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1. Introduction

Actuators are used in machineries in different application to facilitate the movement where human either is not

capable of or requires great effort to perform. There are many types of actuators such as pneumatic, hydraulic and 

electrical actuators. Type of actuator to use depends on the installation space, cost, and types of application. Pneumatic 

and hydraulic actuators usually consist of a piston housed in a hollow cylinder [1]. Therefore, they are also commonly 

referred to as cylinder actuator.  

Pneumatic cylinder actuator is widely used in areas where safety, cost and pollution are a concern such as chemical 

industries and medical applications [2]. There is also another type of pneumatic actuator where pressured air is used to 

control the contraction and relaxation of an artificial muscle - internal bladder coated by a braided mesh shell - or 

otherwise known as McKibben muscle [3]. The McKibben actuator has been gaining attention in robotic community 

because of its low weight and high compliant characteristics [4]. For example, A. A. M. Faudzi discussed how those 
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characteristics has helped in the development of a Giacometti robot utilizing the muscle to achieve a maximum walking 

speed of 0.05 m/s [5]. Besides that, a soft amphibious robot – a robot which could walk on sand and in water, and on flat 

or inclined plane – and soft manipulator – snake-like body structure with pick–and-place ability – have also been 

developed using the actuator [5][6].  

It is argued that the McKibben muscle is different from the fluidic - pneumatic or hydraulic - cylinder actuator in an 

open-loop system. Unlike the McKibben actuator which is stable in its position, the fluidic cylinder is unstable in its 

position and in its velocity [8]. Because of this advantage, it is interesting to study the effect of replacing direct fluidic 

source with McKibben muscle in a cylinder actuator system. 

1.1 Cylinder Actuator Control 

There are many control strategies employed to control the position of a pneumatic cylinder actuator, for example, 

sliding mode control [9], pulse width modulation [10], feedback-fuzzy hybrid [11] and predictive functional controller 

[12]. However, they share the same problem: it is difficult to achieve an accurate position control [13]. This is due to the 

compressibility of air. Therefore, most of its application is focused on single – initial and final - position control. 

1.2 The Present Research 

Using McKibben muscle, it is possible to design an accurate multiple position actuator [14] [15]. Previous research 

shows that the maximum contraction that can be achieved by the muscle is 20% when supplied by 0.3 MPa pressure [16]. 

This represents a problem because the actuator needs to be much longer than the distance it needs to cover. For example, 

to move a load for 2 cm, the muscle needs to be at least 10 cm. This would normally mean a long housing to fit the muscle 

and is therefore impractical. To solve this problem, a pulley system is proposed in this paper. This would allow a long 

muscle to be slotted in a tight space.  

The remainder of the paper is organized as follows. In section 2, the cylinder actuator structure and specification 

including 3D CAD design and McKibben muscle description are presented. Section 3 discusses the static analysis of the 

CAD design and contraction and displacement result of the actuator. The paper concludes with a brief evaluation and 

suggestions for future work in section 4. 

2. Methodology

2.1 Experimental Design 

A prototype of cylinder actuator was designed using Solidworks® (Figure 1) and fabricated using 3D printer. The 

design took into consideration the maximum length the piston should move, the muscle’s length, and the placement of 

the spring and its hooks. The spring was chosen based on its expansion length and having a spring constant such that it 

would be able to return the piston to its original location after being actuated. There was ample gap between the actuator 

and its track so that the actuator could move freely while being guided by the track. As the prototype’s piston was 

lightweight, a thin muscle should be enough to pull it. However, our prototype used two muscles to simulate a real-life 

application. The muscles’ individual length was long enough such that when they fully contracted, the piston would move 

to its final position. 

Fig. 1 - Solidworks drawing of the prototype 
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2.2 Design Analysis 

It is important to design the prototype right before it goes to production to avoid unnecessary cost. In one well-known 

study, it was found that 80% of unnecessary cost could be avoided by design changes compared to just 20% by production 

engineering changes [17]. One of the most commonly used methods to evaluate the CAD design is by doing linear static 

analysis. Its purpose is to simulate what happens when the design is subjected to a particular load. This would enable the 

design to be improved, for example by removing material where it is not being utilized and strengthen areas with high 

stress [18]. Therefore, a static analysis using Solidworks Simulation has been carried out. Two simulations were 

performed; horizontal force and vertical force. Physical and mechanical properties of the material used in the simulation 

are shown in Table 1. 

 

Table 1 Properties of the material used in the simulation 
 

Property Value 

Material Steel 

Elastic Modulus 

200000000000 

N/m2 

Poisson's Ratio 0.29 

Shear Modulus 77000000000 N/m2 

Mass Density 7900 kg/m3 

Tensile Strength 420507000 N/m2 

Yield Strength 351571000 N/m2 

Thermal Expansion Coefficient 0.000015 K-1 

Thermal Conductivity 47 W/(mK) 

Specific Heat 420 J/(kgK) 

 

 

2.3 Apparatus 

Two McKibben muscles with outer diameter of 1.3 mm were used. Each of them was attached to a tube that 

connected them to the compressor. The attachment process was done carefully to avoid any air leakage. PTFE tape, 

Loctite 401 glue and a stick with fine tip were used. The tape was applied on the muscles’ surface so that inserting them 

into the tube was easier.  The glue was applied inside the tube, around the tape and through the tube-muscles gap using 

the stick. The stick had fine tip so that the glue spread properly inside the tube and sipped into the gap. Using thick tip 

would risk air leakage, because the glue might not be applied properly. 

