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1. Introduction

Reference evapotranspiration information or denoted as ETo was introduced by the United Nations Food and

Agriculture Organization (FAO) as a methodology for calculating crop evapotranspiration [1] is widely used in irrigated 

plantation to calculate crop water requirements and plan the use of water resources efficiently. Estimation of crop 

evapotranspiration successfully used in water resources management, hydrological cycle, water quality prediction, and 

reservoir operation. Furthermore, accurate assessment of ETo is essential in estimation of water requirement, water 

resources planning and management, irrigation scheduling, water allocation and determination of the water budget. 

Last previous decades there has been a widespread interest in the application of ETo. Since the PM method provides 

precise ETo values in various climate areas and has shown comparable and good performance [2],[3],[4] therefore it has 

been widely known as standard calculating ETo [5], [6]. The studies unveiled over evaporative processes, most models 
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of evapotranspiration were reflecting some measure of climatological control. Evapotranspiration rate can then be 

obtained by multiplying the reference evapotranspiration by the crop coefficient. The PM method is shown to perform 

well for dense, shaded canopies areas and wet vegetated cover [7]. However, the PM equation requires for data 

applicability which are not readily available such as surface and aerodynamic resistance. 

Due to the interdependence of the factors affecting the evapotranspiration, the study on the evaporative demand of 

the crop regardless of type, its stage development and its management is difficult. Traditionally, evaporation was measure 

of by lysimeter and pan-evaporimeter are subjected to a large set of assumption, labor-intensive, and may irrelevant for 

big-scale studies. 10 different methods used has been reviewed by Rana and Katerji [4] for measuring and estimating 

actual ETo at farm scale in Mediterranean region where each method possessed advantages and constraint. most frequent 

devices used to measure crop ETo are Class A Pan (CAP) and Piche Atmometers (ATM) [8] as well as lysimeter and 

Andersson evaporimeter (ANE). These methods were evaluated by [3] in Chile to measured crop ETo inside greenhouse 

climates and compared with empirical PM equations and FAO-Radiation equation with correlations values R2 measured 

directly by lysimeter. ET also can be measured directly by experimental, e.g. lysimeters, eddy covariance systems, and 

Bowen ratio energy balance [9], [10], but these methods are complex, costly and not available in many regions [11], [12]. 

Therefore, development of mathematical models for ET estimation is highly requisite, which usually relies on reference 

ETo. 

The complexity of evapotranspiration modeling has led researchers to test the utility of data-driven models using 

conceptual models and can be summarized and categorized into: (i) physically-based equations and (ii) empirical 

relationships (meteorological data). Li et al., (2010) predicted ETo with Pan Evaporation, Epan using calibrated Kp and 

with 4-variable regression function method and the studies were conducted at six locations in northern China. Both 

methods gave good prediction. They concluded that Epan is simple, relatively accurate and requires minimal historic 

climatic data. Another example was by [14] using time series simulation model ARIMA. Due to the development of 

computing technologies, researchers have moved toward applying these in modeling ETo. Examples studies using 

artificial neural networks (ANNs) and neuro-fuzzy model i.e. by [15], [16] and [17] in conjunction with Hargreaves ETo 

equation. The Extreme Learning Machines (ELM) approach can be used to estimate the ETo using minimum weather 

data in their calculation [18]-[19] and using genetic algorithm by Guo et al.[20] and [21], as well as Kim et al.[15] and 

[22]. Another approach is using artificial intelligence (AI) modeling. This technique allows researchers to map the non-

linear relationship without the need explicitly specify the mathematical equation for the model. Since most approach is 

based on component-oriented and programming based, the ETo estimated with the modified PM equation can be accessed 

by the software i.e. [23] and they revealed the practicability of using these methods without necessity of complex 

equations in typical PM-ETo calculations. 

The main objective of the present study is to estimate the ETo by using Differential Evolution and System 

Identification (DESI) and Modified Genetic Algorithm (MGA) approach. The DESI and MGA algorithm are proposed 

especially for modeling daily and monthly ETo in peninsular of Malaysia. A linear-in-the-parameter Finite Impulse 

Response (FIR) model was used as model representation. The equation FAO-56 PM has been used as the reference and 

the performance will be validated and compared with PM estimates. The paper is organized as follows. The next section 

presents PM empirical equation followed by description of datasets used in this study. Next, a model representation that 

used in the DESI algorithm and MGA is elaborated. The following section explains the DESI and MGA algorithm and 

model validation. Then, the ETo equation and data description are presented in the following section. After that section, 

the results and discussions of the study are presented. The final section provides the contribution of the study. 

