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Abstract: Shipping of goods from one place to another in industries is commonly achieved with crane system. But 

such movement of the system results in undesirable sway which degrades the accuracy and safety. In this paper, 

hybrid control schemes of the model-dependent and non-model dependent filters and controllers are proposed for 

precise trolley position control and sway suppression of the crane systems. Output based filter (OBF) was designed 

using the output of the system, so it does not depend on the model of the system while time delay filters (TDF) were 

designed using the model parameters (i.e. natural frequency and damping ratio), in which Zero Vibration (ZV) and 

zero vibration derivative (ZVD) were considered. These depend on the model of the system and these filters are for 

sway suppression of the payload. In addition, proportional integral derivative (PID) controller and higher order 

differential feedback controller (HODFC) were incorporated with each filter separately for precise trolley position 

control. Based on the analysis of the simulation results, it was observed that a precise tracking of the payload was 

achieved with percentage of the sway reduction of the hybrid controllers as follows; PID-ZV=76%, PID-ZVD=88%, 

PID-OBF=96% HODFC-ZV=77%, HODFC-ZVD=79% and HODFC-OBF=95%. The hybrid controllers shown 

precise tracking and higher sway reduction control. But HODFC-OBF is a model-free control schemes, thus more 

robust. 
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1. Introduction 

The transportation of payloads from one point to another can be achieved by the use of a machine known as a crane 

system, as shown in Fig. 1. The application of this system can be found in transportation as well as construction industries. 

In order to increase the production rate of these industries, it has then become necessary for crane maneuvering to be 

carried out as fast as possible with a minimum payload sway [1], [2]. 

The undesirable motion of the crane, such as swinging, twisting and load bouncing can be yielded due to the 

maneuvering of the payload by hoisting. These undesirable movements have negative effects on the production rate, 

crane safety, crane operational efficiency and precision in the position of the payload [3]. For many years, research work 

in suspended load oscillation control, such as the two-dimensional crane, has increased the curiosity of researchers in that 

area. 

http://penerbit.uthm.edu.my/ojs/index.php/ijie
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Fig. 1 - A typical 2D gantry crane system [4] 

 

A number of researchers classified the flexible structures oscillation control into feedback and feed-forward control 

strategies. The crane system oscillation control is therefore divided into two categories via feedback and feed-forward 

control techniques. The feedback control technique can be employed in instances where high precision is needed in the 

position of the load as well as in the estimation of the system, which tends to minimize the influence of undesirable 

oscillation. On the other hand, the feed-forward control technique is used when there is a need to adjust the input 

command signal so as to get rid of the system oscillation [5]. The combination of feedback and feed-forward control 

schemes can lead to the achievement of better system performance with negligible vibration. Also, the use of feed-forward 

control can help in easing the design of feedback control system [6]. 

More so, an effort has been made by many researchers to suppress the effect of system vibration for the reliability, 

safety and efficiency of rotary crane systems. Several open and closed-loop control schemes, such as the proportional 

integral derivative (PID) control [7-9], optimal control [10], [11] and artificial intelligence (AI) [12], have been 

highlighted. The horizontal boom motion control of rotary crane has been proposed in [13] using open-loop control 

technique. In [14], the feed-forward input shaping and low pass filtering (LPF) performances were investigated. However, 

the study showed that for erroneous natural frequency, LPF is not as robust as input shaping. According to [3], the 

practical application of input shaping scheme has been used by a number of researchers in different flexible structures 

after initially proposed by Singer and Searing. As induced oscillation in a flexible robot manipulator was suppressed by 

the application of the command shaping technique [15], it was discovered that zero vibratory response can be attained 

using this method. In [5] however, the use of flexible beams clarified that analysis of the sensitivity of ZV, ZVD and 

ZVDD as shapers to natural frequency errors can be performed while [16-18], showed how input shaping can be used in 

crane systems of other forms. Even though the combination of feedback and open-loop control can yield an efficient 

control system [20], external disturbances are likely going to affect open-loop controllers [19]. 

