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1. Introduction

Diagnosis of dyslexia founded on psychological and pedagogical approaches are known to be time consuming and

require the service of a skilled therapist. It is a neurological disorder that effects close to 12% of the national population 

[1]–[3]. Understanding the biological aspect of dyslexia provides the key to unravel its effects on the ability of not only 

dyslexic children to read or write properly, but also children with intelligent quotient (IQ) of their age. Using 

electroencephalogram (EEG), the electrical activities of the brain can be recorded and analyzed to give an objective 

Abstract: The classification of dyslexia using EEG requires the detection of subtle differences between groups of 

children in an environment that are known to be noisy and full of artifacts. It is thus necessary for the feature 

extraction to improve the classification. The normal and poor dyslexic are found to activate similar areas on the left  

hemisphere during reading and writing. With only a single feature vector of beta activation, it is difficult to 

distinguish the difference between the two groups. Our work here aims to examine the classification performance of 

normal, poor and capable dyslexic with theta-beta band power ratio as an alternative feature vector. EEG signals 

were recorded from 33 subjects (11 normal, 11 poor and 11 capable dyslexics) during tasks of reading and writing  

words and non-words. 8 electrode locations (C3, C4, FC5, FC6, P3, P4, T7, T8) on the learning pathway and 

hypothesized compensatory pathway in capable dyslexic were applied. Theta and beta band power features were 

extracted using Daubechies, Symlets and Coiflets mother wavelet function with different orders. These are then 

served as inputs to linear and RBF kernel SVM classifier, where performance is measured by A rea Under Curve 

(AUC) of Receiver Operating Characteristic (ROC) graph. Result shows the highest average AUC is 0.8668 for 

linear SVM with features extracted from Symlets of order 2, while 0.9838 for RBF kernel SVM with features 

extracted from Daubechies of order 6. From boxplot, the normal subjects are found to have a lower t heta-beta ratio 

of 2.5:1, as compared to that of poor and capable dyslexic, ranging between 3 to 5, for all the electrodes.  

Keywords: Electroencephalograph, dyslexia, wavelet transform, theta-beta band power ratio, support vector 

machine 
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neurophysiological assessment to complement the clinical diagnosis, or a screening mechanism to expedite the diagnosis. 

Early assessment helps the children gain support in time to close the learning gap with their peers. Full potential of the 

children can only be unleashed, given that the support is based on proper diagnosis and understanding of the underlying 

learning issues [4], [5]. Records showed that school dropouts stand at 1.36% of the national population in 2017 alone, 
with dyslexia being the most prevalent cause [6].  

Analysis of the brain using EEG works on detecting changes and variations in electrical signals different from the 

norm. It offers a real time measurement based on strategically placed non-invasive electrodes on the surface of the scalp. 

In learning related activities, left hemispheric impairment of the Broca and Wernicke areas causes the poor dyslexic to 

have difficulties in decoding words and then write [7]–[10]. While the same areas are working efficiently in normal 

children. As shown in Fig. 1, on similar areas of activation, the poor dyslexic made mistakes in their writing, while the 

normal subject did not. In the case of capable dyslexic, Functional Magnetic Resonance Imaging (fMRI) based studies 

have shown that the brain compensates the impairment of the left hemisphere with activation of the right hemisphere. 

This enables them to overcome their learning difficulties and obtain results on par with their age group [11]–[13]. 

Identification of the neuro learning pathway assists in the localization of electrodes, which could reduce t he full recording 

of 128 locations to a manageable eight. This renders the data acquisition more user-friendly and reduced computation 

load for post-processing.   

