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1. Introduction 

Compressive strength, fc of concrete is affected by a number of factors such as type and percentage of cement, 

water content, size and amount of additives and aggregates, mixing procedures, and compaction as well as curing 

process [1], [2]. In concrete with fiber addition, it has been reported that this addition sometimes exert influence on the 

strength of the resulting concrete.  The work of [3], reported that fc of concrete with steel fiber addition increased with 

fiber content for lower aspect ratio, while in higher aspect ratio, the increase was up to 1% before it fluctuates. This 

corresponds to what has been reported in the literature that it can either increase, decrease, or show no trend at all [4], 
[5]. This trend in concrete with steel fiber addition present a challenge especially when prediction of strength is the 

ultimate goal, when using machine learning applications. This is because the program has to be trained to be conversant 

with the dataset to be able to make accurate predictions. 

Abstract: In this study, the predictive capability for compressive strength of IBk (Instance-Bases learning with 

parameter k) a K-Nearest Neighbor algorithm was put to test in high performance concrete (HPC) with steel fiber 

addition. To achieve this objective, 150 x 300 mm cylindrical specimens were casted at least three for each batch 

and steel fibers were added from 0.50% - 2.00% at 0.25% interval. The mean and standard deviation were 

determined, and these were used to generate 100 compressive strength values within this range for each proportion. 

IBk classifier with K =1 nearest neighbor and 3 split percentages for training and testing were utilized. Results 

indicate that it is possible to generate good compressive strength results from good mean and standard deviation 

values. For each of the split percentages, the mean, standard deviation, and standard error of mean were determined 

and is presented. Compressive strength results for the samples were also presented. The prediction capability was 
very high using this algorithm with small amount of associated errors. Validation of the model using predicted 

versus actual results shows a very high correlation coefficient. This result indicates the efficiency of the model and 

its predictive capacity. It also indicates that this can improve the optimization capacity of HPC mixtures with steel 

fiber addition. 

Keywords: High performance concrete, steel fiber reinforced concrete (SFRC), compressive strength, strength 

prediction, K-Nearest Neighbor Algorithm (KNN), machine learning, lazy IBk. 
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In machine learning applications, mathematical models are developed to predict a particular response of interest by 

feeding the algorithm with dataset to train, then test the data for evaluation. This is done to validate the performance of 

the prediction by using linear regression, neural networks, or support vector regression (SVR).  

Artificial Neural Network (ANN) has been successfully used to predict multiple variables and nonlinear behavior 

of different parameters in concrete mixture to obtain compressive strength under different ages [6], [7]. 
   Some studies [8] designed an ANN model that predict and classify compressive strength in low, moderate, and 

high strength. This consist of eight (8) attributes and 1030 datasets with three learning scheme ratios for training-to-

testing of datasets. They were learning scheme (LS), LS1 (40:60), LS2 (50:50), and LS3 (60:40). The correct prediction 

rate (CPR) for the training data was 96.31%, while for LS1, LS2, and LS3 were 73.01%, 86.02%, and 85.53% 

respectively. This study however, did not consider the use of fibers as one of the attributes, neither did it use 

compressive strength. Instead, the age of the concrete was added as an attribute. 

K-Nearest Neighbor (KNN) is another algorithm that has found useful application in statistical methods. It is a 

non-parametric method in statistics because they do not make explicit assumptions about unknown functions. Instead, 

they seek an estimate of the function that is close to the data points [9]. It works on the principle of storing data for 

learning, and finding the prediction that is nearest to the training data. In other to classify an input vector, the K-nearest 

training data is examined and is assigned to the most occurring class. In this algorithm, increasing the K-values reduces 

the variance of the result, on the other hand inducing bias in the process. 
In mathematical terms, given a positive integer K and a test observation Xo, the KNN classifier first identifies the 

K points in the training data that are closet to Xo, represented by No. It then estimates the conditional probability for 

class j as the fraction of points in No whose response value equals j. 
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Finally, KNN applies Bayes rule and classifies the test observation Xo to the class with the largest probability. For 

example, if we want to make a prediction of a point of interest, for K = 3, KNN will first identify three observations 

that are closet to the point of interest. However, as cautioned by James et al. [9], the choice of K has a drastic effect on 

the KNN classifier. When K = 1, the decision boundary is flexible and finds a classifier with low bias but high 

variance, but when K grows, the flexibility decreases producing a decision boundary close to linear, corresponding to 

low variance and high bias classifier [9].    

 It is on this premise that a model capable of predicting compressive strength of HPC with steel fiber addition 

having eight attributes has been utilized. A total number of 701 datasets were used, and this was possible by generating 
data from results of experimental mean and standard deviation. This is because it is difficult to generate that much 

amount of results from experimental data without the problems of variations creeping in during specimen preparations. 

