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1. Introduction
In the manufacturing system, batch sizing strategy has significant impacts on the production performance. The

process with large batches usually has long lead time and large amount of finished goods inventory which incurs high 
inventory cost. Significant costs of inventory model are holding cost and setup cost [1].  

Numbers of studies in the past offered the approaches to find the optimal batch size that improves manufacturing 
efficiency such as minimizing costs, minimizing production lead time, and maximizing service quality.  

The approach to find the optimal batch size that minimized the total costs of raw materials ordering and finished 
goods inventory was developed by Parija and Sarker [2]. However, the cycle time interval between shipments or time 
intervals are fixed. Wang and Chen [3] proposed the new approach by modifying the cost function of Parija and Sarker 
to find the possible solutions. The simulation model in the supply chain system was applied to estimate the optimal batch 
size. Bertrand [4] published his development by extending the queuing model as well as the economic order quantity 
(EOQ) to find the optimal batch size in “made-to-stock” manufacturing system. However, the algorithm is an iterative 
procedure that the batch size is determined by adjusting the parameters for each iteration. The parameters were idle cost, 
wait time, production rates, in process inventory cost, and work orders. Wang and Sarker [5] published an article in which 
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they applied mixed integer nonlinear programming in the Kanban System with the objective to determine the optimal 
batch size. The model to optimize batch size for an imperfect production system with quality assurance and rework was 
the developed by Ojha et al. [6]. A total cost equation was developed for the model, and the optimal ordering quantities 
were evaluated. In a study conducted by Rau and OuYang [7], it was found that the joint total costs incurred by the vendor 
and the buyer could be minimized by using an optimal batch size for integrated production–inventory policy in a supply 
chain system. Sohner and Schneeweiss [8] introduced the approach of hierarchically integrated lot size optimization. The 
approach was computational feasible and, based on some numerical results, was compared with a deterministic multi 
level capacitated lot sizing model.   

Shin et al. [9] proposed a stochastic model to solve for the optimal batch size with process and product variability. 
Millar and Yang [10] applied queueing network model to investigate the potential of batch sizing as a control variable 
for lead time performance. They also used discrete optimization via marginal analysis to solve the nonlinear batch sizing 
problem. Koo et al. [11] introduced a linear search algorithm to find the optimal throughput rate and the batch size at a 
bottle neck machine. Lately, Wang et al. [12] proposed the chaotic-search-based self-organizing optimization approach 
to optimize the multistage batch scheduling problem. Yang et al. [13] applied iterative particle swarm optimization 
algorithm to solve for the batching optimization. Cheng et al. [14] improved ant colony optimization method to solve for 
the integrated scheduling of production and distribution with the objective to minimize cost. 

Literature reviews show that the techniques explained above need a customization when production factors such as 
demands and capacity change. It is also difficult for a plant manager to customize the model when producing more than 
one type of products in a single machine.  Therefore, this research article presents a simple version of batch sizing model 
for a single process system that is easy to use. The objective is to derive a closed-form batch size equation that minimizes 
the overall inventory cost. 

 
2. Assumptions and Notations 

In the present study a mathematical model is constructed based on the assumptions and notations as follows; 
 
2.1 Assumption 

There are 9 assumptions of the model as follows; 
1) Demands are deterministic. 
2) Demands are constant over the evaluation period. 
3) If the demands are not constant during a long evaluation period, the evaluation period can be divided into many 
smaller periods. Each period has individual constant demands but not necessary be the same rate among different 
intervals. Therefore, the optimal batch size equation could be independently applied to each small period.  
4) Setup time is deterministic. 
5) Setup time is an independent variable. In other words, set up time does not depend on what has been made before. 
6) There are no maximum limits on batch size. 
7) There are no minimum limits on batch size. 
8) There are no integrality restrictions. 
9) There are no non-negative restrictions. 