 

 

2. Research Method 

 

2.1 Penman-Monteith Reference Evapotranspiration Equation  

Numerous methods to estimate ETo have been developed and the FAO-56 PM equation that been proposed by FAO 

is recommended as a method for determining ETo. This method has been selected because it closely approximates grass 

ETo at the location evaluated, is physically based, and explicitly incorporates both physiological and aerodynamic 

parameters. Hence, the equation is proposed as the standard equation for estimating ETo and for evaluating other methods 

[24]. The FAO-56 PM equation proposed for ETO estimation [2] was written as: 

 

𝐸𝑇𝑜 =
0.484∆(𝑅𝑛−𝐺)+𝛾(

900

𝑇+273
)𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑢2)
 (1) 

 

where ETo is the standardized reference ET, mm d-1 for daily time steps, or mm m-1 for monthly; Rn is the calculated net 

radiation at the crop surface, MJ m-2d-1 for daily time steps, or MJ m-2m-1 for monthly; G is the soil heat flux density at 

the soil surface, MJ m-2d-1 for daily time steps, or MJ m-2m-1 for monthly; T is the mean daily or monthly air temperature, 

°C; u2 is the mean daily or monthly wind speed, ms-1; es is the saturation vapor pressure, Δ the slope of the vapour pressure 

curve (kPa °C-1), Net radiation can be estimated from Eqns. (21) to (25), (28)–(33), (38)–(40) in [25]. 



Samsuri S. F. M. et al., Int. J. of Integrated Engineering Vol. 10 No. 7 (2018) p. 117-129 

 

 

 
119 

2.2 Data Description 

The daily data recorded at two meteorological stations (Senai and KLIA) managed by the Malaysian Meteorological 

Department (MMD) are used to evaluate the performance of the weather data estimation from weather forecasts using 

the PM method. The respective locations are described as at coordinate (latitude 2.017N, longitude of 103.19°E elevation 

of 88.1) for Senai and (latitude 2.733°N, longitude 101.7°E, elevation 16.3) for KLIA as show in Fig. 1. For estimating 

ETo, the data was logged and recorded for a month period August 2011 and this period was selected including 

temperatures, wind speed, relative humidity, and solar radiation. The needs for checking the quality of weather data and 

approaches for their correction also discussed by Allen et al.[11].  

 

 
Fig.1 - Location of the weather stations used in this study. 

 

 

Fig 2 - The inputs of KLIA and Senai for daily dataset 

 

KLIA 

Senai 
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Fig 3 - The ETo values of KLIA and Senai for daily dataset 

 

 
Fig 4 - The inputs of KLIA and Senai for monthly dataset 

 

 

Fig 5 - The ETo values of KLIA and Senai for monthly dataset 
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3. Modeling and Algorithms 

In system identification, a suitable model is needed in representing a dynamic system. This section will elaborate a 

model to be used in estimating ETo values and algorithms implemented in the modeling daily and monthly ETo for the 

selected locations. 

 

3.1 Model description 

The model representation gives the information and characteristics of that system to be modeled. Example of model 

types that usually used in the modeling dynamic systems are: AutoRegressive with eXegeneous inputs (ARX) for 

modeling linear systems, while for nonlinear systems are Nonlinear ARX (NARX), i.e. state space model, neural network 

model, and fuzzy model. Examples of ARX and NARX models used for various applications are such as in 

[26],[27],[28],[29]. In ARX model, basic relationship between the input and output in linear difference equation described 

as: 

𝑦(𝑡) =  −𝑎1𝑦(𝑡 − 1) − ⋯ − 𝑎𝑛𝑦
𝑦(𝑡 − 𝑛𝑦) + 𝑏1 𝑢(𝑡 − 1) + ⋯ + 𝑏(𝑛𝑢) 𝑢(𝑡 − 𝑛𝑢) + 𝑒(𝑡)  (2) 

where a1...any and b1...bnu is coefficient of output and input models and e(t) represents white noise. Eq. (2) is used in 

modeling linear discrete-time of single variable system while the equation for multivariable system is: 