It is hoped that the results would give a reasonable prediction with limited percentage error.  

 

2. Materials  

Blast-furnace Slag Cement CEM II/B-S 42.5 N that conforms with ASTM C 595 [10] having a specific gravity of 

3.15 and silica fume with 82 % SiO2 content was utilized at 10 % of the cement content. High range water reducer 

GLENIUM 27 was utilized conforming to ASTM C 494 [11] ether brown in color with a density of 1,023 – 1,063 kg/lt, 

color content < 0.1 % and alkali content < 3 %. Tap water was utilized which conform to BS EN 1008-02 [12] 

specification.  The use of coarse sand with a fineness modulus of 2.7 – 3.0 has been recommended, and in this study 

fineness modulus of 3.22 was used. Aggregates used were crushed limestone rock conforming to the specification of 

ASTM C 33 [13]. Aggregate size ranges from 10 – 12 mm is the best and safe choice for maximum size of aggregates 

in HPC [14]. This is necessitated by the fact that when it increases, the interface zone becomes more heterogeneous and 

larger, and smaller aggregates are mostly stronger than larger ones as in most rocks with the elimination of internal 
defects. In summary, the mix design and the proportion utilized for HPC is presented in Table 1. Properties of the 

constituent materials (ingredients) can be found elsewhere [15]. Steel fibers used in this study were hooked-end 

bundled type conforming to ASTM A820 [16] with Seven different percentages added to the HPC as 0.5, 0.75, 1.0, 

1.25, 1.50, 1.75, and 2.00% by volume of concrete (39.25, 58.88, 78.50, 98.125, 117.75, 137.38, and 157.01 kg/m3, 

respectively). 

 

Table 1 - Mix design utilized for HPC in reference specimen 

Material Cement Water 
Coarse 

(10 mm) 

Fine 

(5 mm) 
Silica Fume HRWR* 

fc  

(MPa) 

Quantity (kg/m3) 470 165 1050 700 47 14 71 

                  *HRWR – high range water reducer 
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3. Experimental Procedures 

Mixing operation was done with the fibers which are stacked in a fibrillated bundle of water-soluble glue placed 

last by distribution in small amount to avoid balling. Curing was based on the specifications of ASTM C192 [17] in the 

curing room and after 24 hours were demolded and placed in the curing tank until testing date.  

   Concrete compressive strength was tested at age of 28 days in accordance with ASTM C39 [18] using 150 x 300 

mm cylinders at a loading rate of 0.5 MPa/s. Three cylindrical specimens were prepared for each fiber proportion, and 

tested at the age of 28 days. The results presented in Table 2 together with the mean and standard deviation. 

 

Table 2 - Compressive strength results for cylinders 

Fiber Volume (%) S1 S2 S3 Mean *StDev 

0.50 72.00 70.30 71.00 71.10 0.85 

0.75 77.50 76.10 75.30 76.30 1.11 

1.00 80.00 82.00 80.40 80.80 1.06 

1.25 81.90 82.90 83.60 82.80 0.85 

1.50 83.20 83.00 84.90 83.70 1.04 

1.75 87.80 88.80 88.90 88.50 0.61 

2.00 92.00 91.80 91.30 91.70 0.36 

                                     *StDev = Standard Deviation 

 

4. Prediction Methodology 

The algorithm utilized was IBk, a K-Nearest Neighbor (KNN) classifier algorithm which is a free open source Java 

based application in Weka Software created by University of Waikato, New Zealand. One (K = 1) nearest neighbor was 
used, with eight attributes (cement, water, coarse, fine, silica fume, high range water reducer, steel fiber, and 

compressive strength).  

A total of 701 data sets were utilized generated from Table 2. For this purpose, the mean and standard deviation of 

each fiber addition level was used to generate 100 random values within the mean and the standard deviation using 

Minitab 17 software. This was done by going to “Calc” in the menu bar, followed by “Random Data”, then “Normal” 

for normally distributed data. We then specified the number of rows (100), mean and the standard deviation. 

Subsequently, the same procedure was done for the other fiber addition levels. Data produced can be found in the 

appendix. 

Input data for the software was prepared in the form of ‘arff’ format in Notepad, and the attributes defined. All the 

701 data for the attributes were placed, each separated by a ‘comma’. In the “Classify” function of the software, 

“Percentage Split” for training-to-testing of the data was selected as 50-50, 60-40, and 70-30, where some portion of 
the data was used for training, and the rest for testing.  Results were stored in csv format, and it can also be opened in 

the form of excel spreadsheet. 