Fig. 1 – Alphabet Writings from a Poor Dyslexic on the Left and Writings from a Normal Subject on the 

Right 

Given advantage of the EEG system, which can provide real time analysis and record without the need for a clinical 

setting as compared to fMRI, the challenge is to extract significant features from the EEG signals, usually highly coupled 

with noise and artifacts. These discriminative features could improve accuracy in the classification of normal, poor and 

capable dyslexic. Wavelet transform is commonly applied in studies related to activities of the brain [14]–[16]. It has the 

benefit of good time resolution. The EEG feature vectors extracted by it are influenced by selection of the mother wavelet 

and order of decomposition. Band power is the most widely used technique to extract features from EEG signals, 

particularly for brain computer interface (BCI) applications [17]. It summarizes the brain activities, where different bands 

are related to different neuro processes, such as beta is associated with reading and writing. The theta-beta band power 

ratio indicates the ability to focus. A high theta-beta band power ratio is a sign of a dominant theta, which has a dampening 

effect on the brain. A ratio of (2:1) is considered status of normal learning, while a ratio higher than (2.5:1) status of 

anxiety, as a result of struggling in learning. In a meta-analysis study of theta-beta ratio in ADHD, it was concluded that 

the measurement has prognostic values to evaluate outcome of intervention program or stimulant medication [18]. Five 

studies in this analysis exhibited a theta-beta ratio of less than 2.5 in normal subjects.    

Classification of EEG with algorithms such as SVM, Linear Discriminant Analysis (LDA) and Neural Network (NN) 

makes way for a brain based assessment or BCI system [19]. With a non-linear kernel, SVM provides an option to best 

suit the characteristics of EEG features by working them on a higher-dimensional space. Most previous works adopt RBF 
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kernel for SVM, as it offers efficient generalization properties, insensitivity to overtraining and ability to cope with high 

dimensionality [20]. Performance of SVM was evaluated by Area under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC) graphs.   

Both normal and poor dyslexic tend to activate similar areas on the left hemisphere. By relying only on a single 

feature vector of beta activation, it is difficult to distinguish the difference between the two groups. Our work here aims  

to examine the classification performance of normal, poor dyslexic and capable dyslexic subjects with theta-beta band 

power ratio as an alternative feature vector. Section 2 narrates on subject recruitment, design of tasks, methods to extract 

features and classify. Section 3 presents results on AUC of ROC graphs from linear and RBF kernel SVM, using features 

extracted by Daubechies, Symlet and Coiflet wavelets.    

 

2. Methodology 

This Section provides information on the subject population, inclusion and exclusion criteria as well as sampling 

procedure. The computer-based assessment and its procedures were explained, consisted of three structured learning 

related tasks to illicit the brain activation response. Methods applied in electrode localization, feature extraction , 

classification and performance assessment to determine the quality of the chosen feature vectors , were explained.  

 

2.1 Subject Recruitment 

 11 poor and 11 capable dyslexics whom have been assessed and diagnosed by expert therapists from Dyslexia 

Association of Malaysia, were recruited. Subjects identified as poor dyslexics are from the beginner class, while capable 

dyslexic are from the advanced class, having undergone intervention programs and shown improvements  in learning. As 

for the normal group, 11 subjects were recruited based on their current academic standing and the inclusion criterion that 

no prior history of attending any form of learning assistance program. Table 1 summarizes the group of subjects.  

 Table 1 – Subject Group Population 

Group 
Number of 

Subjects 
Age Range Median* 

Standard 

Deviation* 

Normal 11 7 - 12 10.5 1.76 

Poor Dyslexic 11 7 - 12 8 2.27 

Capable Dyslexic 11 7 - 12 8 1.55 

 

 The age of all subjects were limited to 7 to 12, as variation in the EEG signal were observed as the child reading 

experience increases. The age median for normal subjects stands at 10.5 with a standard deviation of 1.76. Both poor and 

capable dyslexics has similar age median of 8 with a standard deviation of 2.27 for the former and 1.55 for the latter. 

Median divides the greater and lesser halves of the age dataset while standard deviation quantifies the amount of spread 

of the age-dataset. Exclusion criterion includes comorbid features, past history of brain injury, auditory or sight issues, 

motor development difficulty, under medication and genetic disorder. 

 

2.2 Writing Tasks  

EEG recording for all the subjects took place in a controlled environment, to minimize disturbances and distraction. 