 

𝑦(𝑡) =  −𝑎1𝑦1(𝑡 − 1) − ⋯ − 𝑎𝑛𝑦
𝑦𝑖(𝑡 − 𝑛𝑦) + 𝑏1𝑢1(𝑡 − 1) + ⋯ + 𝑏𝑛𝑢

𝑢𝑗(𝑡 − 𝑛𝑢) +  𝑒(𝑡) (3) 

where i and j is number of input and output respectively. While study is only considered input variables where ny is zero, 

or called Multi Input Single Output (MISO) system and can be represented by: 

 

𝑦(𝑡) = 𝐶 + 𝑏1𝑢1(𝑡) + 𝑏2𝑢1(𝑡 − 1) + ⋯ + 𝑏𝑛𝑢
𝑢𝑗(𝑡 − 𝑛𝑢) +  𝑒(𝑡)  (4) 

where C is constant that was added for reducing the effect of the disturbance. According to Ljung [30], Eq. (4) is called 

Finite Impulse Response (FIR) model was commonly used in signal-processing applications [31]. Besides, it has been 

widely used for it guaranteed stability and simplicity. The coefficients of input models are estimated using Least Square 

Estimation (LSE) as shown in Eq. (5): 

 

𝜃𝑘 = [𝑈𝑘
𝑇𝑈𝑘]−1𝑈𝑘

𝑇𝑌  (5) 

where U and Y are vectors of input and output data respectively, θ is estimated parameter, and k is number of inputs [32]. 

 

In this study, the ETo is predicted using Eq. (1) as the model representative by considering ETo as the output y(t) at 

the time t, while u1, u2, u3, and u4 represent air temperature (C̊), relative humidity (%), wind speed (m/s), and solar 

radiation (MJ/m2) respectively as the inputs. The description of data used is elaborated in next section. The algorithms 

used in this study are modified Genetic Algorithm (MGA) and a combination of Differential Evolution and System 

Identification (DESI). These algorithms are elaborated in the next sub-sections. 

 

3.2 Modified Genetic Algorithm (MGA) 

Genetic algorithm (GA), is mathematical models of natural genetics were developed by [33], is a stochastic 

optimization technique where the power of nature to develop, destruct, improve and annihilate life is abstracted and used 

to solve complex optimization problems. The implementation of algorithm can be summarized as follow [34] and shown 

as Fig. 6(a) below. The optimal FIR model is selected by applying the MGA for estimating daily and monthly ETo values. 

To get the maximum number of terms, M the model parameters must be set (i.e. output lag, ny and input lag, nu) for full 

polynomial model representation 

The evolution initiate with (t=1) till the maximum number of generation, then the coefficients of the terms are 

estimated using Eq. (5). The predicted system output, ŷ(t) is calculated using the collected data pairs. To calculate the 

objective function, OF using Eq. (6), The fitness of each chromosome in the population is calculated before iteration 

stops when it reached maximum generation.  

 

𝑂𝐹 = ∑ (𝑦(𝑡) −  ŷ(𝑡)) + 𝑙𝑜𝑔 𝐶𝑘 𝑁
𝑖  (6) 

where y(.) and ŷ(.) is actual and predicted output respectively, log Ck and N is penalty added and number of data, 

respectively.  

 

3.3 Differential Evolution and System Identification (DESI) 

The proposed algorithm called DESI algorithm is a combination of differential evolution and system identification. 

The proposed algorithm is formulated for estimating ETo values. There are two major parts of the proposed algorithm: 

the first one is partly based on differential algorithm, the second one is to generate a model for estimating ETo through 

system identification process. Details implementation of DESI algorithm in modeling daily and monthly ETo, are as 

follows shown as Fig. 6(b) below. To define objective function, the selected term of the identified model is estimated 
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using LSE algorithm. Thus, the OF can be use and calculated same as Eq. (6), where the values of ŷ(t) is used, y(t) and 

Ck are actual output and the number of insignificant terms respectively. 

