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1. Introduction 

Particles with aerodynamic diameters equal or less than 2.5 µm, which are also known as fine particles, are air 

pollutants that can severely harm the respiratory system of humans, especially sensitive groups such as children [1]-[2]. 

In addition, individuals who are exposed to indoor pollutants are more susceptible than those who are exposed to 

outdoor air pollutants in the long term [2]. Exposure to high indoor PM, such as PM2.5, could increase the risk in 

acquiring respiratory problems, such as asthma, lung diseases, cardiovascular and cardiopulmonary diseases and 

premature death [3]-[7]. Children belong to the sensitive groups that spend 90% of their daily lives indoor, such as in 

school classrooms [8]-[10]. Many studies have determined that children who spend their school sessions in limited 

space over a period of several hours (6 – 8 hours) per day could be exposed to high concentrations of PM, such as PM2.5 

[11]-[17]. Young children are more susceptible to air pollutions because they breathe at a higher rate than adults, which 

is proportional to the growth of tissues, body weight and the immune system [18]-[22]. 

Malaysia, which is a developing country, has currently experienced rapid development and industrial activities to 

achieve the developed country status. At the same time, the Malaysian population increases daily and is currently 32.3 

Abstract: Particles with aerodynamic diameters equal or less than 2.5 µm, which are known as fine particles 

(PM2.5), are major air pollutants that could seriously impact ambient and indoor air quality. The air quality in 

school environments less than 500 m away from the roadside is potentially affected by vehicles through exhaust 

emissions. Thus, the concentrations of ambient and indoor fine particles (PM2.5) were measured using a portable 

outdoor beta-attenuation monitor and an optical indoor direct reading monitor in two naturally ventilated school 

environments for 8 h during the teaching and learning sessions. In addition, meteorological parameters such as 

temperature, relative humidity and wind speed were measured under ambient and indoor conditions. PM2.5 samples 

were also collected and morphologically characterised. Pearson’s correlation was applied to identify the 

relationship between the ambient and indoor conditions of PM2.5, temperature, relative humidity and wind speed. 

Results showed that the indoor and outdoor PM2.5 in selected schools were varied. The concentration of indoor 

PM2.5 was higher than that of outdoor PM2.5 in both schools. Pearson’s correlation showed a significant correlation 

between indoor and outdoor PM2.5 in schools A (p = 0.006, r = 0.54) and B (p = 0.001, r = 0.74). In addition, 

ambient temperature, relative humidity and wind speed are the important factors that affect the outdoor 

concentrations of PM2.5.  
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million [23]. Hence, the demand on industrial activities and transportation has also increased to fulfil the daily life 

requirements. This condition increases air pollution, especially from anthropogenic sources, such as industrialisation 

and vehicle emissions. Anthropogenic sources, which are mostly from outdoor sources, are considered an important 

factor that influences the concentrations of indoor air pollutants [19]. In addition, few studies have determined the 

relationship between indoor and outdoor concentrations of air pollutants [24]-[26]. Agrawal et al. [27] and Gadkan et 

al. [28] reported that the ambient air in dense urban and suburban areas with buildings and high traffic activities 

influences the concentrations of indoor air pollutants in indoor environments. Therefore, the present study identified the 

variations of indoor and outdoor PM2.5 concentrations in school environments, determined the influence of outdoor to 

indoor PM2.5 concentrations in school, and identified the morphological properties of indoor and outdoor PM2.5 in 

school. 

 

2. Materials and Method 

2.1 Location of Study Areas 

In this study, two schools that are located in Seberang Perai, Pulau Pinang were selected as the study areas, as 

shown in Fig. 1. The two schools were selected because they are categorised as suburban areas and are located near the 

roadside, where school A is 31.1 m and school B is 36.6 m away from the roadside. The two schools are located at 

high-density traffic areas because school A is located at the state road and school B is located at the main federal road 

based on the road code of the Ministry of Works, Malaysia [29]. Fig. 2 shows the condition during the indoor and 

outdoor sampling and monitoring of school environment, and the coordinate for each school is provided in Table 1. The 

monitoring and sampling activities were conducted for 2 days with 8 h/day at each school. 