Subjects were seated in front of a 4 by 2 feet computer desk and given an A4 size answering sheet. Firstly, the subjects 

were instructed to relax with their eyes closed for 40 seconds, to establish the baseline of their EEG. In the second task, 

the subjects were asked to read and write two sets of words on a computer screen. Complexity of the words was in 

accordance to their age as shown in Table 2.  

Table 2 – Words List for Task 2 

Age Group 
7 - 8 

Age Group 
9 - 10 

Age Group 
11 - 12 

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 

hen box chair smile bicycle trousers 

cat mug face lunch water morning 

big dog draw table drink together 

  

The third task is similar to the second task, except for the reading and writing of non-words that includes alphabets 

known to pose difficulties to the dyslexic subjects, i.e. w, e, t, d, b, m, as shown in Table 3. 
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Table 3 – Words List for Task 3 

Age Group 
7 - 8 

Age Group 
9 - 10 

Age Group 
11 - 12 

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 

szx cpq rfld wrlb ftecpb ieacmub 

kwl igo enug oqbs tjupn pdunjtq 

bht dmr twms iltb dnusz czwmun 

 

2.3 EEG Acquisition 

Here, EEG signals were recorded with g.Nautilus wireless biosignal acquisition system that includes a 16-bit  

Analog-to-Digital Converter with a sampling frequency of 250Hz. 8 electrode locations (C3, C4, FC5, FC6, P3, P4, T7 

and T8) on the 10/20 international system along the left and right hemisphere were selected as shown in Fig. 2.  Locations 

on the left hemisphere are on the learning pathway of Broca and Wernicke. While mirrored locations on the right 

hemisphere are the compensatory pathway [21]–[23][24].  

 

 
 

Fig. 2 – Electrode Placement for EEG Recording 

 

 Pre-processing of the acquired EEG signal includes a notch filter with a cutoff frequency of 50Hz and a band pass 

filter with a low cutoff at 0.3Hz to eliminate baseline drift and an upper cutoff of 50Hz to remove high frequency artifacts.   

  

 

2.4 Feature Extraction 

 After the pre-processing stage, the initial feature extraction procedure started with the decomposition of the acquired 

EEG signals with wavelet transform of Daubechies order 8. It was selected based on its orthogonal features and its ability 

to conserve the resultant signal coefficients to enable an optimal reconstruction of the signal. In addition, it also possessed 

the capability to highlight and represent changes in the brain activities [25], [26]. From the reconstructed signals, feature 

vectors of beta and theta band power were calculated as summarized in Fig. 3. Decomposition then was repeated with 2 

other mother wavelet functions , Symlets and Coiflets. Orders ranging from 2 to a maximum of 8 in even intervals were 

applied on Daubechies and Symlets , while order of 2, 4 and 5 were applied on Coiflets.  
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Fig. 3 – Overview of Feature Extraction Procedure 

 

 Wavelet decomposes the EEG signals into successive frequency bands by applying a scaling function with a  low 

pass filter (see (1)), followed by down-sampling the signals by half to generate its approximate coefficients. The detail 

coefficients are computed by applying a high pass filter (see (2)) that was also down-sampled by half. This was repeated 

for all the levels in the decomposition. 

 

   𝐴𝑝𝑝𝑟𝑜𝑥1 =  𝐻low[𝑛]  =  𝛴𝑘 ℎ𝑙𝑜𝑤  𝑘𝑒−𝑗𝑘𝑛       (1) 

   𝐷𝑒𝑡𝑎𝑖𝑙1 =  𝐻high[𝑛]  =  𝛴𝑘 ℎℎ𝑖𝑔ℎ  𝑘𝑒 −𝑗𝑘𝑛       (2) 

 Fig. 4 shows the decomposition of EEG signal into 5 levels of approximate (left side) and detail coefficients (right 

side) from a sampling frequency of 250Hz.  