 
2.2 Notations 
Sets 
𝒜𝒜 = Set of all items 
ℛ = Set of items that require setup costs.  
ℛ′= Set of items that do not require setup costs.  
Note ℛ ⋃ ℛ′ ≡ 𝒜𝒜 

 
Coefficients and parameters 
C𝑖𝑖 = Setup cost of producing one batch of item i 
h𝑖𝑖 = Holding cost of the batch of item i in the evaluation   
        period 
𝐷𝐷𝑖𝑖  = Total demand for item i 
𝒟𝒟 = Total demand of all items (𝒟𝒟 = ∑ 𝐷𝐷𝑖𝑖𝑖𝑖∈𝒜𝒜 ) 
𝑝𝑝𝑖𝑖  = Processing time per unit of item i 
𝑠𝑠𝑖𝑖  = Setup time per batch of item i 
𝓢𝓢 = Available setup time 
T = Available machine hours in the evaluation period 
 



A. Ruangkanjanases and N. Vikitset, Int. J. Of Integrated Engineering Vol. 11 No. 5 (2019) p. 211-221 
 
 

 213 

Decision variables 
𝐵𝐵𝑖𝑖  = Batch size of item i 
𝑛𝑛𝑖𝑖 = Total number of batches of item i required to produce Di units.  
Note:  𝑛𝑛𝑖𝑖 = 𝐷𝐷𝑖𝑖

𝐵𝐵𝑖𝑖
  and  𝐵𝐵𝑖𝑖 = 𝐷𝐷𝑖𝑖

𝑛𝑛𝑖𝑖
 

 
3. Proposed Optimal Batch Size Equations 

In this study, two types of objectives for batch sizing are proposed as follows; 
1) The batch size equations that minimizes total inventory cost when associated with only holding cost (a model without 
setup cost). 
2) The batch size equations that minimizes total inventory cost when associated with both holding cost and setup cost. 

The batch size equations for the first model are closed-form equations.  In the second model, the problem is similar 
to the conventional Economic Order Quantity (EOQ) model where the total inventory cost consists of holding cost and 
setup cost. However, the optimal batch size is calculated based on the objective function and subjected to a capacity 
constraint. Although, there is no simple closed-form formula for this variation, a simple line search procedure is used to 
solve for the solution. 

 
3.1 Optimal batch size equation to minimize total cost when associated with only holding cost 
(a model without setup cost) 
 
3.1.1 Explanation of the model 

If the objective is to minimize the total holding cost or finished goods inventory value, the cost function that increases 
as the batch size increases must be included in the objective function. If 𝐵𝐵𝑖𝑖  is the feasible batch size, the term 𝐵𝐵𝑖𝑖

𝐷𝐷𝑖𝑖
  is cycle 

time interval of item i as shown in (1) 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝐵𝐵𝑖𝑖

𝐷𝐷𝑖𝑖
               (1) 

 
It implies the length of time that batch size Bi can supply the demand. The average finished goods inventory cost per 

batch is shown in (10) which is half of batch size times holding cost per CTI. 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝐴𝐴 𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐 𝑝𝑝𝐴𝐴𝐴𝐴 𝑏𝑏𝐴𝐴𝑐𝑐𝑐𝑐ℎ =  1

2
· 𝐵𝐵𝑖𝑖

2·ℎ𝑖𝑖
𝐷𝐷𝑖𝑖

            (2) 
 
Therefore, total inventory cost per time T is number of cycles or number of batches per time T multiplies by the 

average holding cost per batch as shown in (3). 
 
𝐶𝐶𝑜𝑜𝑐𝑐𝐴𝐴𝑜𝑜 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝐴𝐴 𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐 = 1

2
· 𝐵𝐵𝑖𝑖

2·ℎ𝑖𝑖
𝐷𝐷𝑖𝑖

· 𝑛𝑛𝑖𝑖 = 1
2

· 𝐵𝐵𝑖𝑖
2·ℎ𝑖𝑖
𝐷𝐷𝑖𝑖

· 𝐷𝐷𝑖𝑖
𝐵𝐵𝑖𝑖

= 1
2

· 𝐵𝐵𝑖𝑖 · ℎ𝑖𝑖 = 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝑛𝑛𝑖𝑖

             (3) 
 
Instead of using only holding cost, the penalty cost associated with the size of the batch may be used if the objective 

is to minimize finished goods inventory value. The items with high penalty cost will be produce in small batches that 
yield relatively short lead time and low inventory cost. For simplicity, only holding cost is used in this study.  

The objective function and constraint are defined in (4) and (5), respectively. 
 

 𝑀𝑀𝑜𝑜𝑛𝑛 ∑ 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝑛𝑛𝑖𝑖

𝑖𝑖∈𝒜𝒜                                   (4) 
 
 𝑆𝑆𝑆𝑆𝑏𝑏𝑆𝑆𝐴𝐴𝑐𝑐𝑐𝑐 𝑐𝑐𝑜𝑜 ∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖 ≤  𝒮𝒮𝑖𝑖∈𝒜𝒜                      (5) 

 
Since there is only one constraint, this problem is solved by using Lagrangian relaxation technique [15]. The 

Lagrangian equation (L) is defined in (6) which yields λ, the total number of batches of item i (𝑛𝑛𝑖𝑖) and the optimal batch 
size of item i as shown in (7), (8), and (9). 

