show the significance of the proposed noise-

removal technique, the ability of PF prediction will be evaluated based on the classification of its accuracy, sensitivity, 

precision and its cross validation error. 

 

Nomenclature is included if necessary 

an          coefficient approximation  

BMI     Body Mass Index 

BP        Blood Pressure 

bpm      Beat per minute 

CFS      Chronic Fatigue Syndrome 

CVErr  Cross validation error 

dn          coefficient details  

DWT    Discrete Wavelet Transform 

FFT      Fast Fourier Transform 

Fmed    Median Frequency 

Fmean  Mean Frequency 

HPF      High Pass Filter 

HR        Heart Rate 

HRmax    Maximal Heart Rate 

MAV     Mean Absolute Value 

NF         Normal Fatigue 

PF          Prolonged Fatigue 

RMS      Root Mean Square 

SEMG   Surface electromyography 

 

2. Methodology 

2.1 Data Collection 

Twenty participants selected in this experiment were healthy people between 20 to 30 years old with body mass 

index (BMI) around 18 and 25. These criteria were set to ensure that fatigue would not be influenced by the participants’ 

age or disease, and to protect the participants from unexpected risks during the experiment. To ensure the participants 

are fit and safe for the experiment, they were screened through Par-Q and You self-evaluation questionnaire. Only 

participants who answered ‘NO’ to all criteria in the questionnaire were accepted to participate. At the same time, the 

participants must not suffer from any of chronic disease such as diabetic, high blood pressure, heart disease, joint or bone 

problems and are not taking any medication to control blood pressure or blood sugar. The participants must not be 

pregnant and do not have a history of lower extremities muscle injuries. The experiment procedure was approved by the 

Ethical Committee of Universiti Putra Malaysia. Participants were given written and verbal explanations to the 

experiment, including the potential risk and the discomfort that they might experience. They were also notified about 

their rights to quit participation anytime they desired. The participant signed informed written consent before the 

experiment began. As a precaution, the participants were protected by insurance during the whole experiment period.  

The experiment was based on Bruce Protocol treadmill test. The inclination and speed of the treadmill were increas ed 

for every three minutes. The inclination started from 10° to 22° inclination, from 2.7km/h to 9.6km/h speed and the total 

duration of the protocol is 21 minutes. The experimental design was divided into two phases : Phase I was meant for 

familiarization and Phase II was for intensive training. In Phase I, the participants familiarized themselves with the 

equipment and procedures. The participants were given three alternate days to avoid the emergence of PF. While, Phase 

II was designed to induce PF signs  and was carried out in five consecutive days. Between Phase I and Phase II, the 

participants were requested to rest (for two days) and to refrain from exercising or doing any heavy physical activities.  

Each session in Phase I and Phase II, the participants started with initial SEMG and physiological measurements, 

briefing on the symptoms of fatigue (so that they are aware which will allow them to stop the running), stretching, Bruce 

Protocol treadmill test and ended with final SEMG and physiological measurements. The participants were allowed to 

stop running when they felt lack of energy, dizzy or had blur vision. The participants were also being explained that they 

will not be allowed to run if their heart rate (HR) exceeds 100 beat per minute (bpm), blood pressure (BP) exceeds 140/90, 

show performance decrement in previous experiment, psychological score  above 14 for at least three days or were 

collapsed in the previous experiment. These signs indicate that the participant under PF condition and  forcing them to 

run under this condition may expose them to injury and unwanted incident s. In Phase I and Phase II, no specific time 

duration and distance is fixed because individual fatigue varies largely. However in Phase II, the participants  were 

required to improve their daily performance by increasing distance and endurance time. 
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2.1.1 SEMG 

SEMG signals collected from a part of quadriceps group, which is rectus femoris muscle. This muscle was selected 

because it will activate about 44±20% of muscles when running at 10° inclination and the muscle activation will increase 

when the inclination increases [18]. Higher muscle activation during the activity generally may expose to a higher rate 

of injury. SEMG signals were collected by using Ag/Ag Cl Kendal Meditrace 200 electrodes, AD620 instrumentation 

amplifier and National Instrument DAQ 6008 with digital HPF cut-off at 10 Hz to remove baseline wander and 1000 Hz 

sampling rate as data acquisition. The electrodes placed on rectus femoris muscle based on SENIAM standard. During 

data collection, participants were asked to sit on a chair and do flex and extend knee movement for three times with 10 

seconds interval at each position. The muscle will contract when knee is extended and rest when knee is flexed. SEMG 

signals were recorded at pre- and post-treadmill sessions. 