 

 
 

Fig. 4 – Wavelet Decomposition of EEG Signals 

  

Raw EEG Signal 

Signal Pre-Processing 

Wavelet Signal Decomposition 

Mother Wavelet:  

 Daubechies Order 8 

 

Signal Reconstruction 

Features Vectors: 

 Beta Band Power 

 Theta/Beta Power Ratio 
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Table 4 summarizes the EEG levels of decomposition and its corresponding frequency bands. Beta and theta frequency 

bands at level 3 and 5 respectively, are the frequency bands of interest.  

 

Table 4 – EEG Signal Level of Decomposition 

Signal Decomposition  
Frequency 

Range (Hz) 

Frequency 

Band 

Detail Coefficient Level 1 64-128 Noise 

Detail Coefficient Level 2 32-64 Gamma 

Detail Coefficient Level 3 16-32 Beta 

Detail Coefficient Level 4 8-16 Alpha 

Detail Coefficient Level 5 4-8 Theta 

Approximate Coefficient Level 5 0-4 Delta 

 

 The squared sum of the reconstructed signal (x) at level 3 and 5, divided with the signal length was computed as the 

frequency band power for both theta and beta as shown in (3).   

 𝑃𝑜𝑤𝑒𝑟 =  ∑ 𝑥2/𝐿(𝑥)         (3) 

2.5 Classification  

 SVM uses a hyperplane placed in the middle of the gap to classify between different groups of features. The larger 

the distance of group features from the hyperplane leads to higher accuracy. A non-linear RBF kernel introduces a high 

dimensional feature space that allows greater separation between different groups, with better performance than a linear 

SVM. Traditionally a binary classifier, a multiclass SVM with a One-Versus-One approach, in which all possible 

combination of the paired classifiers is tested, is employed here.  

 Performance of the SVM was analyzed based on AUC of the ROC graphs. It looks into tradeoff between specificity 

and sensitivity for the entire range of thresholds and the choice of feature vector inputs. AUC between 0.5 to 1 shows the 

classifier is acceptable. A value of ‘1’ signifies  a perfect classifier, with appropriate feature vectors . While an AUC of 

less than 0.5 indicates the classifier perform poorly.  

 3 runs of linear SVM and RBF kernel SVM were executed for all feature vectors extracted from the 3 different  

mother wavelets and the different orders. Results presented in the following section is the average value of the 3 runs.   

 

3. Results and Discussions 

Results in this section are presented in two parts. The first part examines theta-beta band power ratios at all the 

electrode locations for normal, poor and capable dyslexic. The second part compares performance of linear SVM and 

RBF kernel SVM with theta-beta band power ratios feature vectors, extracted by 3 different mother wavelets of different 

orders. 

Fig. 5 and Fig. 6 depict boxplot of the EEG theta-beta band power ratios of 33 subjects. The theta-beta band power 

ratio of poor dyslexic was higher than that of normal and capable dyslexic subjects  at all electrode locations. Location 

T8 and FC5 displays a close median centre between poor and capable dyslexic. In all locations, variability for capable 

and poor dyslexic was larger than the normal. Outliers at the higher end of the ratio, particularly for poor dyslexic, are 

hypothesized to contribute to inconsistencies in the classifier results.  

Normal subjects were observed to have an average ratio of 1 to 2.5 in all the electrode locations, where the brain is 

at its most effective in reading and writing tasks. In the case of poor dyslexics, a higher theta-beta band power ratio of 3-

5 was recorded at majority of the electrode locations. Higher ratio is a consequence of dominant theta, which signifies 

slowing of the brain in processing learning tasks, maintaining focus and attention. This was predominantly observed at 

location P3 of Wernicke and FC5 of Broca, that is known to associate with the learning pathway. For capable dyslexics, 

the theta-beta band power ratio is rather random, ranges between a minimum average of 2.5 to a maximum average of 

4.5, higher than those of the normal. Although the theta values were on the high side, the brain compensontary areas were 

able to complete the tasks as per the normal.   
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Fig. 5 – (a) Boxplot of Theta-Beta Band Power Ratio at Electrode Locations of C3 and C4; (b) Boxplot of Theta-

Beta Band Power Ratio at Electrode Locations of P3 and P4 

  