 

5. Results and Discussion 

Results obtained from Table 2 were used to generate additional data. In order to verify the accuracy and suitability 

of the data generated, normality test had to be conducted, and this was done with Minitab 17 Statistical Software. In 

Fig.1(a) to Fig. 1(g), it could be seen that the P-value was above 0.05, and the dataset were all swirling around the 

‘ideal’ probability distribution line. This is an indication that all were within the 95 % Confidence Interval of the 

distribution with a good fit. A consequence of the high P-value results in relatively low Anderson-Darling value.   

In Table 3, Basic statistical results are presented from the data generated in the appendix for the different fiber 

addition levels. As a result of the low value of the standard deviation from Table 2 for the respective fiber addition 

levels, it could be seen that the standard error of the mean was relatively lower, with the exception of 0.75 % and 1.00 

% which had a higher standard deviation. This is due to the variation in the results obtained from the average laboratory 

samples. Calculated standard deviation for the generated samples (N = 100) is also presented having a similar trend as 

observed in Standard Error of Mean. Also presented is the maximum and minimum value of the samples. 
The output by the KNN is summarized in Table 4 where the performance or efficiency of the model is evaluated 

based on the correlation coefficient and the amount of errors. Generally, models with a high value of R2 and lower 

percentage error are generally chosen in real life. In here, it could be seen that the R2 for the three percentage splits (50-

50, 60-40, 70-30) were all at 99.2 %. This is an indication of the relative performance of the model which could be 

attributed to the accuracy of the model to predict the response after initial training despite changing the percentages of 

split. 
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Mean Absolute Error (MAE) which measures the average errors in the prediction stood at 0.64 – 0.68, the Root 

Mean Squared Error (RMSE) which is the difference between the sample and the prediction, which also is in the range 

of 0.82 – 0.86. The aim of the prediction is to determine the mean value of compressive strength, and in Table 5 a 

statistical analysis on the mean difference of the model was conducted. This will show if there is significant difference 

between the experimental (actual) and the predicted values. At a 95 % CI, the values of the mean difference are 
presented, and for the three percentage level of splits, all fall within the confidence interval. Also, the P-value at an 

alpha value of 0.05 shows that they were all above this level. 

Another way of evaluating the the performance of a model is by measuring the R2 of predicted versus actual 

values. In Fig. 2(a) to Fig. 2(c), the result of predicted against experimental values is plotted and presented. It could be 

seen that the coefficient of determination for all is at 98%, which shows a strong positive correlation. 

 

  
(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

  
(f) (e) 



Abubakar et al., Int. J. of Integrated Engineering Vol. 11 No. 1 (2010) p. 131-139 

 

 
 
135 

 
(g) 

Fig. 1- Normality test for the generated data 

 

 

Table 3 - Basic statistics 

Variable 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% 

Samples (N) 100 100 100 100 100 100 100 

Mean 71.089 76.243 80.923 82.877 83.711 88.548 91.720 

SE Mean 0.0853 0.102 0.116 0.0885 0.0969 0.0592 0.0383 

StDev 0.853 1.017 1.164 0.885 0.969 0.592 0.383 

Minimum 69.068 74.064 77.780 80.550 81.577 87.115 90.516 

Median 71.103 76.205 80.961 82.901 83.779 88.494 - 

Maximum 72.791 78.483 83.856 85.208 86.373 89.747 92.607 

 

 

Table 4 - Model summary for training-to-testing ratio 

IBK 

Training-to-Testing Split 50-50 60-40 70-30 

Correlation Coefficient 0.992 0.992 0.9916 

Mean Absolute Error 0.6503 0.6434 0.6825 

Root Mean Squared Error 0.8296 0.8303 0.8658 

Relative Absolute Error (%) 12.2098 12.0701 12.8166 

Root Relative Squared Error (%) 12.6324 12.5174 12.9277 

Number of Instances 350 280 210 

 

 

Table 5 - Confidence Interval (CI) of the difference in mean for the model 

 50-50 60-40 70-30 

Variables Actual Predicted Actual Predicted Actual Predicted 

Number of Samples 350 350 280 280 210 210 

Mean 82.35 82.38 82.33 82.43 82.21 82.25 

StDev 6.56 6.56 6.64 6.60 6.71 6.66 

SE Mean 0.35 0.35 0.40 0.39 0.46 0.46 

Difference in Mean -0.023 -0.094 -0.043 

95% CI for Difference (-0.997, 0.952) (-1.194, 1.005) (-1.325, 1.240) 