 

 
 

Fig. 1 - Location of study areas 

 

 

 
a) 

 
b) 

 

Fig. 2 - Sampling and monitoring for a) outdoor and b) indoor (right) PM2.5 in one the schools, school A 
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Table 1 - Location of each school located in Seberang Perai, Pulau Pinang 
 

School Coordinate 

A 5˚29’5.914”N; 100˚29’9.423”E 

B 5˚16’28.646”N; 100˚28’39.298”E 

 

2.2 Data and sample collection 

Air quality sampling and monitoring were conducted in one classroom for each school throughout the school 

session. The measurements focused on the indoor and outdoor concentrations of PM2.5, temperature, relative humidity 

(RH) and wind speed throughout the school session. For indoor measurement, an optical direct reader (Environmental 

Sampler, E-sampler) with a flowrate of 2 L/min was used and placed at the back of the classroom at a height of 1.2 m 

from the floor and 1 m from the windows, door and soft board as recommended by the Department of Safety and 

Health Malaysia [30] Industrial Code of Practice for Indoor Air Quality 2010 (ICOP 2010). For outdoor measurement, 

a portable beta-attenuation monitor with a flowrate of 16.7 L/min (E-BAM) was used to measure and filter the PM2.5 

samples. Pre-calibration was conducted to determine the calibration factor of the two instruments in comparing the 

indoor and outdoor PM2.5 concentrations. The two instruments were simultaneously run at a distance of more than 1 m. 

Then, the calibration factor was determined for the two instruments by applying a regression analysis, and the value of 

k-factor was 0.33779.  

PM2.5 samples were filtered by using a glass fibre filter paper with 47 mm diameter and 2.0 µm pore size (indoor) 

and a glass fibre filter tape with 2.0 µm pore size (outdoor). For the analysis of morphological properties, the filtered 

paper was cut into half for indoor, and the filtered paper was first cut with a paper puncher with a diameter of 12 mm 

for outdoor. Then, the filtered paper was cut into half similar to the filtered paper for indoor by using a disposable 

scalpel. The morphological properties of the samples were analysed through field-emission scanning electron 

microscopy (FESEM) coupled with energy dispersive X-ray spectroscopy QUANTA FEG 650, as shown in Fig. 3 [31]. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3 - Field-Emission Scanning Electron Microscopy QUANTA FEG 650 (a) samples of PM2.5  

were allocated in the vacuum (b) Vacuum Quarta (c) Field-Emission Scanning Electron Microscopy  

QUANTA FEG 650 (d) Identification of shape for PM2.5 

 

2.3 Statistical Analysis  

In this study, the indoor and outdoor PM2.5 concentrations and meteorological parameters (temperature, RH and 

wind speed) were continuously measured at 15 min intervals in which the particle samples are well filtered. All the data 

were arranged in a spreadsheet and statistically analysed using MS Excel 2007 and IBM Statistical Package for Social 

Science (SPSS Version 16.0, USA). Pearson’s correlation was performed by applying a bivariate correlation analysis, 

which is an important approach used to evaluate the relationship between the variables [32]-[34]. The relationship 

strength between indoor and outdoor PM2.5, temperature, RH and wind speed was determined based on Pearson’s 

correlation coefficient, which can be expressed in Eq. (1). The strength of relationship was referred to the Guildford’s 

Rule of Thumb [35], as shown in Table 2. 
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where: r = Pearson’s correlation coefficient, X = x variables, Y = y variables, X = sample mean for x variables and Y = 

sample mean for y variables 

 
Table 2 - Correlation coefficient by Guildford’s Rule of Thumb 

 

 