An Agilent DC power supply was used to provide 24V supply to pressure sensor. A compressor was used to supply 

the air pressure. It was connected to an air filter and a pressure regulator. The experiment setup is shown in Figure 2. 

 

2.4 McKibben Muscles 

A considerable amount of literature has been published on McKibben muscles’ design and specifications. These 

studies investigated the design of various outer diameters, ranging from 1.3 mm up to 40 mm [19] and various braided 

structures [20]. In this study, thin soft McKibben muscles with outer diameter of 1.3 mm which has been developed 

previously were used. The braided angle was 18˚ - less than contraction cutoff angle of 55˚ - and therefore would contract 

when pressure is applied [21].  
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Fig. 2 - Experiment setup 

2.5 Procedures 

Three experiments were conducted. The first one was to measure the contraction of the muscle when pressure was 

varied. The second was to measure the displacement of the piston when actuated by the muscles. The third was to measure 

the free-load contraction. 

For the first experiment, the muscle’s end that was connected to the pressure supply was fixed while the other end 

that was sealed was let to move freely (Figure 3). Pressure sensor was connected to the regulator to measure the pressure 

coming into the muscle. Pressure was increased incrementally using regulator. The reading on the pressure sensor and 

the muscle’s length were recorded. The experiment was repeated until 0.4 MPa. 

For the second experiment, to conduct the experiment easier, the piston was separately connected to the actuators. 

However, because the piston was lightweight, a guide was built around it so that it would not be off-track when pulled 

(Figure 4). The procedures then followed the first experiment. For the third experiment, the piston was removed (Figure 

5) and similar procedures from the first experiment were repeated. The difference between amount of contraction-

without-load and amount of the displacement was observed.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - First experiment 
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Fig. 4 - Second experiment 

 

 

 

 

 

 

 

Fig. 5 - Third experiment 

3.0 Results and Discussion 

3.1 Solidworks Simulation 

A static analysis using Solidworks Simulation has been done to simulate the performance of the design under 

expected force. The results are shown in Table 2 and Table 3.  

 

Table 2 Displacement result of Solidworks static study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Stress result of Solidworks static study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A.A. Mohd Faudzi et al., Int. J. of Integrated Engineering Vol. 11 No. 4 (2019) p. 175-182 

 

 

 180 

Table 2 shows the displacement result. Horizontal forces show more areas with high displacement compared to 

vertical forces. However, both are within the limit with maximum displacement of 1.912 x 10-4 mm (horizontal) and 3.06 

x 10-5 mm (vertical) respectively. On the other hand, stress analysis shows more area of high stress at vertical. However, 

they are both still within limit. Based on the result, it can be shown that the design is able to withstand the requirements 

set earlier.  

 

3.1 Contraction and Displacement 

Figure 6 shows the contraction of the McKibben muscle versus applied pressure. The muscle’s length is 16.8 cm. 

The maximum contraction is 3.1 cm, which gives the maximum contraction ratio of about 0.18. The ratio is about the 

same as previous literatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 - Contraction (cm) vs air pressure (MPa) 

 

Figure 7 shows the displacement of the piston and the contraction of the two muscles-without-load versus applied 

pressure. From the experiment, the higher the contraction, the more displacement the piston underwent. This then 

translated to lower muscle contraction and thus lower piston displacement. This is because higher contraction happens at 

higher pressure and the higher the pressure, the more static force is produced (Figure 8). However, the displacement and 

the contraction values are not the same. This is to be expected because in our open-loop control system, additional force 

required to pull the piston was not compensated with an increased pressure because there was no feedback involved. To 

make the displacement equals to the contraction, closed-loop system as in Figure 9 should be used.  

Figure 6 also shows that the maximum displacement is much lower than the maximum contraction. In our 

experiment, we limited the maximum pressure used to be 4 bar. This is because we were worried that applying more 

pressure would damage the 1.3 mm muscle. However, to allow for higher maximum displacement, larger-diameter 

muscle should be used so that higher maximum pressure and thus higher static force could be applied [22]. Besides that, 

using longer muscle could also increase the maximum displacement. Our results also indicate that McKibben muscle is 

able to position control a cylinder actuator by varying the applied pressure. Therefore, by replacing direct fluidic source 

with McKibben muscle in a cylinder actuator system, multiple position control could be achieved. 

 

 

 

 

 

 

 

 

 

Fig. 7 - Piston displacement (cm) and muscle contraction (cm) versus air pressure (MPa) 
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Fig. 8 - Typical static force of a McKibben muscle [4] 

 

 

 

 

 

Fig. 9 - A closed-loop control system to compensate additional force required with increased load 

 

4.0 Conclusion 

This study sets out to determine the performance of a single acting cylinder actuator employing McKibben muscles 

as its actuator in place of conventionally-used compressed air. To achieve this, a 3D-printed prototype has been 

developed. The prototype’s CAD design was evaluated using Solidworks static analysis tool to look for any design 

improvement. The prototype was then tested using open-loop control. Results showed that the piston position can be 

controlled to a maximum displacement of 2 cm. These findings suggest that in general, using McKibben muscle allows 

multiple position control in a cylinder actuator system. An implication of this is the possibility of using McKibben 

actuator for fine cylinder actuator position control. 
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