 

2.1.2 Physiological Measurements 

Other than SEMG, several other physiological measurements were collected to evaluate the presence of PF signs. 

This study only focused on the onset of mild PF signs such as performance decrement (endurance time), muscle soreness 

(muscle scale), lethargy, restlessness (HR>100 and BP>140/90 before running), and sleep and psychological 

disturbances. Three diagnostic tools  were used to observe the signs; daily training log, 24-hours training distress 

questionnaire and short interview. Other than these measurements, HRmax also recorded to investigate running efforts of 

the participants. 

 

2.2 Signal Processing 
        In this paper, SWT chosen compared to Discrete Wavelet Transforms (DWT) since it has advantages on resolution 

sizes at every decomposition levels and ability to be time-invariant transform and a better drawback [19]. In SWT, 

reconstruction process involves averaging of both coefficient approximation (an) and coefficient details  (dn) of 

decomposition, where n is number of decomposition levels . This process will make the value of the highest an at the 

lowest frequency band to be smaller and can be neglected. Compared to DWT where the reconstruction starts from the 

highest an and removing the lowest frequency band will requires complex algorithm.  

       Wavelet de-noising consists of three main process; decomposition, de-noising and reconstruction.  

 

2.2.1 Decomposition  
 Decomposition process enables users to evaluate SEMG signals information at different level of frequency bands. 

At this stage, selection of frequency sampling of SEMG signals and number of decomposition levels are very important 

as corner frequency can be removed easily. This is based on a decomposition principle where at every level; the signals 

will be filtered by high pass filter (HPF), and produce an and low pass filter (LPF), will produce dn, with cut off at half 

of the frequency of the signals  respectively [20]. The an will be brought to the next level of decomposition and the filtering  

process will be continued, and produce a series of an and dn.  

 As this paper aims to remove corner frequency at range of 20 Hz, the original of frequency sampling of SEMG 

signals have been up sampled to 1400Hz, and decomposed into six levels of decomposition with mother wave let 

Daubechies 45 (db45). Theoretically, the decomposition will produce the highest an , a6 with frequency range of 0-10.94 

Hz and d6 , 10-21.88 Hz, which both coefficients are within the corner frequency range[11]. Figure 1 shows 

decompositions of SEMG signals and it’s Fast Fourier Transform (FFT). It shows that SEMG signal has been decompose 

into frequency band as estimated based on the theory. 

 

2.2.2 De-noising 
In wavelet de-noising, threshold was only estimated at each of details coefficient, dn. In this paper, threshold 

estimated by using conventional and a novel method.   
 

Conventional method 
There were four conventional threshold estimation methods used in this paper. The methods commonly used in wavelet 

de-noising, especially for SEMG application. The thresholds were estimated as follows: 
 

RigRSURE 

RigRSURE Threshold is estimated based on the adaptive threshold method and in minimizing risk under the principle of 

Stein’s Unbiased Risk Estimate (SURE). 
 

Universal Threshold 

Universal Threshold method or also known as sqtwolog estimated based on equation: 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  √2 ln 𝑁                                                                  (1) 

Where N is the signal length. 
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HeurSURE 

HeurSURE method is the combination of RigRSURE and Universal Threshold. Estimation based on SNR and noises. If 

SNR is very small and signals estimated very noise, Universal Threshold estimation method will be used. 
 

Minimax 

Minimax method estimated based on statistical principle on minimax.  

 

 
Fig.1- Decomposition of SEMG signal  

 

Proposed method 
This method is a combination of the research presented in [15] and [11]. The method is estimated to remove corner 

frequency and baseline noises. 

 

Elimination of corner frequency noises  

Based on the theoretical calculation on wavelet decomposition, d6 frequency range is from 10 to 21.88 Hz. After de-

noising process, the wavelet decomposition will be reconstructed and the reconstruction process in SWT will average the 

values of a6 (frequency range of 0-10.94 Hz) and d6 (10-21.88 Hz). Significantly, the range of both coefficients is 0-21.88 

Hz which is the corner frequency noise range. To eliminate this noise, a threshold has been estimated at maximal level 

to remove the entire details coefficient at d6. The average effects during reconstruction process will make value of 

approximation details, a6 smaller and can be neglected.  