Size of Correlation Interpretation 

0.90 to 1.00 Very high positive 

(-0.90 to –1.00) (negative) correlation 

0.70 to 0.90 High positive 

(-0.70 to -0.90) (negative) correlation 

0.50 to 0.70 Moderate positive 

(-0.50 to -0.70) (negative) correlation 

0.30 to 0.50 Low positive 

(-0.30 to -0.50) (negative) correlation 

0.00 to 0.30 
Little if any correlation 

(0.00 to -0.30) 

 

3. Results and Discussion 

3.1 Variations of PM2.5, Temperature, Relative Humidity and Wind Speed for Indoor and 

Outdoor in School  

Table 3 and Table 4 show the variations of indoor and outdoor concentrations of PM2.5, temperature, RH and wind 

speed in schools A and B. The two schools experienced higher indoor PM2.5 concentrations than outdoor PM2.5 

concentrations. In school A, the average indoor concentration was 58±11 µg/m3 and the average outdoor concentration 

was 32±10 µg/m3. In school B, the average PM2.5 concentrations for indoor and outdoor were 71±22 and 36±9 µg/m3, 

respectively. For the average indoor concentration of PM2.5, schools A and B experienced high concentrations that 

exceed the 35 µg/m3 limit recommended by ASHRAE Standard 62.1-2010 [36]. The outdoor concentrations of PM2.5 

did not exceed the 50 µg/m3 limit of Malaysia Ambient Air Quality Standard-Interim 2 (MAAQS-IT-2). The 

temperature ranges were 27.3–30.9 °C for indoor school A and 24.5–33.3 °C for outdoor school A. Meanwhile, the 

indoor temperature range of school B was 29.1–33.0 °C, which exceeds the 23–26 °C and 25.0–35.2 °C indoor and 

outdoor temperature limits recommended by ICOP 2010, respectively. The RH in the two schools was within the range 

recommended by ICOP 2010 (40%–70%). The relative indoor and outdoor humidity of school A were 51%–71% and 

39%–68%, respectively. The indoor and outdoor RH ranges for school B were 48%–51% and 48%–78%, respectively. 

Meanwhile, the average wind speed in all schools was within the limit of 0.15–0.50 m/s inside the classroom.   

 

3.2 Influence of Outdoor PM2.5 and Meteorological Parameters on Indoor PM2.5 in School 

Environment 

The influence of outdoor concentrations on indoor concentrations was identified in the two schools. Pearson’s 

correlation analysis revealed a significant correlation between indoor and outdoor PM2.5 concentrations (p = 0.006; r = 

0.542) in school A. In addition, indoor temperature (p = 0.001; r = −0.630) and RH (p = 0.001; r = 0.643) significantly 

influenced PM2.5 concentrations. Ambient PM2.5 in school A was significantly influenced by temperature (p = 0.000; r 

= −0.831), RH (p = 0.000; r = 0.859) and wind speed (p = 0.000; r = −0.873), as shown in Table 5. Pearson’s 

correlation analysis also showed a significant correlation between the indoor and outdoor PM2.5 in school B (p = 0.001, 

r = 0.74). In addition, ambient temperature and RH significantly influenced the PM2.5 concentrations, where the p-

values were 0.009 with r = 0.521 for temperature and PM2.5 and 0.008 with r = −0.528 for RH and PM2.5, as shown in 

Table 6.  

Based on Pearson’s correlation in school A and B, the correlation was categorised as a moderate correlation 

between indoor and outdoor PM2.5. This finding is similar to that reported by Yang et al. [34], who determined that the 

relationship between indoor and outdoor of PM2.5 for classroom is significant with moderate relationship (r = 0.5287). 

Latif et al. [26] and Guo et al. [37] also found a significant correlation between the indoor and outdoor PM2.5 in school. 