 
Fig. 6 – (a) Boxplot of Theta-Beta Band Power Ratio at Electrode Locations of T7 and T8; (b) Boxplot of Theta-

Beta Band Power Ratio at Electrode Locations of FC5 and FC6 

 

Table 4 summarizes the AUC of ROC graphs for SVM (linear and RBF kernels) with theta-beta band power ratio as 

the feature input vectors. The AUC values shown here are the average of 3 runs. As a single feature vector, the theta-beta 

ratio manages to achieve a perfect score of ‘1’ in the first run of RBF kernel for Daubechies order 4 and Symlets order 6 

and 8. The results however was not replicated in run 2 and 3, albeit with a commendable value of 0.95 and above in the 

case of RBF kernel. The highest average AUC of ROC was 0.9838 for RBF kernel SVM combined with Daubechies of 

order 6 and a much lower average of 0.8668 for linear SVM combined with Symlets of order 2. The above findings 

merited the inclusion of theta-beta band power ratio as a feature vector in the classification of dyslexia.   

Studies indicate that an excessive beta frequencies  in children with ADHD was believed to cause restlessness, 

anxiety, distractibility and impulsivity [26]–[29]. It was also speculatively suggested that a high beta was an indication 

of comorbidity. A theta-beta ratio of lower than ‘1’ is an indication of this scenario. It is envisaged that looking into 2 

frequency bands within a location will give a more objective interpretation of activation, as different locations will have 

an additional variable that had to be taken into account, i.e. contact issues, the strength of the signal, noises, etc.  

 

 

 

 

 

 

 

a b 

a b 
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Table 4 – AUC of ROC Graphs for Linear and RBF Kernel SVM Classifier based on Theta-Beta Ratio from 
Daubechies (Order 2 to 8), Symlets (Order 2 to 8) and Coiflet (Order 2 to 5)  

Run 1 Db-2 Db-4 Db-6 Db-8 Sym-2 Sym-4 Sym-6 Sym-8 Coif-2 Coif-4 Coif-5 

Linear 0.7939 0.7433 0.7631 0.7452 0.8006 0.7894 0.7772 0.7554 0.7849 0.7401 0.7285 

RBF 0.9987 1.0000 0.9997 0.9984 0.9987 0.9987 1.0000 1.0000 0.9987 0.9997 0.9987 

 

Run 2 Db-2 Db-4 Db-6 Db-8 Sym-2 Sym-4 Sym-6 Sym-8 Coif-2 Coif-4 Coif-5 

Linear 0.9092 0.8718 0.8921 0.8782 0.9114 0.8677 0.8772 0.8864 0.8788 0.8810 0.8665 

RBF 0.9456 0.9500 0.9582 0.9456 0.9472 0.9411 0.9354 0.9462 0.9491 0.9497 0.9547 

 

Run 3 Db-2 Db-4 Db-6 Db-8 Sym-2 Sym-4 Sym-6 Sym-8 Coif-2 Coif-4 Coif-5 

Linear 0.8858 0.8278 0.8731 0.8408 0.8883 0.8434 0.8509 0.8623 0.8652 0.8415 0.8326 

RBF 0.9949 0.9911 0.9934 0.9886 0.9949 0.9953 0.9886 0.9870 0.9896 0.9911 0.9892 

 

Average Db-2 Db-4 Db-6 Db-8 Sym-2 Sym-4 Sym-6 Sym-8 Coif-2 Coif-4 Coif-5 

Linear 0.8629 0.8143 0.8428 0.8214 0.8668 0.8335 0.8351 0.8347 0.8430 0.8208 0.8092 