 
 𝐿𝐿 =  ∑ 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖

2·𝑛𝑛𝑖𝑖
𝑖𝑖∈𝒜𝒜 + 𝜆𝜆 · [(∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜 ) − 𝒮𝒮]            (6) 

 
 𝜆𝜆 = 1

2·𝒮𝒮2 · �∑ �𝐷𝐷𝑖𝑖 · ℎ𝑖𝑖 · 𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜 �
2
                                (7) 
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 𝑛𝑛𝑖𝑖 = 𝒮𝒮
∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖·𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜

· �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
𝑠𝑠𝑖𝑖

           (8) 

 

 𝐵𝐵𝑖𝑖 =  ∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖·𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜
𝒮𝒮

· �
𝐷𝐷𝑖𝑖∙𝑠𝑠𝑖𝑖

ℎ𝑖𝑖
           (9) 

 
The derivation and FOC is illustrated in Appendix 1. The λ value from solving the Lagrangian equation implies the 

impact of overall processing time reduction to total holding cost. The sensitivity analysis is widely used to measure the 
impacts of fluctuations in parameters of a mathematical model or system on the outputs or performance of the system 
[16, 17]. 

The λ in (7) is the dual variable. It can be interpreted as a “shadow price” of the available setup time. For example, 
if the value of λ is 25, it implies that the inventory cost will be reduced by 25 dollars when the available setup time is 
increased by 1 hour. 

This λ is always positive since it is always cheaper to produce in smaller batches, unless there are costs associated 
with number of batches. 
 
3.1.2 Numerical Illustration 
 

To illustrate how to apply equation (8) and (9), an example of scenario is setup. Assume that there are 5 products; 
A, B, C, D, and E, to be produced. Processing time for each unit of A, B, C, D, and E are 0.25, 1.25, 1.8, 0.5, and 2 hours 
respectively. The machine requires 20 hours for a setup before it can produce product A. Setup times for product B, C, 
D, and E are 30, 15, 25, and 20. The annual demands are 258, 1,105, 1,126, 1,130, and 500 units for product A, B, C, D, 
and E respectively. The holding cost per unit per year for each product is also shown in Table 1. 

All data in Table 1 is then be used. Total processing time required to produce all products is calculated as shown. 
(0.25)(258) + (1.25)(1,105) + (1.8)(1,126) + (0.5)(1,130) + (2)(500) = 5,037.55 hours. If the available machine hours in 
a year are 7,500 hours and total processing hours (without setup time) are 5,037.55 hours, the available setup time is 
7,500 – 5037.55 = 2,462.45 hours. Therefore, using 𝓢𝓢 = 2,462.45 in equation (8) and (9), the number of batches (n) and 
batch sizes (B) can be calculated. The total holding cost and the cycle time interval for each product are also summarized 
in Table 2.  

The λ value for this instance is 0.25. This implies that if total processing time has been reduced by 1 hour that is 
equivalent to adding 1 hour to the available setup time, total inventory cost will be reduced by $0.25. 
 
 

Table 1 Production parameters 
Variables Symbol Product 

  
A B C D E 

Processing time 𝑝𝑝𝑖𝑖 0.250 1.250 1.800 0.500 2.000 
per unit (hours) 

      

Setup time 𝑠𝑠𝑖𝑖 20.00 30.00 15.00 25.00 20.00 
per batch (hours) 

      

Annual demand 𝐷𝐷𝑖𝑖 258.0 1105 1126 1130 500 
(units) 

      

Holding Cost h𝑖𝑖 5.40 8.70 8.40 4.90 8.40 
per unit/year ($) 

      

 
 

Table 2 Results of optimal batch sizes that minimize inventory cost for a model with holding cost but without setup 
cost 

Variables Symbol Product 
  

A B C D E 

Number of batches in a year 𝑛𝑛𝑖𝑖 11.79 25.30 35.49 21.03 20.48 

(batches)   
     

Batch size 𝐵𝐵𝑖𝑖 21.87 43.68 31.73 53.73 24.42 
per batch (units)   

     

Total 
holding cost ($) 

 
59.06 190.01 133.27 131.64 102.55 

 
  