 

Baseline noises removal 

Based on Fig.1, it shows the significance of SEMG information are different at each level of decomposition. It indicates 

that threshold cannot be estimated with similar approach and equation for every decomposition level. In this paper, 

threshold at dq – d6 are estimated based on recommendation in [15] to remove baseline noise. According to [15], the 

threshold estimated based on three cases; case I : eliminate all the details of coefficient for decomposition which not carry 

any significant of SEMG information, case II: threshold estimated at maximum value of baseline noises for 

decomposition which SEMG signals are visible but carrying too much noises and case III: threshold estimated at 0.8 of 

value between maximum baseline and average value of baseline for case that SEMG information are significant and 

strong.  

 

2.2.3 Reconstruction 
After de-noising process, the decomposition coefficients were reconstructed through inverse SWT. The de -noised signals 

then extracted for relevant features before classification process. 

 

 

2.3 Features Extraction 
 Each contraction of de-noised SEMG segmented to 5000 samples/segment and extracted to relevant features for PF 

identification according to [3]. Features extracted were changes between pre and post running activity of mean absolute 

value (ΔMAV), root means square (ΔRMS), median frequency (ΔFmed) and mean frequency (ΔFmean).  
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2.4 Classification 
 PF predicted based on supervised machine learning known as Naïve Bayes classification  with K-fold as cross 

validation method. The class of PF and NF pre-determined based on physiological condition during SEMG signals 

collected. The signals collected during no any PF signs grouped as NF, and the others were PF. Three combination 

features selection used; time features, frequency features and time and frequency features. Highest classification accuracy 

and lowest cross validation error (CVErr) in distinguish NF and PF will demonstrate the efficiency of threshold estimation 

method on SEMG wavelet de-noising.  

 

3. Results 

3.1 Physiological Measurements 

PF diagnostic tools revealed that average value of %HRmax during running was about 80% and demonstrates the 

experiment was provide high intensity exercise and participant was performed maximal running effort in this study. From 

twenty participants, only eight experienced PF signs. The first sign observed to appear was muscle soreness which began 

at day 3, and followed by unexplained lethargy and performance reduction at day 4 and 5 of experiment . The diagnostics 

tools also reported that there were no PF signs of restlessness (HR>100 and BP>140/90 before running), and sleep and 

psychological disturbance recorded. This situation also demonstrated that the onset of PF and overtraining began with 

the presence of muscle soreness, lethargy and performance decrement.  This situation demonstrates that the inappropriate 

treatment of PF sign such as muscle soreness will lead to existence of other PF signs. If this situation and sports training 

continued, more PF signs may exist and lead to higher degree of PF condition. 

 

3.2 Signals Processing 

      Figure 2 shows raw SEMG signals and de-noised SEMG signals from conventional and new threshold est imation 

methods and its FFT.  

 
Fig.2- Raw and de-noised signals based on conventional and proposed threshold estimation method 

 

The estimation methods presented in Fig.2 shows the different ability of each method in removing corner frequency. 

This is supported by result presented in Table 1 where only proposed method able to remove the corner frequency  noise 

by demonstrating the lowest frequency detected was 20 Hz. This indicates that sampling frequency and levels of 

decomposition plays important roles in corner frequency removal. The reconstruction technique employs in SWT makes 

the highest approximation coeffient, a6 (frequency range of 0-10.94 Hz) value very small and can be neglected. This 

effects makes the major of corner frequency noise mitigated. This situation actually assisted by digital HPF cut -off at 

10Hz employed during data acquisition in removing baseline wandering noise. Filtering signals below 10Hz was very 

important during SEMG signals recording because without the filter, SEMG signals were very difficult to be detected. 

However, the proposed technique in removing corner frequency noise is still significant as there are no standard range 
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and it highly depends on dynamic or static movement during SEMG acquisition. If the corner frequency noise detected 

at lower or higher than 20 Hz, user can manipulating the number of frequency sampling and levels of decomposition as 

demonstrated in this paper. 

Fig.2 also shows that both conventional and proposed threshold methods  are able to remove certain baseline noises 

which presence at frequency range of 200-700Hz, but show different performance in removing the noise which interfere 

within strong energy of SEMG. RigRSURE and HeurSURE identified less ability to remove baseline noises since it does 

only able to mitigate the noise from 40mV to 13mV and 0.9mV respectively compared to other methods. However, both 

methods able to increase SNR to 14.5dB and 16.9dB respectively. Table 1 also show that Universal Threshold and 

Minimaxi method able to mitigate baseline values to 0.13mV and increase SNR to 22.35dB and 25.35 dB respectively. 