T-Value -0.05 -0.17 -0.07 

P-Value 0.964 0.866 0.948 

Degree of Freedom 697 557 417 

              CI = Confidence Interval 
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R² = 0.9841

70

75

80

85

90

95

65 75 85 95

P
re

d
ic

te
d

 T
es

ti
n

g 
D

at
a

Actual Testing Data

IBK 50-50

 

 

R² = 0.9845

70

80

90

100

65 75 85 95

P
re

d
ic

te
d

 T
e

st
in

g
 D

a
ta

Actual Testing Data

IBK 60-40

 
(a) 

 

(b) 

 

   
(c) 

 

Fig. 2 - Predicted versus actual values of the model 

 

6. Summary 

This study evaluated the prediction of compressive strength of HPC with steel fiber using KNN algorithm, and the 

following conclusions have been reached: 

▪ To be able to obtain good results for accurate prediction, the mean of the individual experimental samples has to 

be close to each other, and the standard deviation small. This can be ensured by strict quality control during the 

production of the specimens. 

▪ It is possible to generate good random sample values that is capable of being utilized for statistical analysis and 

model prediction from experimental mean and standard deviation under strict quality control. 
▪ IBk algorithm can accurately predict the compressive strength of concrete with steel fiber addition from random 

results generated from experimental results. 

▪ The coefficient of determination of the model for the three percentage splits were 99% while in the validation 

done through predicted versus actual results to be 98%. An indication of the accuracy of the prediction. 
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Appendix  

Appendix 1 - Generated compressive strength 

S/No 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% 

1 72.47 76.55 81.69 83.46 84.28 87.88 91.72 

2 69.66 77.66 81.69 83.5 82.87 88.67 92.39 

3 69.25 75.44 82.49 82.95 84.85 89.06 91.93 

4 70.63 75.64 81.46 82.05 83.9 88.25 91.83 

5 71.4 75.8 78.91 83.32 84.02 88.45 91.33 

6 71.84 74.07 81.87 83.18 85.66 88.27 92.05 

7 72 77.02 81.5 81.85 83.53 89.39 91.74 

8 71.56 76.14 80.44 84.12 83.64 88.14 91.41 

9 71.41 76.65 80.91 82.66 84.07 89.05 91.67 

10 71.39 74.56 79.6 82.25 81.91 88.76 92.61 

11 70.55 74.78 80.11 82 83.49 88.12 91.65 

12 70.57 78.47 80.55 82.95 84.77 88.73 91.78 

13 70.02 76.15 79.49 83.04 82.96 88.75 91.49 

14 72.8 77.17 79.96 83.74 82.52 87.82 91.8 

15 71.01 74.67 80.58 82.96 83.32 89.33 91.49 

16 70.53 77.19 82.29 82.6 83.97 88.56 91.27 

17 71.17 74.97 80.99 83.32 83.2 89.2 91.29 

18 71.33 77.25 80.33 82.97 83.83 88.4 92.1 

19 70.87 77.45 82.7 81.9 84.62 88.93 92.24 

20 70.67 77.84 82.7 80.92 81.58 88.09 91.43 

21 71.5 75.42 83.27 82.69 83.16 88.49 91.36 

22 72.01 77.11 80.62 82.66 83.09 88.3 91.69 

23 71.89 76.78 77.79 83.73 83.48 88.72 91.4 

24 71.45 77.48 79.17 82.54 84.73 88.2 91.56 

25 71.11 75.24 80.82 83.44 82.77 88.23 91.95 

26 72.32 76.96 81.95 83.68 81.76 89.46 91.91 

27 71.06 74.67 81.38 83.99 85.1 87.99 91.76 
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28 70.45 75.5 81 83.25 82.65 88.34 91.56 