     

Cycle time 
 

30.52 14.23 10.14 17.12 17.58 
Interval (days)   

     



A. Ruangkanjanases and N. Vikitset, Int. J. Of Integrated Engineering Vol. 11 No. 5 (2019) p. 211-221 
 
 

 215 

 
3.2 Optimal batch size equations to minimize total cost when associated with both holding cost 
and setup cost 
 
3.2.1 Explanation of the model 
 

The optimal batch size with setup costs is similar to economic order quantity (EOQ) except for the capacity constraint 
is added to the problem. Setup cost is the cost of initializing each batch production such as cleaning chemical, electricity 
used to warm up the machine, or the replacement of non-reusable molds. In addition, setup cost can also be interpreted 
as the ordering cost of raw materials from the supplier if company wants to use “Just-In-Time” (JIT) inventory 
management on that batch production. Theoretically, using JIT will not incur the holding cost for raw material. Raw 
materials will be delivered just before that batch starts. If the company wants to use JIT for all batches, total number of 
orders from the supplier will be the same as total number of batches; therefore, the ordering cost can be considered as 
part of the setup cost. For simplicity in this study, the proposed model does not separate setup cost into ordering cost and 
initializing cost. It will be defined as fixed cost of producing one batch. 

When producing multiple products, some products may require both holding cost and setup cost while some only 
require holding cost. Therefore, the production plan is divided into two sets; (i) the items that incur setup cost and holding 
cost for each batch produced and (ii) the items that incur holding cost but do not incur setup cost for each batch. The 
objective function is to minimize total setup cost and total holding cost subjected to the total setup time spent cannot 
exceed the available setup time. The objective function and capacity constraint are defined (10) and (11), respectively. 
 

𝑀𝑀𝑜𝑜𝑛𝑛 ∑ �1
2

· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
𝑛𝑛𝑖𝑖

+ 𝐶𝐶𝑖𝑖 · 𝑛𝑛𝑖𝑖�𝑖𝑖∈ℛ + ∑ �1
2

· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
𝑛𝑛𝑖𝑖

�𝑖𝑖∈ℛ′        (10) 

 
𝑆𝑆𝑆𝑆𝑏𝑏𝑆𝑆𝐴𝐴𝑐𝑐𝑐𝑐 𝑐𝑐𝑜𝑜 ∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖 ≤  𝒮𝒮𝑖𝑖∈𝐴𝐴         (11) 

 
Like the previous model, Lagrangian relaxation technique is used to solve the problem. The Lagrangian equation of 

this problem is defined in (12). 
 

 𝐿𝐿 =  ∑ �1
2

· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
𝑛𝑛𝑖𝑖

+ 𝐶𝐶𝑖𝑖 · 𝑛𝑛𝑖𝑖�𝑖𝑖∈ℛ + ∑ �1
2

· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
𝑛𝑛𝑖𝑖

�𝑖𝑖∈ℛ′ + 𝜆𝜆 · (∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖 − 𝒮𝒮𝑖𝑖∈𝐴𝐴 )     (12) 
 
First order conditions for minimizing the Lagrangian equation are defined in (13), (14), and (15), respectively. 
 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑛𝑛𝑖𝑖
= − 1

2
· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖

𝑛𝑛𝑖𝑖
2 + 𝐶𝐶𝑖𝑖 + 𝜆𝜆 · 𝑠𝑠𝑖𝑖 = 0           ∀𝑜𝑜 ∈ ℛ        (13) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

= − 1
2

· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
𝑛𝑛𝑖𝑖

2 + 𝜆𝜆 · 𝑠𝑠𝑖𝑖 = 0                    ∀𝑜𝑜 ∈ ℛ′        (14) 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖 − 𝒮𝒮𝑖𝑖∈𝐴𝐴 = 0              (15) 
 
From (13) and (14), 
 

𝑛𝑛𝑖𝑖 = � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

                      ∀𝑜𝑜 ∈ ℛ         (16) 

𝑛𝑛𝑖𝑖 = � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝜕𝜕·𝑠𝑠𝑖𝑖

                               ∀𝑜𝑜 ∈ ℛ′                         (17) 

 
Then, substitute 𝑛𝑛𝑖𝑖 from (16) and (17) to (15). 
 

