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1. Introduction

Nowadays, computational fluid dynamics (CFD) tools are widely used in many biological systems; human

respiratory system is one of them. As, it is very difficult to know the internal flow physics of air/particle in vivo system, 

therefore CFD is playing vital role for an insight view of human respiratory tract using CT scan data. The realistic human 

airway is irregular and asymmetrical, and hence realistic results can be captured using CT/MRI data. Therefore, in present 

scenario researchers are concentrated on anatomical based model (CT/MRI) that reflects realistic condition of person [1]. 

The geometrical change has prominent effects on the CFD simulation; therefore, human airway model from CT/MRI 

must be studied. 

Luo and Liu [2] used fifth generation CT scan model for steady state CFD simulation. It is found that laryngeal jet 

produced more disturbances in term of turbulence which is captured using low Reynolds number k-ω turbulence model. 

It was obtained that deposition of particles in CT scanned model is different from symmetrical model. Inthavong et al. 

reported deposition of the drugs form of micron-particle in realistic human respiratory model [3]. The study was in two-

part (i) drugs delivery for normal breathing cycle (ii) drug delivery during the inhalation with breath holds (2 seconds). 
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Their results in terms of velocity contours and secondary flow vectors showed that vortex formation in downstream of 

the bifurcation indicate particle deposition. They found that breath hold allows and maximizes the local targeted 

deposition in first few generations. The total deposition fraction in sixth generation during inhalation phase (5 μm→

12.9%, 10 μm→21.6 %) was compared with single inhalation and breath hold (5 μm→30.1%, 10 μm→50.9 %). Tian 

et al. performed CFD modelling of human airway to improve the delivery of inhaled pharmaceutical drugs [4]. CFD 

analysis has been performed for steady state inhalation condition. The airway model was extended from mouth to the 

fifteenth-generation bronchus. It was predicted that deposition of drugs to the targeted region can be controlled by inlet 

temperature and aerosol size. Elcner et al. [5] used seventh generation model for the study of influence of boundary 

conditions on internal flow physics. In the two-phase flow simulation of air and particle Gorji et al. [6] investigated that 

the maximum velocity change occurs at the larynx region of the human airways. The irregularities and bending sections 

of the realistic model causes higher turbulence and these regions are highly prone to particle trap at higher flow rates. 

Lintermann and Schroder [7] performed two cases of flow simulation. In the first investigation, large and heavy particles 

with a diameter of 100 microns and in the second investigation small particle mixture with diameter 2.5-10 microns were 

simulated. It was investigated that the most of the heavier particles deposited in the upper respiratory tract and at the 

bifurcations itself. However, lighter particles penetrate the human lung below the sixth generation and may cause the 

lung injury. 

Selection of appropriated turbulence model is an essential aspect for accurate capturing of the flow physics due to 

turbulence. The two-equation k-ε Realizable turbulence model is frequently used in high-speed flow in the recent past 

[8-9]. The standard k-ε model is not recommended due to its larger dispersion. Zhang and Kleinstreuer [10] suggested 

the LRN k-ω model, but Jayaraju et al. [11] later suggested the SST k-ω model. Mihaescu et al. [12] compared k-ε, k-ω 

and LES models in a realistic pharyngeal airway model and found differences of 45% between the k-ε and the LES mean 

axial velocities calculated in the pharynx region [10-12]. These differences were much lower (within 30%) in the case of 

the k-ω model. Most of the published CFD results were obtained for steady inspiration which is understandable because 

of the enormous computational time needed to simulate an entire breathing cycle [13]. 

It is found from the literature survey that limited researchers have used CT scan model in the recent past and most 

of the studies were concentrated either on two-phase study or boundary conditions. However, comparisons of different 

numerical schemes have not been reported till now. Therefore, present study is concentrated on comparison of different 

pressure-velocity schemes in terms of computational time. The comparison of different models will help to select the 

optimum pressure-velocity schemes in case of human respiratory model. 

 

2. Methodology 

       Three dimensional reconstruction of sixth generation human airways is done from CT-scan images. The 

computational geometry is constructed from CT-scan of a healthy non-smoking male.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The computational model is extending from oral cavity (mouth of human respiratory tract) to the sixth generation of 

human respiratory model. Initially, the CT scan images (DICOM file) are imported into the MIMICS software which is 

the strong image processing software where all slices are segmented and exported in STL (Standard Tessellation 

Language) format. The STL format of the model from the MIMICS is imported into the Solid-works software for further 

modification in the computational geometry. Thereafter, the computational model is imported into the ANSYS design 

 
 

Fig. 1 - CT scan based Human Respiratory 

Tract 

 

 
 

Fig. 2 - Computational grid of Human Airways 
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modular (Fig.1). The equivalent diameter of outlet cross-sections of sixth generation human airways lies from 1.17 mm 

to 5.45 mm. 