The straight transfer transformation (STT) can be used as a method of controlling rotary crane systems [21]. In a 

condition where parameters are not well represented or models with some certain level of inaccuracies are used, the 

adaptive sliding mode control (SMC) and the partial feedback linearization (PFL) techniques can be applied when dealing 

with rotary crane sway reduction [22]. Despite the ease associated with the design and implementation of the partial 

feedback linearization technique, changes in parameters such as the cable diameter and length have a significant influence 

on the technique whereas the sliding mode controller has found application in other cranes due to its robustness [23-25]. 

According to [26], excessive energy is given off in the sliding mode control technique which of course result in system 

failure. 

Open-loop control schemes are cheap and easy to implement since no sensors required. However, they are sensitive 

towards external disturbances which may result in payload oscillations. Although closed-loop techniques are less 

sensitive to disturbances and parameter variations, they are slow due to the input delay in the feedback loop, hence less 

efficient. Therefore, the trade-off between safety (fewer payload oscillations) and efficiency (fast performance) of the 

crane’s operations is a challenging problem. In this paper, a comparative analysis of hybrid controllers was presented. 

Model dependent time delay filter and non-model dependent output based filter were incorporated with non-model 

dependent HODFC controller. Then, these filters were also combined with PID controllers so as to validate the 

performances of the hybrid HODFC for precise tracking of the desired position of the trolley as well as suppressing the 

oscillations of payload. 

The paper is organized as follows: Section one is the introduction. Model description of the system is presented in 

section two, whereas Section three presents the proposed controller design. Section four discusses the simulation results 

and in Section six, the conclusion is made. 
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2. Model Dynamics 

Crane system is a machine which is used to load and offload goods as well as transport them from one point to 

another. It is mostly used for heavy machine installations and finds application in a nuclear plant, warehouse, seaport and 

construction industries etc. In this work, a laboratory-scale 2D crane system was used and its schematic diagram is 

represented in Fig. 2 [27]. 

As shown, the length of the cable, the angle of sway, the horizontal position of a trolley, the mass of trolley and the 

payload mass are respectively represented by l, θ, x, M and m. The Lagrange formulation was used in the derivation of 

dynamical equations based on the assumptions that the masses of the trolley and payload are point masses that move in 

the two-dimensional, x-y plane and that the tension that may cause the cable elongate is negligible. Thus, the following 

set of nonlinear equations describes the dynamics of the gantry crane system [28], as shown in Eq. (1); 
 

Fx  M  m

l  2l  x cos  g sin  0 

 

(1) 
 

(2) 
 

In order to design controller, there is the need to linearize the nonlinear equations. The linearization is achieved using 

the assumption that θ is very small (i.e. θ ≈ 0, sin θ ≈ θ and cos θ ≈ 1). Therefore, the linearized equations are shown in 

Eq. (2); 
 

Fx  M  m
(3) 

 

(4) 

 
Thus, the linearized model of Eq. (3) and Eq. (4) can be written in a state-space form of Eq. (5) as shown in Eq. (6), 

where A is the system matrix, B is the input matrix, C is the output matrix with x and as the output parameters under 

consideration. Also, the constant parameters of the system are illustrated in Table 1. 
 

 

       
   (5) 

 

 

 

 

 

   (6) 
 

 

 

Fig. 2 - schematic diagram of the gantry crane system 

x  ml  cos  2 
sin  2ml cos  ml sin 

x  ml

l  x  g  0 
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1  2 

Command 

Time 

  e 

 
 

Table 1 - System parameters 
 

Parameter Value /Unit 

Mass of payload (m) 0.75 kg 

Mass of trolley (M) 3 kg 

Length of the cable (l) 0.75 m 

Acceleration due to gravity (g) 9.81 ms-2
 

 

3. Controllers Design 

In this section, zero vibration (ZV) and zero vibration derivative (ZVD) filters and output-based filter (OBF), were 

designed and then incorporated with proportional integral derivative (PID) controller and higher order differential 

feedback controller (HODFC) separately for sway suppression and trolley position control of the crane system. 