This condition is due to the infiltration of outdoor particles from vehicles and industrial emissions. Furthermore, the 

area of openings, such as door and windows, act as important factors for outdoor particles to be infiltrated [38]-[40].  
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However, the relationship of ambient temperature, RH and wind speed with outdoor PM2.5 can be classified in the 

range of moderate to strong category. Meteorological parameters, such as temperature, RH and wind speed, act as 

important factors, which is similar to the findings of Tecer et al. [41], Tai et al. [42], Wang et al. [43] and Ching-Hui et 

al. [44]. 

 
Table 3 - Descriptive statistics of indoor PM2.5, temperature, relative humidity and wind speed  

in schools A and B 
 

School Descriptive 

Statistic 

PM2.5 

(µg/m3) 

T 

(˚C) 

RH 

(%) 

WS 

(m/s) 

A Max 80 30.9 71 0.6 

 Min 42 27.3 51 0.3 

 Avg 58 28.6 64 0.4 

 SD 11 1.3 7 0.1 

B Max 116 33.0 51 0.6 

 Min 41 29.1 48 0.3 

 Avg 71 31.1 49 0.4 

 SD 22 1.3 1 0.1 

 

 

Table 4 - Descriptive statistics of outdoor PM2.5, temperature, relative humidity and wind speed  

in schools A and B 
 

School Descriptive 

Statistic 

PM2.5 

(µg/m3) 

T 

(˚C) 

RH 

(%) 

WS 

(m/s) 

A Max 46 33.3 68 1.8 

 Min 21 24.5 39 0.7 

 Avg 32 28.0 56 1.1 

 SD 10 3.2 10 0.3 

B Max 46 35.2 78 1.8 

 Min 23 25.0 48 0.5 

 Avg 36 29.4 65 1.0 

 SD 9 3.9 12 0.3 

*Note: Max = Maximum, Min = Minimum, Avg = Average, SD = Standard Deviation,  

T = Temperature, RH = Relative humidity, WS = Wind speed 

 

 

Table 5 - Pearson’s correlation between indoor and outdoor PM2.5, temperature, relative humidity  

and wind speed in school A 
 

        PM2.5 T RH WS 

 I O I O I O I O 

a 1 0.54** 0.63** 0.65** 0.64 
** 

0.66 
** 

0.35 0.67 
** 

b 0.54** 1 0.73** 0.83** 0.76 
** 

0.85 
** 

0.49* 0.87** 

 

 

Table 6 - Pearson’s correlation between indoor and outdoor PM2.5, temperature, relative humidity  

and wind speed in school B 
 

          PM2.5 T RH WS 

 I O I O I O I O 

a 1 0.74** 0.08 0.09 0.12 

 

0.08 

 

0.12 0.37 

 

b 0.74** 1 0.52** 0.52** 0.17 

 

0.53 
** 

0.44 0.06 

For Table 5 and Table 6: 

Note a = PM2.5_In; b = PM2.5_Out; I = indoor; O = outdoor 

**.Correlation is significant at the 0.01 level (2-tailed) 

*.Correlation is significant at the 0.05 level (2- tailed) 
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3.3 Morphological Properties of Indoor and Outdoor PM2.5 for Indoor and Outdoor 

Fig. 4(a) and Fig. 4(b) show the micrographs from high-resolution FESEM of fine particles from outdoor sources. 

Fig. 4(a) shows the small clustered agglomerate soot, which are typical soot particles, that is carbon aggregates emitted 

from vehicles [31], [45]. Fig. 4(b) shows the cluster shape of particles from anthropogenic sources. Outdoor particles 

are mostly in spherical shape and have smooth surfaces produced from anthropogenic sources, such as combustion at 

high temperature [4]. Fig. 4 (c) and Fig. 4(d) show the flaky shape of particles identified from indoor samples, which is 

similar to the finding of Jan et al. [46].  