 

2.1 Grid Generation 

The meshing of the computational model is generated into the ICEM module of the ANSYS workbench with 

tetrahedral elements, which is most suitable and appropriate for this model. The maximum skewness is found to be 0.86 

which is obtained by huge effort and refinement. The grid independency test is achieved at the grid size of 3,538,213. 

The maximum velocity and area-average velocity are evaluated on XZ plane at the vertical location of Y = 0.098 m for 

the grid independence test. The grid generation and grid independency test (GIT) of the computational model is given in 

the Fig. 2 and Tables 1and 2 respectively. 

Table 1 - GIT with reference to maximum velocity 

Case Number of Elements (in Millions) Maximum velocity, Vmax (m/s) Percentage change in Vmax 

I 1.9 12.00 - 

II 2.8 12.10 0.87 

III 3.5 12.00 0.82 

IV 5.1 11.93 0.58 

Table 2 - GIT with reference to area-average velocity 

Case Number of Elements (in Millions) Area average velocity, Vavg (m/s) Percentage change in Vavg 

I 1.9 9.88 - 

II 2.8 10.03 1.50 

III 3.5 9.67 -3.67 

IV 5.1 9.75 0.79 

 

2.2 Governing Equations 

The air flow is assumed to be steady and incompressible. 

 

2.2.1 Continuity Equation 

Since flow has been assumed to be steady and incompressible therefore, 
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Where, μ = coefficient of dynamic viscosity ui, uj (i, j= 1, 2, 3) is the velocity component in x, y and z-direction.  

p = pressure, ρ = density of fluid. 

 

2.2.3 Turbulence Model 

The transport equations for k (turbulent kinetic energy) and ω (specific turbulent dissipation rate) is k-ω turbulent model 

are: 
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Where, , and
T ij

   are kinetic molecular viscosity, turbulent viscosity, and Reynolds stress tensor respectively. 

Here, /T C f k  = and the function, 
2exp 3.4 / ( / 50)Tf I R

 = − +  with RT = k/µω, µ is dynamic molecular 

viscosity. The Model constants are: 
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0.09, 0.555, 0.8333, 1 0.5C and
k w

    


= = = = = =  

 

2.3 Boundary Conditions  

The velocity inlet and pressure outlet boundary conditions are respectively applied at the inlet and all 32 outlets of 

the human airways. Laminar and turbulence models are applied depending upon the type of air flow, based on the 

numerical value of Reynolds number. The SST k-ω turbulence model is applied for the turbulent flow. The enhanced 

wall function with no slip is applied at the walls of the human airways. The numerical investigation is carried out for the 

flow rates of 20, 40, and 60 L/min respectively. The properties of air at normal conditions are taken in this study, i.e. 

density of 1.225 kg/m3 and dynamic viscosity of 1.78 × 10-5 N-s/m2. 
 

2.4 Numerical Simulation 

Numerical simulation is carried out by the FLUENT solver of the ANSYS software. The simulations are carried out 

for the pressure-velocity coupling schemes, namely SIMPLE, SIMPLEC, PISO, and COUPLED. The simulation was 

converges after 11000 iterations with the convergence criteria of 110-4. The pressure and momentum term was 

discretized by 2nd order upwind scheme. The computational work is run on the IBM blade server, having eight blades 

with 32 GB RAM and Octa-core processors for each blade. 

 

2.5 Computational Validation 

In the present study, CFD validation is carried out with the computational results presented by Nowak et al. [14]. 

For their study, they have used simplified model given by Weibel [15]. For the same respiratory model and boundary 

conditions, velocity profile is evaluated at the mid plane of 4th generation. The validation is shown in Fig. 3, which is 

within the acceptable limit. This validation is performed for the inspiratory flow rate of 40 L/min. 

 

 
 

Fig. 3 - Relative velocity at mid-section of bronchus-4. 

 

3. Results and Discussion 

3.1 Measurements of type of flow (Reynolds number at the different locations of the Human Airways): 

It is well known that in the case of pipe flow, flow less the Reynolds number (Re) of 2000 is termed is laminar flow 

and the flow with Re > 4000 is termed as turbulent flow. However due to the irregularities and cartilages rings presence 

in the human respiratory tract the flow becomes turbulent with the smaller value of Reynolds number as compared to the 

typical circular ducts. Reynolds number corresponding to different flow rates are analyzed and reported in table 3. 