 

3.1 Time delay input shaping 

The convolution process of a sequence of impulses with the reference input signal leads to the production of the time 

delay filters. Also, the damping ratios and natural frequency of the system were used to generate the time instants as well 

as the amplitudes of the impulse signals. Figure 3 shows the process of shaping the input signal. It consists of two impulses 

(ZV). Also, the system algorithm affirmation was achieved by considering a second-order response of a crane system as 

an under-damped system of the format in [29-32]. The open-loop transfer function of the system can be shown in Eq. (7), 

with natural frequency (ω) and damping ratio (ζ). Alternatively, Eq. (7) can be expressed in the time domain as shown in 

Eq. (8) [30]; 
 

 

G(s) 
2 

 

 

s2  2s  2
 

 
(7) 

y(t)  
A



1  2 


 (t t0 ) 

 
sin (t  t0 ) 


(8) 

 

Thus, with the amplitude and time instant of the impulse designated by A and t0 respectively. However, applying 

superposition theorem on Eq. (8) leads to Eq. (9). Similarly, the amplitude of the residual vibration can be determined 

from trigonometric function as shown in Eq. (10); 

 

 
 

                  (9)  

 




 Bi sin t  i   Asin(t  ) 
i1 

(10) 
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Fig. 3 - Process of shaping the input 
 

Where 

n 
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

 

 

 
(11) 

 

By equating terms in Equations (9) and (10), Equation (12) is obtained as; 

 
 

         (12) 

The amplitude of residual oscillation can be obtained through the evaluation of Eq. (11) taken at the time of final 

impulse, t = tn. By combining (11) and (12) and factorizing the constant part of the coefficients gives Equation (13);



          

 

        (13)

Where 

 

        (14) 

 

 

        (15) 

The amplitude of the residual oscillation for unity magnitude at t = 0 can be determined using Eq. (16) while the 

percentage residual vibration can be determined from dividing Eq. (13) by Eq. (16) as shown in Eq. (17); 

  

 

      

    

         (16) 

 

 
 

 

 

 

 

          (17) 

 

To obtain ZV, the values of R1 and R2 are set to zero after the final impulse, which serves as the constraint of ZV 

while the summation of the amplitudes of the shaper to the impulse is taken as unity. The constraints of summation are 

obtained as shown in Eq. (18); 

 

                                                     (18) 

 

The By setting the time instant of the first impulse to zero (t1 = 0) and using ZV constraints leads to the ZV parameters 

as in Eq. (19); 
 


            (19) 

           

                                               
Where 
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           (21) 
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𝑦𝑟 
 

 
 
 
 
 
 

Fig. 4 - block diagram of PID-ZV/ZVD controllers 

 

For the improvement in the frequency error robustness, the derivatives of R1 and R2 are taken as zero. This can be 

shown in Eq. (22); 
 

i R 
  1  0 
i

 

and 
i 
R 


i
 

(22) 

However, the parameters of the three impulse ZVD shapers can be obtained by solving Equations (13), (16) and 

(18), which are the constraints equations. The result is shown in Eq. (23); 

 
 

(23) 

 

 

Thus, the general representation of the ZV and ZVD shapers for implementation on the system with PID controller 

can be shown in the block diagram of Fig. 4, while the corresponding values of their parameters are shown in Table 2. 
 