�∑ � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

+ ∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝜕𝜕·𝑠𝑠𝑖𝑖

𝑖𝑖∈ℛ′𝑖𝑖∈ℛ � · 𝑠𝑠𝑖𝑖 −  𝒮𝒮 = 0               (18) 

 
Solving for λ from the above equation when ℛ≢𝜙𝜙 is quite difficult; therefore, line search procedure is used to evaluate 
the value of λ. If batches of all items incur setup costs and there is no positive value of λ that satisfies the equation, the 
capacity constraint is a non-binding constraint. Therefore, the problem can be solved like an unconstrained problem. That 
is, the first order condition is 𝜕𝜕𝜕𝜕

𝜕𝜕𝑛𝑛𝑖𝑖
= − 1

2
· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖

𝑛𝑛𝑖𝑖
2 + 𝐶𝐶𝑖𝑖 = 0; ∀𝑜𝑜 ∈ 𝐴𝐴; which is equivalent to the classical EOQ. Solving the 

equation for each item yields holding cost associated with its optimal batch size equal to its setup cost. The optimal 
number of batches and the optimal batch size are (19) and (20), respectively. 
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  𝑛𝑛𝑖𝑖 = �𝐷𝐷𝑖𝑖ℎ𝑖𝑖
2·𝐶𝐶𝑖𝑖

          (19) 

 𝐵𝐵𝑖𝑖 = �
2·𝐶𝐶𝑖𝑖·𝐷𝐷𝑖𝑖

ℎ𝑖𝑖
          (20) 

 
      Conversely, if batches of some items do not require setup costs and available setup time is positive, there is a positive 
value of λ that satisfies the equation. The proof of this is shown in Appendix 2. 
 
3.2.2 Numerical Illustration (ℛ ≡ A) 

To illustrate how to apply equation (19) and (20), an example of scenario is setup. Assume that there are 5 products; 
A, B, C, D, and E, to be produced. All products incur both holding cost and setup cost. The annual demands and 
production requirements are given in Table 3. 

 
 

Table 3 The annual demand and production requirements for the model with holding cost and setup cost. 
Variables Symbol Product 

  
A B C D E 

Processing time per 𝑝𝑝𝑖𝑖 1.00 0.90 0.80 0.70 0.60 

unit (hours) 
      

Setup time 𝑠𝑠𝑖𝑖 12.5 15.0 17.5 20.0 22.5 
per batch (hours) 

      

Setup Cost C𝑖𝑖 6.25 7.50 8.75 10.00 11.25 
Per batch ($) 

      

Annual demand 𝐷𝐷𝑖𝑖 1700 1500 1300 1100 900 

(units) 
      

Holding cost h𝑖𝑖 3.00 6.00 9.00 12.00 15.00 
per year ($) 

      

 
Total processing time required to produce all items are 5,400 hours. If there are 7,500 hours available in a year, the 

factory will have 2,100 hours available for total setup time.  
Since all products incur both holding cost and setup cost the initial value of λ is set to zero because it can be checked 

whether the constraint is binding or not. The line search procedure then be used to solve the problem. This line search 
procedure is based on the first order approximation. We estimate the first order derivative by perturbing the value of λ in 
(18). Then we approximate the new value of λ that makes (18) zero from its first derivative. Equation (18) will converge 
to zero in finite steps since its limit approaches zero when λ approaches infinity. 
 
Case:ℛ ≡ 𝐴𝐴 (all products incur both holding cost and setup cost) 
 
Let 

𝑍𝑍[𝜆𝜆(𝑘𝑘)] = �∑ � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)𝑖𝑖∈ℛ � · 𝑠𝑠𝑖𝑖 −  𝒮𝒮       (21) 

 
𝑌𝑌 = 𝑍𝑍[𝜕𝜕(𝑘𝑘+1)]−𝑍𝑍[𝜕𝜕(𝑘𝑘)]

𝜕𝜕(𝑘𝑘+1)−𝜕𝜕(𝑘𝑘)
         (22) 

 
Where  k = number of iterations 
 Y = rate of change of function Z respect to the change in λ value. 
 
Initialization step: 
 

1. Set λ(0) = 0 and 𝑍𝑍(0) = ∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝐶𝐶𝑖𝑖

· 𝑠𝑠𝑖𝑖
𝑚𝑚
𝑖𝑖=1 −  𝒮𝒮 

2. If Z ≤ 0, the constraint is nonbinding. The optimal number of batches and batch size are 𝑛𝑛𝑖𝑖 = �𝐷𝐷𝑖𝑖ℎ𝑖𝑖
2·𝐶𝐶𝑖𝑖

and 𝐵𝐵𝑖𝑖 = 𝐷𝐷𝑖𝑖
𝑛𝑛𝑖𝑖

, 

respectively.Otherwise, set k = 1 and λ(k) = small positive number. Go to main step. 