Fig. 5 shows the micrograph for indoor and outdoor PM2.5 in school A. Fig. 5(a) shows the small clustered 

agglomerate soot mainly emitted from vehicle emissions [31], [45]. Fig. 5(a) shows the high-resolution FESEM 

micrograph with the percentage of each element of indoor particles. As shown in the pie chart in Fig. 5(a), the elements 

that exist in the particles are O, Si, Na, C, Ca, Mg and Al. The size range is O > Si > Na > C > Ca > Mg > Al for indoor 

particles in school A. Fig. 5(b) shows the outdoor particles with flaky shapes that are rich with oxygen, carbon and 

silica. In addition, other elements, such as Na, Al, K and Ca, are found. The trend of elements is O > C > Si > Na > Al 

> K > Ca. 

Fig. 6(a) and Fig. 6(b) show the micrographs from high-resolution FESEM of fine particles from outdoor sources 

in school B. Fig. 6(a) shows the small clustered agglomerate soot, and Fig. 6(b) shows the irregular shape particles 

from outdoor sources. Fig. 6(c) shows the soot particles and Fig. 6(d) shows the flaky shape particles that are present 

inside the classroom. Fig. 7(a) shows the high-resolution FESEM micrograph with the percentage of each element of 

indoor particles that consist of elements, such as C, O, Na, Al and Si. The dominant element is in the order of C > O > 

Si >Na > Ca > Mg and Al. Fig. 7(b) shows the percentage of elements that consist the outdoor particles for school B, 

which is the order of O > Si > C> Na > Al.  

The results on morphological properties of outdoor particles in schools A and B show the existence of soot 

particles and biological and irregularly shaped particles. Soot particles are usually obtained from incomplete 

combustion processes, such as vehicle emissions with diesel engines, gas burners, coal-fired power plants, domestic 

heating and biomass burning [47]-[50]. Biological shape particles are usually obtained from biological sources, such as 

trees and flowers for landscape purposes near the school area [31]. The morphological properties of indoor particles in 

schools A and B consist of soot particles and irregularly shaped particles. The indoor morphological properties of 

school B show that soot particles also exist inside the classrooms similar to outdoor particles. This condition shows the 

influence of outdoor sources on the indoor concentrations in school B [45]. 

 

 
(a) outdoor 

 
(b) outdoor 

 

 
(c) indoor 

 
(d) indoor 

 

Fig. 4 - High resolution of FESEM of outdoor (a) soot aggregated and (b) biological particles while for indoor  

(c) and (d) are irregular shapes in school A 
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(a) 

 
(b) 

 

Fig. 5 - High resolution of FESEM micrographs with percentage of each element in for (a) indoor and (b) 

outdoor in school A 

 

 

 
(a) outdoor 

 
(b)outdoor 

 

 
(c) indoor 

 
(d) indoor 

 

Fig. 6 - High resolution of FESEM of outdoor and indoor in school B. 6 (a) soot particles (b) irregular shape for 

outdoor and 6 (c) soot particles (d) irregular shape of indoor particles in school B.T 

 

 

 
(a) indoor 

 

(b) outdoor 
 

Fig. 7 - High resolution of FESEM micrographs with percentage of each element for (a) indoor and (b) outdoor 

in school B 

 



Suroto et al., Int. J. Of Integrated Engineering Vol. 11 No. 2 (2019) p. 119-128 

 

 

 126 

4. Conclusion 

The concentrations of outdoor and indoor PM2.5 varied. The indoor concentration was contributed by outdoor 

sources. Then, the trapped and resuspended concentrations were due to students’ activities. Pearson’s correlation 

analysis revealed a significant correlation between indoor and outdoor PM2.5 in schools A and B. This finding is also 

supported by a similar type of particles (i.e. soot particles) for indoors and outdoors in school B. The morphological 

characteristics were also identified for indoor and outdoor PM2.5 in schools A and B, which are soot, irregularly shaped 

and biological particles. The dominant elements are O and C for indoor and outdoor particles in both schools. In 

addition, ambient temperature, RH and wind speed are the important factors that influence the outdoor PM2.5 

concentrations in schools 
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