Table 2 – Parameters of shapers 
 

Shaper ZV ZVD 

A1 0.5292 0.2801 

A2 0.4708 0.4983 

A3 - 0.2216 

t1 (sec) 0 0 

t2 (sec) 0.7889 0.7889 

t3 (sec) - 1.5778 

 

3.2 Out-Based Filter 

To achieve the output-based input shaping filter (OBF) design of the plant, it is necessary to obtain the reference 

system design as shown in Eq. (24); 

 

 (24)

 

Where the system bandwidth and system order are denoted by c and n respectively and are dependent upon the 

response time of the system. Next is the decomposition of the output of the target system, y(t) as shown in Eq. (25) and 

Fig. 5, with the ith component of y(t) and its coefficient represented by ai and yi(t) respectively; 

 
 
 

 (25) 

From Fig. 5, the target system is denoted by G(s) of Eq. (26), where i = 0, 1, 2…, n is the component of the target 

filter. The cost function in Eq. (27) was used in the minimization of the difference between responses of the target system 

y(t) and that of the unit step of the reference system yr(t). 

𝑦(𝑡) 
+ 
− 

Crane 

System 

PID 

Controller 

ZV/ZVD 

Filter 
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Fig. 5 - system decomposition using the input shaping filter 

 

 

 

 

 
 

(26) 

 
                            

                                  (27)                                    

 

By the combination of Eq. (25) and (27), Eq. (28) is obtained as; 

 

            (28)

 

With a0 = c
n and a1, a2,…, an as gains of the filter. Now by the selection of a0 = 3.54, the vibration of the system 

tends to zero and the reference system is given in Eq. (29); 
 

Gr (s) 
150.0625 

 

 

s4 14s3  73.5s2 171.5s 150.0625 

 
(29) 

With the relation in Eq. (30) was used to compute the gains of the filter in MATLAB as a2 = 564.1179 and a4 = 

34.6360. Thus, the final filter to the system is expressed in Eq. (31). Finally, the general block diagram of the OBF for 

implementation on the system with PID controller can be shown in Fig. 6. 

 

                        (30) 
 


F (s) 



34.6360s 4  564.1179s 2
 

 
 

s 4  14s3  73.5s 2  171.5s  150.0625 

 

    (31) 

 
 

 
 

Fig. 6 - block diagram of PID-OBF controllers
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3.3 Higher-Order Differential Feedback Controller 

The design of a higher-order differential feedback controller was proposed in [33]. The application of this type of 

controller was achieved in chaos control, inverted pendulum control and other nonlinear systems. The differential 

equation of the nonlinear system with disturbance can be represented as a single input single output (SISO) affine system 

given in Eq. (32); 

 

y
n 
 f  x  b  xu  d t 


(32) 

Where u and y are real numbers and are the control system input and output respectively. Also, x = yT represents the 

output differential vector, which is the same as the system state vector, yi is the ith differential of y and f(.) is an unknown 

bounded affine function and d(t) is bounded disturbance to the system. 

The design of the controller is divided into three stages. The first stage involves the derivation of an error-based 

state-space model of the system using the observed states. The input and output of the reference signals of the system 

will be used to carry out the observations respectively hence resulting to the process second step, which is the design of 

an appropriate higher-order differentiator (HOD) for the particular problem that will extract the observed states 

formulated in the first step. The reference input signal, y is being processed by the HOD system at the input stage. This 

is done so as to obtain the required derivatives and extract the observed states. The output signal, y is being measured by 

the second HOD system after the injection of noise into the system. This is done to achieve a better estimation of the 

output and its required derivatives. Finally, a model-free pole placement procedure is applied with a filter to smoothen 

and complete the design of the higher-order differential feedback controller (HODFC). 

• Step 1: Error Derivation with its Derivatives and the Observed States 

The derivation of the error variable and its derivatives become possible based on the assumption that the output of 

the affine system in Eq. (32) is required to track an input trajectory yr(t) and that all derivatives of both yr(t) and y(t) are 

available as shown in Eq. (33); 
 

e =y  x, e =y  x,..., en =y n  x  
(33) 

It is possible therefore to obtain an error-based state-space system that can be written as in Eq. (33) since the error 

and all its derivatives are available; 

 

 

 

 

 

yn (34) 

Hence, one can re-arrange the error vector as in Eq. (35) and its extended form can be written in Eq. (36); 
 

e =y  x  e, e , e ,...e 
T   
 e, e1, e2 ,...en1 

T

 

 

(35) 

e  =yr   x  e
T , en 

T

 

 
(36) 

 

Considering the system in which the input yr and the output y are known, the unknown can be estimated using Eq. 