Main step: 
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1. Evaluate function Z(k) and Y. 
2. If Z(k) < 0, set λ(1) to a smaller number and repeat the initialization steps. 
3. If Z(k) ≤ ε; where, ε = small positive number close to zero, then stop. The optimal λ = λ(k). 
4. k = k + 1 
5. 𝜆𝜆(𝑘𝑘) =  𝜆𝜆(𝑘𝑘 − 1) − 𝑍𝑍(𝑘𝑘−1)

𝑌𝑌(𝑘𝑘−1)
 

6. Repeat main steps. 

The optimal number of batches is 
 

𝑛𝑛𝑖𝑖 = � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

;  ∀𝑜𝑜 ∈ 𝐴𝐴            (23) 

 
And the optimal batch size is 
 

 𝐵𝐵𝑖𝑖 = 𝐷𝐷𝑖𝑖
𝑛𝑛𝑖𝑖

;  ∀𝑜𝑜 ∈ 𝐴𝐴.           (24) 
 

The line search procedure is summarized in Table 4. The value of function Z(λ = 0) > 0 indicates that the capacity 
constraint of the original problem is binding constraint. In other words, all available setup time will be used and there 
exists a positive value of optimal λ; for this instant, the optimal λ = 0.017943. Using the optimal batch size equation in 
(24) and λ = 0.017943, the optimal batch sizes and other parameters then be calculated and shown in Table 5. 
 
 

Table 4 Line search procedure 
Iteration λ Z(λ) Y 

Initialization 0 37.34867 - 

1 0.01 16.29054 -2,105.81 

2 0.017736 0.42028 -2,051.49 

3 0.017941 0.00484 -2,027.86 

4 0.017943 0   

 
 
Table 5 Results of optimal batch sizes that minimize inventory cost for a model with holding cost and setup cost  

Variables 
 

Symbol                                                                                                 Product 
  

A B C D E 

Number of 
batches in a 

year 

𝑛𝑛𝑖𝑖 19.85 24.07 25.40 25.24 24.07 

(batches) 
      

Batch size 𝐵𝐵𝑖𝑖 85.66 62.33 51.17 43.58 37.40 
per batch 

(units) 

      

Total 
holding cost 

 
128.49 186.98 230.27 261.47 280.47 

($) 
      

Total setup cost 
 

124.04 180.50 222.29 252.42 270.75 
($) 

      

Cycle time 
 

18.14 14.96 14.17 14.26 14.96 
Interval (days) 

      

 
4. Application and Results 

When applying the closed-form batch size equations in real situations, the problem occurs when producing multiple 
products and some products incur both holding cost and set up cost while some products incur only holding cost (ℛ´ ≢ 
𝜙𝜙). This situation makes the problem more complicated. An example of the case is shown in Table 6. Product A only 
incurs holding cost but does not incur setup cost while other products incur both holding cost and setup cost. 

The line search procedure is performed slightly different from the previous example. We cannot set λ to zero because 
the denominator of the second term in (18) will be zero. Therefore, the initial value of λ is set to a small positive number.  
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This line search procedure is based on the first order approximation. We estimate the first order derivative by 
perturbing the value of λ in (18). Then we approximate the new value of λ that makes (18) zero from its first derivative. 
Equation (18) will converge to zero in finite steps since its limit approaches zero when λ approaches infinity. 
 

 
Table 6 The annual demand and production requirements when some products incur only holding cost while some 

incurs both holding cost and setup cost 
Variables 

 
Symbol                                                                                      Product 

  
A B C D E 

Processing time 
per 

𝑝𝑝𝑖𝑖 1.00 0.90 0.80 0.70 0.60 

unit (hours) 
      

Setup time 𝑠𝑠𝑖𝑖 12.5 15.0 17.5 20.0 22.5 
per batch (hours) 

      

Setup Cost C𝑖𝑖 - 7.50 8.75 10.00 11.25 
Per batch ($) 

      

Annual demand 𝐷𝐷𝑖𝑖 1700 1500 1300 1100 900 

(units) 
      

Holding cost h𝑖𝑖 3.00 6.00 9.00 12.00 15.00 
per year ($) 

      

 
 