29 70.59 76.5 79.61 83.37 83.87 89.16 91.71 

30 71.09 78.49 78.26 82.38 82.96 87.58 91.88 

31 71.63 75.79 81.95 83.29 83.41 89.29 91.88 

32 69.56 77.67 81.69 82.8 84.03 87.79 91.47 

33 70.61 75.05 80.11 83.02 83.82 88.58 92.08 

34 71.03 76.45 80.03 81.46 83.45 87.72 92.24 

35 72.1 76.93 82.77 83.74 83.88 88.42 91.75 

36 71.34 75.78 82.2 84.22 84.02 88.48 92.27 

37 71.95 77.85 81.57 81.63 84.58 88.02 91.91 

38 71.77 77.26 79.22 82.66 83.78 88.64 91.79 

39 70.62 76.83 80.04 82.67 82.04 87.43 90.52 

40 72.03 76.75 83.86 81.85 85.26 89.3 91.88 

41 71.06 76.96 80.54 82.62 83.75 89.66 91.81 

42 69.99 76.57 79.07 82.7 82.71 88.86 91.99 

43 70.41 74.94 81.82 82.81 84.35 88.38 91.88 

44 71.11 77.2 82.03 82.2 83.12 89.6 91.27 

45 72.18 75.99 79.19 82.17 83.73 88.27 91.6 

46 71.7 75.33 81.21 83.58 83.15 88.42 91.67 

47 71.75 75.29 80.83 81.8 83.49 88.79 91.4 

48 71.87 77.57 80.41 83.85 83.1 89.01 91.89 

49 71.71 76.46 80.04 83.23 84.97 88.38 91.33 

50 69.08 76.63 80.55 83.51 83.84 88.44 92.04 

51 70.89 77.38 79.75 83.52 86.38 89.44 91.31 

52 71.29 76.4 81.91 82.11 82.23 87.69 92.08 

53 71.55 78.01 79.93 82.64 85.69 88.71 91.62 

54 70.9 76.79 81.81 83.58 85.31 87.97 91.81 

55 72.09 74.6 81.38 82.74 83.99 88.08 92.06 

56 70.91 76.15 79.88 81.83 82.46 87.6 91.45 

57 69.15 74.81 81.74 85.21 84.88 88.57 92.53 

58 71.11 76.1 81.68 81.5 84.39 88.11 92.04 

59 70.8 76.22 80.55 82.87 84.02 88.44 92.05 

60 70.98 74.59 82.75 81.7 85.64 87.86 90.89 

61 69.64 76.82 80.92 82.11 83.13 88.3 92.53 

62 71.17 76.65 81.48 81.53 84.99 88.53 91.88 

63 71.18 76.98 81.18 83.51 82.56 88.24 92.14 

64 71.69 75.25 80.67 81.97 83.91 88.34 91.54 

65 71.03 74.39 80.66 81.52 83.36 88.2 91.66 

66 70.7 75.32 81.94 82.68 83.84 88.38 91.92 

67 69.07 76.93 80.24 81.76 84.57 88.26 91.95 

68 72.61 76.43 82.25 84.25 84.7 88.58 92 

69 72.74 75.63 82.57 83.56 83.9 89.64 91.85 

70 71.2 75.79 80.68 82.19 83.08 89.1 91.62 

71 69.85 75.91 80.58 83.78 82.59 88.5 91.57 

72 72.11 75.07 81.5 82.78 84.63 88.75 92.36 

73 71.91 75.66 79.46 81.91 84.02 89.27 91.92 

74 70.45 75.83 82.17 83.35 84.38 88.14 92.05 

75 70.69 76.6 80 81.14 83.06 88.62 90.95 

76 69.47 74.99 78.13 82.59 83.89 89.75 92.16 

77 71.3 77.77 81.18 84.67 83.79 88.9 91.63 

78 70.65 77.58 79.04 83.09 82.75 89.14 91.31 

79 70.14 76.77 83.5 84.81 82.15 88.29 91.38 

80 70.36 75.99 81.2 80.56 82.01 87.63 91.95 

81 70.65 77.4 82.02 83.88 84.09 88.73 90.92 

82 71.38 75.92 81.83 82.85 82.43 88.77 91.44 

83 72.63 76.2 81.64 83.7 82.84 88.64 91.26 

84 70.95 74.91 79.45 83.05 83.94 89.59 91.37 
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85 69.41 75.67 81.38 84.15 85.43 88.61 91.83 

86 72.17 77.02 81.01 82.05 82.98 88.13 91.61 

87 70.82 75.26 81.34 82.59 84.38 89.27 91.76 

88 71.14 77.07 80.17 83.67 84.91 87.9 91.36 

89 71.82 76.86 80.73 83.05 83.17 88.75 90.96 

90 71.65 77 80.52 83.12 83.39 87.85 92.27 

91 70.22 75.27 81.2 82.59 83.33 87.85 91.4 

92 72.67 76.03 81.69 83.92 82.95 89.71 91.26 

93 69.92 77.68 80.6 82.49 83.59 88.64 91.17 

94 71.89 75.18 80.91 83.15 81.92 89.65 91.73 

95 70.8 75.52 81.29 81.28 83.41 87.12 91.77 

96 71.02 75.92 81.63 83.77 85.05 89.44 91.64 

97 70.64 75.26 79.03 83.72 84.54 89.59 91.36 

98 71.65 77.62 81.15 84.24 84.52 87.45 91.92 

99 70.98 74.94 80.94 83.38 83.41 88.89 92.15 

100 71.23 75.72 80.26 82.81 83.99 87.84 92.42 

 

 