(37). The next step shows how the observed states of the estimating vector x or yr can be obtained using HOD. 
 

x̂   ŷr , ŷr

1, ŷr 

2 ,...., ŷr 

n 
T 

; 

• Step 2: Design of Higher Order Differentiator (HOD) 

ŷr     ŷr , ŷr

1, ŷr 

2 ,  .. , ŷr 

n 
T

 

 

(37) 

For an mth order system, the Higher Order Differentiator as well as the nth order differential system of the HOD can 

be decided for which n ≥ m+1. The HOD system can be obtained from two model-free parameters n and no, with ko ϵ 

[2,50] as in [34]. The parameters can be determined as in Eq. (38) and Eq. (39). Two copies of the HOD system were 

used in the controller structure as shown in Fig. 7. The block diagram of HODFC with the filters is shown in Fig. 7. 

e1    e2 

e2    e3 

e  y 
n 


n r 

r n 
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



n 

 

 

n 

K  
n 1




n1 

 
(38)

 
 

         

                     (39) 

To process some measurement y(t) using the HOD system, the n-system of integrators used for implementing the 

HOD is shown in Eq. (40); 

zi  zi1  ai   z1 

zk   ak   z1 

  y t    t 




1  i  k 1 

 

 

 

 

 
(40) 

Where Y(t) measures the output y(t) with noise w(t) associated to it, with z1,…,zk being the states of the system. 

However, Eq. (41) can be used to determine the estimates of y(t) as; 
 

 

   (41) 

• Step 3: Pole placement procedure 

Considering the final stage of the design of the higher-order differential feedback controller, Ke is used in place of 

Eq. (34) leading to Eq. (42); 

yn  yn  Ke  k e  k e K  k e (42) 
r 1  1 2   2 n n 

 

For the polynomial k1+k2S+k3S2+…+knSn-1+Sn to be Hurwitz polynomial, the elements of a vector K are chosen 

appropriately. Also, the structure of the pole placement can be represented by Eq. (36) as; 

u  Ke  uˆ (43) 

With u as control force, the filtering signal from the control force can be expressed as in Eq. (44), where λ is a 

positive constant. 

𝑦𝑟 

𝑑(𝑡) 

 

 
 
 

 
Fig. 7 – block representation of HODFC-ZV/ZVD/OBF 

 

 
(44) 

However, for the system under consideration, parameters of the higher-order differential feedback controller were 

selected for values of n = 3, a0 = 8 and K = [-0.0035, 14.9048, 1], while 70/(S+70) was used for the filter function. 

 

4. Results and Discussion 

The input to the Crane system is a unit step which was simulated in MATLAB software to assess the performances 

of the hybrid controllers. A comparative analysis of PID-OBF, PID-ZV, PID-ZVD, HODFC-OBF, HODFC-ZV and 

HODFC-ZVD hybrid controllers for precise tracking control of payload was carried out. Firstly, the filters were designed 

to suppress the sway as follows: 

𝒚 𝑟 + 
− 

𝒆  
K + 𝑢 𝑦(𝑡) 

+ 

𝑢  

𝒚  
HOD 

Filter 

HOD Crane 

System 

ZV/ZVD/OBF 

Filter 

û  û   u 
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• Output-based filter was designed using the system output and significant sway reduction was achieved as shown 

in Fig. 8 and Fig. 9. 

 

 

 

 

 
Fig. 8 - Sway angle response using OBF 

 

 

 

 

 
Fig. 9 - Trolley position travel using OBF 

 

• Time delay filters were designed using the damping ratio and natural frequency of the system which were obtained 

using curve fitting toolbox in the MATLAB. In this type of filter, ZV and ZVD filters were considered and their response 

is shown in Fig. 10. 