Create parent population, Pt and offspring population, Qt, with size of population size, NP. After the new vectors are 

produced in the population, the OF for the new vectors are defined for both Pt and Qt. Create new generation of 

population, Pt+1 with size NP and select final population of Pt+1 by using greedy selection proposed by [35]. 

 

3.4 Model Validation 

Statistical analysis is used to validate and evaluate the performance the predicted outputs of the models with the 

actual values of the outputs obtained experimentally. The strength of the relationship between the predicted and 

experimental outputs is indicate using coefficient of determination (R2) as given by [36]; 

 

𝑦̂𝑂𝑆𝐴(𝑡) =  𝐹𝑖̂[𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢1(𝑡 − 1), … , 𝑢𝑗(𝑡 − 𝑛𝑢)] (7) 

where Sxy, Sxx and Syy are respectively given by 

𝑆𝑥𝑦 =  ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 −

(∑ 𝑥𝑖
𝑛
𝑖=1 )(∑ 𝑦𝑖

𝑛
𝑖=1 )

𝑛
  (8) 

𝑆𝑥𝑥 =  ∑ 𝑥𝑖
2𝑛

𝑖=1 −
(∑ 𝑥𝑖

𝑛
𝑖=1 )

2

𝑛
  (9) 

𝑆𝑦𝑦 =  ∑ 𝑦𝑖
2𝑛

𝑖=1 −
(∑ 𝑦𝑖

𝑛
𝑖=1 )

2

𝑛
  (10) 

in which n is the total number of data in the particular data set. 

 

 

    
 

Fig. 6 - (a) MGA flow chart; (b) DESI flow chart. 

 

Furthermore, mean square error (MSE), root mean square error (RMSE) and sum square error (SSE) also measured 

to validate the models. The accuracy of the FIR model prediction can be measured and compared the predicted output 

with the previous input and output data using a one-step ahead prediction (OSA). 
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4. Result and Discussion 

Four models are used in investigating the performance of the algorithms to model daily and monthly ETo as listed 

in Table 1. These models are developed based on FIR model as described in Eq. (3). The models with linear in their 

parameters and structures are considered. The models have different number of terms M which increased as the input and 

output lags increased.  

Table 1 - Model description whereas nu and ny are input and output lags respectively.  

Model nu ny Number of terms 

Model 1 2 2 13 

Model 2 3 3 17 

Model 3 4 4 21 

Model 4 5 5 25 

 

4.1 Estimating ETo using MGA 

Tables 2-3 represent the results for daily and monthly dataset using MGA algorithm. As the model size gets larger, 

the statistics error gets lower in values. Although models with lower number of terms, they are capable in capturing the 

daily and monthly ETo values in both stations. The values for SSEv and RMSEv in the tables showed that Model 1 has 

shown the lowest value. Therefore, it can be concluded that Model 1 outperformed the other models in terms of model 

size and error statistics in both training and validation periods. 

 

Table 2 - Results of applied MGA models in KLIA and Senai for Daily dataset 

 Model MSEt (×10-3) SSEv R2 RMSEv Model size 

KLIA 

Model 1 22.5 8.230 0.9607 0.1601 3 

Model 2 27.9 10.830 0.9512 0.1840 3 

Model 3 3.64 1.460 0.9937 0.0676 7 

Model 4 5.30 2.891 0.9874 0.0954 7 

SENAI 

Model 1 3.83 0.935 0.9955 0.0558 5 

Model 2 26.8 5.488 0.9724 0.1355 3 

Model 3 39.8 7.707 0.9654 0.1608 5 

Model 4 6.91 2.600 0.9872 0.0936 8 

Table 3 - Results of applied MGA models in KLIA and Senai for Monthly dataset 

 Model MSEt (×10-3) SSEv R2 RMSEv Model size 

KLIA 

Model 1 3.17 0.328 0.9781 0.0561 4 

Model 2 18.6 4.326 0.7404 0.2049 4 

Model 3 3.21 0.426 0.9723 0.0647 7 

Model 4 1.94 0.321 0.9791 0.0564 7 

SENAI 

Model 1 0.79 0.205 0.9879 0.0455 4 

Model 2 3.99 0.443 0.9720 0.0673 5 

Model 3 2.44 0.347 0.9794 0.0598 5 

Model 4 4.04 0.493 0.9672 0.0717 5 

 