Reynolds number is computed at different locations of the airway model which is shown in the Fig. 4. It is found that at 

20 L/min of inspiratory flow rate, the flow is laminar throughout the airway model. However, for 40 and 60 L/min, flow 

is turbulent in most of the locations. It is anticipated that even the flow is laminar but due irregularity in the human 

respiratory tract the flow becomes turbulent. It is observed that in spite of being laminar flow at 20 L/min of inspiratory 

flow rate, it took same computational time as compared to turbulent flow in 40 & 60 L/min of inspiratory flow rate. 
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Fig. 4 - Different planes for analyzing the flow variations in the human respiratory tract 

 

3.2 Comparison of Pressure-Velocity Coupling Schemes: 

The computational simulation at the inspiratory flow rate of 60 L/min is carried out one-by-one using the pressure 

velocity coupling scheme of SIMPLE, SIMPLEC, PISO, and COUPLED. The simulations are run for the total number 

of ten thousand iterations with the convergence criteria of 1x10-4. It is observed that the computational simulations 

achieve their convergence in order of 6x104 to 10x104 iterations respective to the applied pressure-velocity coupling 

schemes. Among all the four schemes it is investigated that the similar results are executed from all the schemes. 

However, the PISO scheme takes the least computational time in comparison with other schemes for the same results and 

therefore, PISO scheme is adopted for further investigations. The comparison of these four computational schemes is 

shown in the Table 4, Table 5, Fig. 5, and Fig. 6. 

Table 3 - Type of flow at the different cross-sections of the human respiratory tract 

Cross-

section 

Reynolds Number at 20 

L/min 

Reynolds Number at 40 

L/min 

Reynolds Number at 60 

L/min 

Inlet 1328 2656 3985 

Plane 6 1896 3542 5129 

Plane 7 2617 5163 7764 

Plane 8 1872 3694 5444 

Plane 9 1795 3602 5385 

Table 4 - Comparison among SIMPLE, SIMPLEC, PISO, and COUPLED pressure-velocity coupling schemes at 
YZ-plane with X = 0.077 m 

Pressure-Velocity Coupling 

Scheme 

Area average Velocity 

(m/s) 

Maximum velocity 

(m/s) 

Computing Time 

(hours) 

SIMPLE 4.12 11.08 16.56 

SIMPLEC 4.02 10.82 17.31 

PISO 4.15 10.66 14.60 

COUPLED 4.15 10.82 22.98 

 

The maximum local velocities are computed at five different locations of human airways for these four pressure-velocity 

coupling schemes. It is depicting from Fig. 5 & Fig. 6 that the maximum local and average velocity is almost same for 

all the schemes. It is found that computational time for PISO scheme is 14.6 hours. However, for the similar conditions, 

SIMPLE, SIMPLEC and COUPLED schemes took 16.56, 17.31 and 22.98 hours respectively. Thus due to least 

computational cost for the similar results, PISO scheme is selected for the further investigations. 
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Table 5 - Comparison among SIMPLE, SIMPLEC, PISO, and COUPLED pressure-velocity coupling schemes at 
XZ-plane with Y = 0.10 m 

Pressure-Velocity Coupling 

Scheme 

Area average Velocity 

(m/s) 

Maximum velocity 

(m/s) 

Computing Time 

(hours) 

SIMPLE 10.04 11.66 16.56 

SIMPLEC 9.99 12.31 17.31 

PISO 10.00 11.76 14.60 

COUPLED 10.05 11.89 22.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In above figures (Fig. 5 and Fig. 6) the points on the X-axis (1-5) are indicating the Planes YZ at X = 0.077 m, Plane XZ 

at Y = 0.14 m, 0.10 m, 0.06 m and 0.01 m respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 - Plot of maximum local velocity at different 

locations corresponding to different Pressure-

velocity schemes 

 

 
 

Fig. 6 - Plot area average velocity on Planes YZ 

and XZ for different pressure-velocity coupling 

schemes. 

 

 
 
Fig. 7 - Plot of area average velocity at the different 

locations of the Human airways, from planes 1 to 9. 