Secondly, higher-order differential feedback controller (which is non-model dependent) was incorporated with each 

filter for precise tracking control of the payload. Then, filters were also incorporated with the PID controller to validate 

the performances of the HODFC controller: 

• The filters, ZV, ZVD and OBF were incorporated with HODFC controller for tracking control. And the filter was 

designed as 2/(s+2). Thus, a precise tracking was achieved with minimum sway, as can be observed in Fig. 11 and Fig. 

12. 
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Fig. 10 - Sway angle response using time delay filters 

 

 

          
 

 
Fig. 11 - Sway angle using HODFC-OBF 

 
 

 

 
Fig. 12 - Trolley position travel using HODFC-OBIS 
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The HODFC was also incorporated with ZV and ZVD and the optimized gains were obtained as n = 3, ao = 8, K= [- 

0.0035, 14.9048, 1] and the filters were designed as 70/(s+70); here again, a good tracking control with minimum sway 

was achieved as can be observed in Fig.13 to Fig. 16. 

 

 

 

 
Fig. 13 - Sway angle using HODFC-ZV 

 

 

 

 
Fig. 14 - Trolley position travel using HODFC-ZV 

 

 

 

 
Fig. 15 - Sway angle using HODFC-ZVD 
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Fig. 16 - Trolley position travel using HODFC-ZVD 

 

Moreover, hybrid PID control was proposed to validate the performances of the hybrid HODFC control schemes. 

Fig. 17 to Fig. 21 compared the tracking and sway reductions control performances of the controllers. Using mean 

absolute error and integral absolute error as the performance’s indices, the performances of the hybrid controllers for 

sway reduction was assessed and compared as in Table 3. 
 

 

 

 
Fig. 17 - Sway angle comparison for HODFC-ZV/ZVD/OBF 

 

 

 

 
Fig. 18 - Trolley position travel for HODFC-ZV/ZVD/OBF 



129 

Haliru Liman et al., International Journal of Integrated Engineering Vol. 12 No. 4 (2020) p. 116-131 

  

 

 

 

 
 

 
 

Fig. 19 - Sway angle comparison for PID/HODFC-ZV 

 
 

 

 

 
Fig. 20 - Sway angle comparison for PID/HODFC-ZVD 

 
 

 

 

 
Fig. 21 - Trolley position travel comparison for PID/HODFC-ZVD 
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Table 3 - Time response and performance analyses 
 

Controllers Max. 

Overshoot (%) 

Settling 

Time (s) 

Rise 
Time(s) 

ISE IAE Sway Reduction 

(MAE in %) 

HODFC-ZV 1 1.365 1.195 6.78x10-6
 6.02x10-6

 77 

HODFC-ZVD 0.1 2.145 1.728 5.73x10-6
 6.43x10-6

 79 

HODFC-OBF 2.3 2.06 2.043 4.59x10-6
 5.11x10-6

 95 

PID-ZV 0.6 1.435 1.268 6.24x10-6
 6.91x10-6

 76 

PID-ZVD 0.2 2.12 1.726 5.01x10-6
 5.01x10-6

 88 

PID-OBF 2.3 2.11 1.799 4.33x10-6
 5.20x10-6

 96 

 

5. Conclusion 

In this work, position tracking and sway suppression control of the crane system have been proposed using HODFC 

hybrid controller and the performances of the controller were validated with hybrid PID controller. The MAE, ISE and 

IAE were used as the performance indices and comparative studies using time response analysis were also presented. 

Simulation study and results analysis showed that a precise set-point tracking control and 96% sway suppression was 

achieved. In addition, HODFC hybrid control schemes are model-free controllers; hence they are robust to both internal 

and external disturbances. In the future, an experimental analysis would be conducted to verify these control schemes. 
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