4.2 Estimating ETo using DESI 

The results for estimating daily and monthly ETo using DESI algorithm are shown in Tables 4-5. The values for 

statistical errors for all different models are significantly consistent as shown in Tables 4. The results indicate that DESI 

algorithm has shown consistency in producing a good predictive model to estimate ETo values. DESI algorithm needs to 

justify one type of model while executing. even Model 3 show slightly better result in Table 5, nevertheless in overall 

the Model 1 is chosen as a good model to be used in modeling ETo for most cases (daily and monthly) and places (KLIA 

and Senai) 
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Table 4 - Statistical results for applied model KLIA and Senai Daily dataset  

 Model MSEt (×10-3) SSEv R2 RMSEv Model size 

KLIA 

Model 1 8.37 2.608 0.9885 0.0901 3 

Model 2 8.46 2.608 0.9885 0.0903 3 

Model 3 8.54 2.596 0.9885 0.0902 3 

Model 4 19.4 9.157 0.9642 0.1697 2 

SENAI 

Model 1 7.14 1.145 0.9944 0.0618 3 

Model 2 7.20 1.145 0.9944 0.0619 3 

Model 3 7.27 1.144 0.9944 0.0620 3 

Model 4 7.16 1.129 0.9944 0.0617 3 

Table 5 - Statistical results for applied models KLIA and Senai Monthly dataset  

 Model MSEt (×10-3) SSEv R2 RMSEv Model size 

KLIA 

Model 1 2.81 0.3968 0.9751 0.0618 3 

Model 2 2.72 0.3836 0.9750 0.0610 3 

Model 3 2.77 0.3836 0.9749 0.0613 3 

Model 4 2.83 0.3881 0.9745 0.0620 3 

SENAI 

Model 1 2.17 0.3197 0.9815 0.0568 3 

Model 2 1.02 0.2839 0.9830 0.0538 3 

Model 3 4.97 0.6053 0.9609 0.0790 3 

Model 4 5.42 0.6062 0.9635 0.0795 3 

 

4.3 Comparison and evaluation of models using PM, MGA and DESI 

Daily and monthly data for two locations were used for the comparison and evaluation of MGA and DESI ETo 

models with PM ETo values. The summarized values are given in Table 6. The results indicate that MGA ETo model 

outperforms DESI for monthly dataset with lower values of error statistics. Meanwhile, DESI ETo model performs 

significantly better than MGA for daily dataset. Comparing inputs required for different models in estimating ETo, DESI 

ETo models show advantage with fewer input requirements.  

 

Table 6 - Comparison results for all datasets 

Datasets Model Inputs MSEt(×10-3) R2 RMSEv 

KLIA-
Daily 

Penman-
Monteith 

Temperature, relative humidity, wind 
speed, solar radiation 

- - - 

MGA 
Temperature, relative humidity, wind 

speed, solar radiation 
8.93 0.9815 0.1157 

DESI Relative humidity, solar radiation 8.37 0.9885 0.0901 

Senai-
Daily 

Penman-
Monteith 

Temperature, relative humidity, wind 
speed, solar radiation 

- - - 

MGA 
Temperature, relative humidity, solar 

radiation 
8.37 0.9848 0.1038 

DESI Relative humidity, solar radiation 7.14 0.9944 0.0618 

KLIA-
Monthly 

Penman-
Monteith 

Temperature, relative humidity, wind 
speed, solar radiation 

- - - 

MGA Relative humidity, solar radiation 8.41 0.8704 0.1492 

DESI Relative humidity, solar radiation 14.8 0.8426 0.1713 

Senai-
Monthly 

Penman-
Monteith 

Temperature, relative humidity, wind 
speed, solar radiation 

- - - 

MGA 
Temperature, relative humidity, solar 

radiation 
3.46 0.9727 0.0685 

DESI Solar radiation 5.44 0.9595 0.0861 

*MSEt (mean square error for testing data); RMSEv (root mean square error for validation data) 
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The mathematical expressions of ETo models for all dataset are listed in Table 7. Results from the table show that 

DESI ETo model produced a compact model with good predictive accuracy than MGA ETo model. The mathematical 

equations at daily dataset for DESI algorithm are shown almost the same in term of coefficients and parameters. The ETo 

models produced by both algorithms at all dataset, it can be seen a dominant climatic variable which is solar radiation, 

U4, is existed. This is significantly showed at Senai-Monthly dataset where only one parameter existed in the model 

produced by DESI algorithm.  