 

 
 

Fig. 8 - Plot of local maximum velocity at the 

different locations of the Human airways, from 

planes 1 to 9. 
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Fig. 9 - Velocity contour at flow rate of 20 L/min 

 

 
Fig. 12 - Pressure contour at flow rate of 20 L/min 

 

 
Fig. 10 - Velocity contour at flow rate of 40 L/min 

 

 
Fig. 13 - Pressure contour at flow rate of 40 L/min 

 

 
Fig. 11 - Velocity contour at flow rate of 60 L/min 

 

 
Fig. 14 - Pressure contour at flow rate of 60 L/min 
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3.3 Velocity distribution from inlet of mouth to the sixth generation of human airways: 

The velocity variation is evaluated for the three flow rates (20, 40, and 60 L/min) at different locations of human 

airways which is depicted from the Fig. 4. The local area average velocity is computed at different planes which is shown 

in the Fig. 7. It is seen from the graph that peak values of area average velocity are found at planes 5 and at plane 7 

corresponding to 60 L/min of inhalation flow rate. In comparison to the other planes, these values are maximum at plane 

5 & 7 because of minimum cross-sectional area. The max local velocity is computed at different planes and is shown in 

Fig. 8. The maximum local velocity is occurred at plane-7 due to reducing of cross sectional area. It is seen that the 

disturbances in the air flow pattern occur from plane 4 to 8. It is seen from the Fig. 8 and Fig.9 to Fig.11 that larynx 

region has prominent disturbance in comparison of the other locations. As the flow rates increases from 20 L/min to 60 

L/min, velocity magnitude as well as area of disturbance increases near the larynx region. Thus, it is anticipated that 

during the running or exercise condition, high flow disturbance occurs near the larynx region due to sudden reduction in 

the cross-section area. This disturbance in the path leads the phenomena of turbulence. It is also expected that because of 

high velocity near the epiglottis region, velocity gradient may high and therefore peak-wall shear stress in this region. 

This peak values may create wall injury. It is well known that the flow in the human lungs occur due to the pressure 

difference process. During the inhalation, pressure of inlet (at the inlet of oral cavity) is higher in comparison of outlet 

(outlet of lower generation bronchus), so that the flow moves from inlet to outlet. The pressure contours for three 

inhalation flow (20, 40 and 60 L/min) rates is shown in Fig. 12 to Fig. 14. Higher pressure is observed in the upper part 

of the oral cavity due to minimum velocity. However, lower pressure is found in the lower part of the oral cavity and this 

keep on reducing as it moves towards the lower parts of the lungs. 

3.4 Computational flow visualizations using velocity and pressure contours: 

       The velocity and pressure contours (Fig.9 to Fig. 14) are computed at the vertical mid-plane of the human airways 

respectively for the inspiratory flow rates of 20, 40 and 60 L/min. It is clearly evident from the velocity and pressure 

contours that the maximum velocity and pressure changes occur at the larynx region of the human airways. The strength 

of laryngeal jet increases with increasing inspiratory flow rates. During the inhalation more pressure is reported in the 

upper respiratory tract as compared to the lower respiratory tract and increasing level of pressure is also seen in upper 

respiratory tract with increasing rate of inspiratory flow rates. 

4. Conclusions

In the present study, CT scan model have been used for the airflow study. The comparative analysis is carried out

among the four pressure-velocity schemes namely, SIMPLE, SIMPLEC, PISO and COUPLED schemes at the inspiratory 

flow rate of 60 L/min in order the minimize the computational cost. Thereafter, computational simulations with 

appropriated pressure-velocity coupling schemes are carried out for the insight understanding of dynamics of airflow into 

the human respiratory tract. It is found that PISO pressure-velocity coupling scheme takes least time of convergence as 

compared to other schemes for the similar results. Higher velocity variation is reported in the oral cavity as compared to 

the other locations of the human respiratory tract. A laminar flow with flow rate of 20 L/min at inlet (i.e. at the mouth) 

becomes turbulent in larynx section of the oral cavity due to the irregularities and the presence of cartilage rings of the 

human airways. From the plot of velocity at the different locations of the Human airways and flow visualization from the 

contours of velocity and pressure, it is concluded that the peak velocity gradient occurs in oral cavity and bifurcation 

junctions that may leads to wall injury. It is also noted the PISO pressure velocity coupling scheme compete the other 

schemes with similar results at the flow rates of 60 L/min (heavy breathing condition), therefore PISO scheme is suitable 

in higher breathing condition. However, further investigations need to perform in future to check the suitability of PISO 

scheme in light breathing (15 L/min) and in normal breathing (30 L/min) conditions. 
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