Case:ℛ′ ≢ ∅ 
Let 

𝑍𝑍[𝜆𝜆(𝑘𝑘) �∑ � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝜕𝜕·𝑠𝑠𝑖𝑖

𝑖𝑖∈ℛ′𝑖𝑖∈ℛ � · 𝑠𝑠𝑖𝑖 − 𝒮𝒮                 (25) 

 
 

𝑌𝑌 = 𝑍𝑍[𝜕𝜕(𝑘𝑘+1)]−𝑍𝑍[𝜕𝜕(𝑘𝑘)]
𝜕𝜕(𝑘𝑘+1)−𝜕𝜕(𝑘𝑘)

              (26) 

 
Where  k = number of iterations 
 Y = rate of change of function Z with respect to the change in λ value. 
 
Initialization step: 
 

1. Set λ(0) = small positive number and λ(1) = small positive number slightly larger than λ(0) 
2. Set k = 1 and go to the main step. 

Main step: 
 

1. Evaluate function Z(k) and Y. 
2. If Z(k) < 0, repeat the initialization steps and set λ(0) to a smaller number. 
3. If Z(k) ≤ ε; where, ε = small positive number close to zero, then stop. The optimal λ = λ(k). 
4. k = k + 1 
5. 𝜆𝜆(𝑘𝑘) =  𝜆𝜆(𝑘𝑘 − 1) − 𝑍𝑍(𝑘𝑘−1)

𝑌𝑌(𝑘𝑘−1)
 

6. Repeat main step. 

The optimal number of batches is 

𝑛𝑛𝑖𝑖 = � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

; ∀𝑜𝑜 ∈ ℛ           (27) 

 
And 
 

𝑛𝑛𝑖𝑖 = � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝜕𝜕·𝑠𝑠𝑖𝑖

; ∀𝑜𝑜 ∈ ℛ′.           (28) 

 
The optimal batch size is 
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 𝐵𝐵𝑖𝑖 = 𝐷𝐷𝑖𝑖

𝑛𝑛𝑖𝑖
;  ∀𝑜𝑜 ∈ 𝐴𝐴            (29) 

 
Therefore, the initial value of λ is set to 0.001. Using line search procedure, λ converges to the optimal value in 12 

iterations as shown in Table 7. 
The optimal solutions then be calculated as shown in Table 8. The numbers may not be integer but they provide the 

lower bound of the parameters. 
 
Table 7 Line search procedure (case: ℛ´ ≢ 𝜙𝜙) 

Iteration λ Z(λ) Y 

Initialization 0.001 5,428.77 - 

1 0.01 1,551.65 -430,791.81 

2 0.013602 1,290.56 -72,486.56 

3 0.031406 735.75437 -31,161.69 

4 0.055017 450.16588 -12,095.64 

5 0.092234 219.74686 -6,191.20 

6 0.127728 81.758896 -3,887.70 

7 0.148758 17.612784 -3,050.20 

8 0.154532 1.566885 -2,778.85 

9 0.155096 0.031417 -2,723.13 

10 0.155107 0.000057 -2,718.22 

11 0.155107 0 -2,718.12 

12 0.155107 0   

 
 

Table 8 Results of optimal batch sizes that minimize inventory cost (case: ℛ´ ≢ 𝜙𝜙) 
Variables 

 
Symbol                                                                                          Product 

  
A B C D E 

Number of 
batches in a 

year 

𝑛𝑛𝑖𝑖 36.27 21.40 22.59 22.44 21.40 

(batches) 
      

Batch size 𝐵𝐵𝑖𝑖 46.88 70.09 57.55 49.01 42.06 
per batch 
(hours) 

      

Total 
holding cost 

 
70.31 210.28 258.97 294.06 315.43 

($) 
      

Total setup cost 
 

- 160.50 197.66 224.44 240.74 
($) 

      

Cycle time 
 

9.93 16.82 15.94 16.04 16.82 
Interval (days) 

      

  
5. Conclusion 

The closed-form optimal batch size equations are proposed to minimize inventory cost of 2 models. The first model 
is illustrated when the inventory cost is associated with holding cost but without setup cost. The second model is 
illustrated when inventory cost is associated with both holding cost and setup cost. The line search procedure are applied 
to solve for the optimal solutions in the second model. Besides the optimal batch size calculation, the advantage of this 
proposed closed-form equation is that the value of λ can also be solved for sensitivity analysis. The λ is interpreted as 
“shadow price” of the available setup time. It shows the amount of inventory cost saving when the available setup time 
is increased by 1 hour. 