RBF 0.9797 0.9804 0.9838 0.9775 0.9803 0.9784 0.9747 0.9777 0.9791 0.9802 0.9809 

 
4. Conclusion 

Areas of the brain activated during learning related tasks in normal and poor dyslexic subjects  are found similar. Hence, 

it would be difficult for a single feature vector of beta band power to distinguish between these two groups. Our work 

here examines if the theta-beta band power ratio is suitable as an alternative feature vector for classification of normal, 

poor dyslexic and capable dyslexic subjects. Results showed that the ratio is able to distinguish between the 3 groups, 

even simply by boxplot. The theta-beta band power ratio for normal ranges from 1 to 2.5, capable dyslexic ranges between 

a minimum average of 2.5 to a maximum average of 4.5 while poor has a ratio of 3 to 5. The ratio displays the amount 

of engagement by each and every electrode. They also produce a consistently high AUC of ROC graphs, for 3 mother 

wavelet functions at different orders. The highest average of 0.9838 is attained with RBF kernel SVM with features 

extracted by Daubechies of order 6. Hence, it can be concluded that theta-beta ratio is suitable to serve as a feature vector 

for the classification of dyslexia and a high theta-beta ratio of more than 2.5 could be a sign of a learning disorder.  Once 

established, this theta-beta band power ratio may also be useful to the design of a brain based assessment system and 

protocol for a neurofeedback system, dedicated to dyslexia.  

 

Acknowledgement 

This research was supported by Fundamental Research Grant Scheme (FRGS), Malaysia (600-RMI/FRGS 5/3 

(85/2014)). The authors are thankful to the Ministry of Higher Education, Malaysia, Research Management Institute and 

Faculty of Electrical Engineering, Universiti Teknologi MARA, Selangor as well as Dyslexia Association of Malaysia 

for their financial support, facilities and contribution. 

References  

[1] Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). Defining dyslexia, comorbidity, teachers’ knowledge of 

language and reading: A Definition of Dyslexia. Annals of Dyslexia, 53(1), 1–14.  

[2] Walker, J. E., & Norman, C. A. (2006). The Neurophysiology of Dyslexia: A Selective Review with Implications  

for Neurofeedback Remediation and Results of Treatment in Twelve Consecutive Patients. Journal of Neurotherapy, 

10(1), 45–55. 

[3] Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. In The Lancet, 379, 1997–2007. 

[4] Foorman, B. R., & Torgesen, J. (2001). Critical Elements of Classroom and Small-Group Instruction Promote 

Reading Success in All Children. Learning Disabilities Research and Practice, 16(4), 203–212. 



Mahmoodin, Z et al., Int. J. of Integrated Engineering Vol. 11 No. 3 (2019) p. 42-50 

 

 

 50 

[5] Lovett, M. W., Steinbach, K. A., & Frijters, J. C. (2000). Remediating the core deficits of developmental reading 

disability: A double-deficit perspective. Journal of Learning Disabilities . 

[6] Ministry of Education Malaysia. (2017). Quick Facts 2017 - Malaysia Educational Statistics . Ministry of Education 

Malaysia. 

[7] Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends 

in Neurosciences. 

[8] Tallal, P., Miller, S., & Fitch, R. H. (1993). Neurobiological Basis of Speech: A Case for the Preeminence of 

Temporal Processing. Annals of the New York Academy of Sciences , 682(1), 27–47. 

[9] McCroskey, R. L., & Kidder, H. C. (1980). Auditory Fusion among Learning Disabled, Reading Disabled, and 

Normal Children. Journal of Learning Disabilities , 13(2), 69–76. 

[10] Galaburda, A. M. (1993). Neurology of developmental dyslexia. Current Opinion in Neurobiology, 3(2), 237–242. 

[11] Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., Lyytinen, H., Whitfield-Gabrieli, 

S., Glover, G. H., Reiss, & A. L., Gabrieli, J. D. (2011). Neural systems predicting long-term outcome in dyslexia. 

Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361–366. 

[12] Shaywitz, S. E., Shaywitz, B. A., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., Pugh, K. R., 

Holahan, J. M., Marchione, K. E., Fletcher, J. M., Lyon, G. R., & Gore, J. C. (2003). Neural systems for 

compensation and persistence: Young adult outcome of childhood reading disability. Biological Psychiatry, 54(1), 

25–33. 

[13] Dehaene, S. (2010). Reading in the Brain: The New Science of How We Read. Penguin Books. 