Unfortunately, Fig.2 indicate that the de-noising process may eliminate the significant information of SEMG signals 

because major signals elimination occurred at the strong energy of SEMG frequency range. Fig.2 also shows that the 

propose method able to preserve major signals in the strong energy of SEMG frequency range, 20-100 Hz. The propose 

method also demonstrates that the baseline noises mitigated to 0.1mV and SNR increased to 31.05 dB. 
 

Table 1-Performance of conventional and proposed threshold estimation method in wavelet de-noising 

 

 

 

 

 

 

 

3.3 Classification 

SEMG de-noising is important to enhance quality of the signals. Although the conventional and proposed methods 

able to mitigate baseline noises and increase SNR, the signals processing technique only significant when it able to be 

used for signals classification. Good quality of SEMG signal processing offers high classification accuracy and fatigue 

identification as proven by Bartolomeo, (2012), Phinyomark et al., (2009b); and Sarillee et al., (2015) [16], [21]. Table 

2 shows the classification performance on PF identification based on the proposed and conventional Th estimation 

methods, by using Naïve Bayes classification approach. 

 

Table 2-Classification of PF based on conventional and proposed threshold estimation method in wavelet de-

noising 
 

Parameter Threshold estimation method 

Features Performance MT=0.8 RigRSURE HuerSURE 
Universal 

Threshold 
MiniMax 

Time Features 

Accuracy 78 63 58 71 71 

Specificity 84 89 61 67 72 

Precision 67 20 55 75 70 

CVErr 0.25 0.46 0.42 0.32 0.29 

Frequency 

Features 

Accuracy 95 59 47 55 70 

Specificity 94 86 38 39 81 

Precision 96 17 55 70 54 

CVErr 0.04 0.43 0.53 0.5 0.31 

Time and 

Frequency 

Features 

Accuracy 98 85 68 74 76 

Specificity 100 89 72 92 89 

Precision 96 79 65 46 65 

CVErr 0.014 0.16 0.37 0.38 0.29 

Table 2 indicates that the proposed method in estimating threshold value gave the highest classification accuracy, 

specificity and precision, with very minimal on CVErr, either by using time features, frequency features or combination 

of time and frequency features, compared to conventional methods. The result demonstrates the existence of thick 

baseline noises and the loss of important information of SEMG signals led to the inaccuracy in the classification and 

 Lowest Frequency (Hz) Baseline SNR (dB) 

Raw 0 40mV 6.0814 

Proposed Method 20±2.55 0.1mV 31.05 

RigRSURE 0 13mV 14.5 

HeurSURE 0 0.9mV 16.9 

Universal Threshold Method 0 0.13mV 22.35 

Minimaxi 0 0.13mV 25.35 
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misinterpretation. The presence of thick baseline especially in frequency range of SEMG signals makes the extracted 

features contaminated with the unwanted energy. Furthermore, the variability and non -stationary of baseline noises in 

every SEMG signals makes conventional threshold estimation based on the statistical calculation not suitable for SEMG 

application. The conventional threshold estimation methods were led too high  threshold value estimated in the frequency 

band which contains strong energy of surface EMG signals and low threshold value in frequency band which contain 

more noises. This situation was led the de-noised signals was remove the important information carried by SEMG, but 

preserve the noise. Thus, imprecision was occurred due to this situation and it makes the extracted data not accurate and 

led to confusion during PF prediction. Hence, it demonstrated that the conventional threshold estimation method was not 

suitable for SEMG application. In the conventional method, threshold was estimated based on statistical calculation; 

while, in SEMG, noises distribution varied. Therefore, estimating threshold value based on surface EMG needs itself 

offered higher quality, SNR, classification and fatigue identification. 

 

4. Conclusion 

This study demonstrates that the proposed threshold estimation method  is able to remove corner frequency and 

baseline noises. The study also demonstrates the significant of preserving SEMG information in noises removal, 

especially in predicting PF condition. Classification results demonstrate in this study show that PF and overtraining 

condition can be identified by SEMG. It also demonstrates that there are quantitative non -invasive method can be 

employed as new diagnostic tools in evaluate muscle condition during sports training. 
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