This approach is user friendlier compared to those techniques most researchers had proposed in the past. Application 
of the closed-form equation is provided with various parameters applied to different products. The results show that the 
proposed closed-form equations approach performs well and verifies the effectiveness of the approach. 
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However, this research is just a starting point some of the questions are still remained. The optimal batch size with 
a different objective would change the solution. Since the optimal solutions from this approach may not be integer, future 
research could be involved with mixed integer programming. 
 
Appendix 
Appendix 1: Solving Lagrangian equation 
 

𝐿𝐿 =  ∑ 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝑛𝑛𝑖𝑖

𝑖𝑖∈𝒜𝒜 + 𝜆𝜆 · [(∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜 ) − 𝒮𝒮]      
          

First order conditions; 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

= − 1
2

· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
𝑛𝑛𝑖𝑖

2 + 𝜆𝜆 · 𝑠𝑠𝑖𝑖 = 0 ; 𝑓𝑓𝑜𝑜𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 𝑜𝑜𝑐𝑐𝐴𝐴𝑖𝑖𝑠𝑠   

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜 ) − 𝒮𝒮 = 0  
 
Rearrange the first equation of FOC, 

𝑛𝑛𝑖𝑖
2 =

1
2

·
𝐷𝐷𝑖𝑖 · ℎ𝑖𝑖

𝜆𝜆 · 𝑠𝑠𝑖𝑖
 

Since n ≥ 0, substitute 𝑛𝑛𝑖𝑖 = �1
2

· 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
𝜕𝜕·𝑠𝑠𝑖𝑖

 in the second equation of FOC and solve for λ; 

 
𝜆𝜆 = 1

2·𝒮𝒮2 · �∑ �𝐷𝐷𝑖𝑖 · ℎ𝑖𝑖 · 𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜 �
2
  

 
Similar to the optimal λ in Appendix 1, optimal λ is always positive if at least one item requires holding cost and setup 
time. This makes capacity constraint ∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖 ≤  𝒮𝒮𝑖𝑖∈𝒜𝒜  binding constraint of  ∑ 𝑛𝑛𝑖𝑖 · 𝑠𝑠𝑖𝑖 =  𝒮𝒮𝑖𝑖∈𝒜𝒜 . 
Substitute 𝜆𝜆 = 1

2·𝒮𝒮2 · �∑ �𝐷𝐷𝑖𝑖 · ℎ𝑖𝑖 · 𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜 �
2
 in the first equation of FOC and solve for ni, 

 

𝑛𝑛𝑖𝑖 =
𝒮𝒮

∑ �𝐷𝐷𝑖𝑖 · ℎ𝑖𝑖 · 𝑠𝑠𝑖𝑖𝑖𝑖∈𝒜𝒜
· �

𝐷𝐷𝑖𝑖 · ℎ𝑖𝑖

𝑠𝑠𝑖𝑖
 

And, minimum batch size for item i is𝐵𝐵𝑖𝑖 =  𝐷𝐷𝑖𝑖
𝑛𝑛𝑖𝑖

. 
 
Appendix 2: Proof 
 

If ℛ′ ≢ ∅ 𝐴𝐴𝑛𝑛𝑜𝑜 𝒮𝒮 > 0, there exists a positive value of λ that satisfies equation �∑ � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

+ ∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝜕𝜕·𝑠𝑠𝑖𝑖

𝑖𝑖∈ℛ′𝑖𝑖∈ℛ � · 𝑠𝑠𝑖𝑖 −

 𝒮𝒮 = 0 

lim
𝜕𝜕→0+

∑ � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

⟶ ∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖  
2·𝐶𝐶𝑖𝑖

𝑖𝑖∈ℛ𝑖𝑖∈ℛ     

lim
𝜕𝜕→0+

∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝜕𝜕·𝑠𝑠𝑖𝑖

𝑖𝑖∈ℛ′ ⟶ ∞   

lim
𝜕𝜕→∞

∑ � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

⟶ 0𝑖𝑖∈ℛ    

 

Therefore, the range of      �∑ � 𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·(𝐶𝐶𝑖𝑖+𝜕𝜕·𝑠𝑠𝑖𝑖)

+ ∑ �𝐷𝐷𝑖𝑖·ℎ𝑖𝑖
2·𝜕𝜕·𝑠𝑠𝑖𝑖

𝑖𝑖∈ℛ′𝑖𝑖∈ℛ � = (0, ∞). 
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