[14] Gupta, A., Agrawal, R. K., & Kaur, B. (2014). Performance enhancement of mental task classification using EEG 

signal: a study of multivariate feature selection methods. Soft Computing, 1–14. 

[15] Murugappan Murugappan, Ramachandran Nagarajan, S. Y. (2011). Combining Spatial Filtering and Wavelet 

Transform for Classifying Human Emotions Using EEG Signals. Journal of Medical and Biological Engineering, 

31(1), 45. 

[16] Hsu, W. Y., & Sun, Y. N. (2009). EEG-based motor imagery analysis using weighted wavelet transform features. 

Journal of Neuroscience Methods , 176(2), 310–318. 

[17] Medina-Salgado, B., Duque-Munoz, L., & Fandino-Toro, H. (2013). Characterization of EEG signals using wavelet 

transform for motor imagination tasks in BCI systems. Symposium of Signals, Images and Artificial Vision. 

[18] Arns, M., Conners, C. K., & Kraemer, H. C. (2013). A Decade of EEG Theta/Beta Ratio Research in ADHD: A 

Meta-Analysis. Journal of Attention Disorders , 17(5), 374–383. 

[19] Lehmann, C., Koenig, T., Jelic, V., Prichep, L., John, R. E., Wahlund, L. O., … Dierks, T. (2007). Application and 

comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). 

Journal of Neuroscience Methods , 161(2), 342–350. 

[20] Majnik, M., & Bosni, Z. (2013). ROC analysis of classifiers in machine learning: A survey. Intelligent Data 

Analysis. 

[21] Mahmoodin, Z., Mansor, W., Khuan, L., Mohamad, N., & Amirin, S. (2016). Feature extraction of 

electroencephalogram signal generated from writing in dyslexic children using daubechies wavelet transform. Jurnal 

Teknologi, 78(6–8). 

[22] Mahmoodin, Z., Mansor, W., Lee, K. Y., & Mohamad, N. B. (2015). An analysis of EEG signal power spectrum 

density generated during writing in children with dyslexia. IEEE 11th International Colloquium on Signal 

Processing and Its Applications. 

[23] Mahmoodin, Z., Mansor, W., Lee, K. Y., Mohamad, N. B., & Amirin, S. (2015). Band power comparative study of 

normal, poor dyslexic and capable dyslexic children in writing. IEEE Conference on Biomedical Engineering and 

Sciences. 

[24] Mohamad, N. B., Lee, K. Y., Mansor, W., Mahmoodin, Z., Che Wan Fadzal, C. W. N. F., Mohamad, S., & Amirin , 

S. (2015). Spectral analysis based brain imaging of normal, poor dyslexic, and capable dyslexic children in reading, 

writing and spelling task. IEEE Conference on Biomedical Engineering and Sciences. 

[25] Sherwood, J., & Derakhshani, R. (2009). On classifiability of wavelet features for EEG-based brain-computer 

interfaces. Proceedings of the International Joint Conference on Neural Networks , 2895–2902. 

[26] Thompson, M., & Thompson, L. (2006). Improving Attention in Adults and Children: Differing  

Electroencephalography Profiles and Implications for Training. Biofeedback, 34(3), 99–105. 

[27] Clarke, A. R., Barry, R. J., Dupuy, F. E., McCarthy, R., Selikowitz, M., & Johnstone, S. J. (2013). Excess beta 

activity in the EEG of children with attention-deficit/hyperactivity disorder: A disorder of arousal? International 

Journal of Psychophysiology, 89(3), 314–319. 

[28] Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001). Excess beta activity in children with attention-

deficit/hyperactivity disorder: An atypical electrophysiological group. Psychiatry Research, 103(2–3), 205–218. 

[29] Meier, N. M., Perrig, W., & Koenig, T. (2014). Is excessive electroencephalography beta activity associated with 

delinquent behavior in men with attention-deficit hyperactivity disorder symptomatology? Neuropsychobiology, 

70(4), 210–219. 