Table 8 displays the DESI and MGA ETo values versus PM ETo values for all dataset at KLIA and Senai stations. 

As can be seen from the scatterplots and fit line equations in Table 7, DESI models perform better than MGA models at 

daily dataset. Meanwhile, at monthly dataset, MGA models show slightly better than DESI models in term of R2 values. 

However, DESI models have more scattered in estimating the ETo values than those of the MGA models to confirm the 

statistic errors in Table 8. 

Figures 7-10 compares the ETo models using MGA and DESI algorithms with Penman-Monteith ETo for both daily 

and monthly datasets.  The proposed algorithm MGA and DESI indicate that the estimation of ETo values can be 

achieved. The trend for ETo models using daily data sets are closely related to PM ETo as shown in Figures 7 and 8. A 

reason behind this may be the daily dataset used are more accurate and reliable compared with monthly dataset. As can 

be seen in Figures 9 and 10, there are shown slightly difference in term of estimating monthly ETo values with the 

reference values. However, it is not very significant, with the trend of estimating ETo values are the same. 

Table 7 - Mathematical expressions of ETo models for all dataset 

 Dataset Mathematical equation  

MGA 

KLIA-Daily ETo(t)  = 8.47E-2u1(t-2) - 2.10E-2u2(t) + 1.52E-1u3(t) + 1.24E-2u3(t-2) + 1.71E-1u4(t) 

Senai-Daily ETo(t)  = 1.33E-1u1(t) - 2.86E-2u2(t) + 1.52E-1u4(t) - 2.95E-3u4(t-2) 

KLIA-Monthly ETo(t)  = -3.23E-2u2(t) + 1.87E-2u2(t-2) + 2.46E-1u4(t) + 5.32E-2u4(t-2) 

Senai-Monthly ETo(t)  = 7.16E-2u1(t) - 1.58E-2u2(t-2) + 2.03E-1u4(t) - 2.50E-2u4(t-2) 

DESI 

KLIA-Daily ETo(t)  = 4.92 - 4.74E-2u2(t) + 1.59E-1u4(t) 

Senai-Daily ETo(t)  = 4.93 - 4.72E-2u2(t) + 1.55E-1u4(t) 

KLIA-Monthly ETo(t)  = -9.92E-3u2(t) + 2.81E-1u4(t) 

Senai-Monthly ETo(t)  = 2.14E-1u4(t) 

  *E describes as exponential or usually using (×10-n). 

Table. 8 - Scatterplots of the DESI and MGA models during the validation period. 

 KLIA Senai 

Daily 
dataset 
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Fig 7 - Superimposed ETo values between PM, MGA, and DESI for KLIA-Daily dataset 

 

 
Fig 8 - Superimposed ETo values between PM, MGA, and DESI for Senai-Daily dataset 
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Fig 9 - Superimposed ETo values between PM, MGA, and DESI for KLIA-Monthly dataset 

 

 
Fig 10 - Superimposed ETo values between PM, MGA, and DESI for Senai-Monthly dataset 

 

5. Conclusion 

In this study, the input-output data collected from the Reference Evapotranspiration or called ETo system was 

considered. The DESI algorithm produces good predictions of daily and MGA for monthly ETo in middle and southern 

peninsular of Malaysia. Comparison between the obtained MGA, DESI and the reference ETo-PM is comparable and 

showed almost identical. The results are able to imply the interrelations of four measurement inputs namely air 

temperature, relative humidity, wind speed, and solar radiation for estimating the ETo. From the MGA and DESI models, 

the dominant parameters are solar radiation. Thus, the estimation of ETo can be done with only these dominant parameters 

due to the absence of other parameters. As a conclusion of the results presented in this study, the MGA and DESI 

algorithm can be used in estimating daily and monthly ETo. This study shows that the proposed algorithm can be applied 

as an alternative algorithm to model the dynamic behavior of any process systems. For further studies, the different 

regions in Malaysia with the establishment of reliable climatic database system are investigated. 
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