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1. Introduction

Within the area of human cognition, problem solving is considered to be "higher-layer cognitive process" (Wang &

Chiew, 2010, p.81). As explained by the authors: 

Abstract: Problem solving is regarded as one of the core work-related abilities and skills, which are highly demanded 

by the workplace and industry. Current literature suggests that problem solving abilities might differ from one 

individual to another due to biological factors such as brain activationa, cognitive functions and hormones, as well 

as due to socio-cultural and socio-economic factors like gender roles, self-perceptions and stereotyping. Hence, this 

study used electroencephalogram (EEG) signals to investigate the differences in problem solving skills among the 

Malaysian undergraduates based on their gender differences. 29 undergraduate students from the Faculty of Electrical 

Engineering, Universiti Teknologi Malaysia (UTM) served as the subjects of the experiments in this research. 

Specifically, 16 female and 13 male subjects engaged in two main problem-solving tasks: mental arithmetic task and 

Tower of Hanoi (TOH) task. The EEG data were analysed using partial directed coherence (PDC) and power 

spectrum estimation (PSE). Based on the results, female subjects achieved only 1% higher performance in mental 

arithmetic task, while male subjects achieved about 13% higher performance in TOH task. The differences in terms 

of the functional connectivity between brain regions, i.e. in PDC, as well as the power distribution of 6 EEG 

waveforms, i.e. delta, theta, alpha, beta, gamma and high gamma bands are also highlighted and represented 

graphically in this paper. 

Keywords: Problem solving, electroencephalogram (EEG) signals, gender differences, partial directed coherence 

(PDC), power spectrum estimation (PSE). 
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Problem solving is a cognitive process of the brain that searches a solution for a given 

problem or finds a path to reach a given goal. When a problem object is identified, problem 

solving can be perceived as a search process in the memory space for finding a relationship 

between a set of solution goals and a set of alternative paths. (ibid.) 

In order to meet the demands and expectations of the real workplace, graduates need to equipped themselves with 

“work-related practical skills or competences that current employees (or prospective new hires) are able to use in order 

to perform various job tasks successfully" (World Economic Forum, 2016, p.18). Among the core work-related abilities 

and skills needed to accommodate the fourth industrial revolution is problem solving, which also one of the elements of 

higher order is thinking skills heavily emphasized by academic curriculum across the world.  

In examining undergraduates' problem solving task by the use of brain functional connectivity, a number of 

fundamental concepts were suggested by the neuropsychological literature. The first concept acknowledges the fact that 

the initial stage of human problem solving is the understanding of the problem. Within this stage of problem 

identification, the elements of attention, mental representation of the problem and situated cognition need to be 

considered. This is in line with the conceptualisation of problem solving as a complex mental process resulted from "the 

culmination of all the process that make up (individuals) cognitive arsenal (which include) perception, pattern 

recognition, attention and immediate memory, language, and decision making" (Robinson-Riegler & Robinson-Riegler, 

2012, p.494). Another crucial concept in problem solving is the strategies utilised, which include the analogy approach, 

the means-end heuristic and the hill-climbing heuristic (Matlin, 2014). 

Past literature has suggested the differences between males and females in terms of cognition functions (Bell et al., 

2006; Miller & Halpern, 2014; Weiss et al., 2003). Males and females might demonstrate the same cognitive performance 

but mentally they were actually gone through different information processing paths (Gong, He & Evans, 2011; Iddon & 

Williams, 2009; Jewel, 2009). Moreover, through numerous experiments, it was found out that females could perform 

better in some tasks compared to males. For instance, females tend to be better than males in linguistic tasks, are better 

in autobiographical memory and are more multitasking than males (Iddon & Williams, 2009; Weiss et al., 2003; Thilers, 

MacDonald & Herlitz, 2007). Males on the other hand outperformed women in visuo-spatial tasks like mental rotation 

and mathematical reasoning (Iddon & Williams, 2009; Weiss et al., 2003; Thilers, MacDonald & Herlitz, 2007). 

Furthermore, the differences of males and females could also be accessed through their creativity (Razumnikova, 2004). 

With reference to brain differences, a longitudinal study by Raznahan et al. (2010), for instance, revealed that sex 

hormones influence some specific aspects of brain development during puberty. The study provided the evidence that 

"adolescence (n=284) with higher androgen sensitivity showed more male-typical patterns of maturation in specific areas 

of the cerebral cortex" (Miller & Halpern, 2014, p.40. Such finding led to insights into cognitive sex differences mainly 

because the cerebral cortex supports most cognitive functioning. On the other hand, the authors also highlighted findings 

from other studies by Jausovec and Jausovec (2012) and Lenroot and Giedd (2010) which indicated that "women and 

men sometimes use brain regions differently to achieve equal cognitive performance" [ibid.].  

It is suggested that gender differences in cognition functions is also due to the socio-cultural aspect of gender roles 

that resulted in other gender specific elements such as self-perceptions and stereotyping (Miller & Halpern, 2014; Weiss 

et al., 2003). From the aspect of cultural differences, studies on gender or sex differences in mathematics tests (e.g. Else-

Quest, Hyde, & Linn; 2010; Kane & Mertz; 2012) challenged the universal idea of male advantages in mathematics as 

sex difference varied across socioeconomic levels of families and countries. For instance, it is found that males who 

belonged to families with higher socioeconomic status (e.g. Levine et al., 2005; Penner & Paret, 2008) and those who are 

living in wealthier countries (e.g. Lippa, Collaer, & Peters, 2010; Reilly, 2012) have more advantages in spatial (and 

mathematics) performance.  

Engagement in sex-typed activities further explained the development of spatial skills among males. For example, 

spatial skills can be improved by playing construction toys or action video games that are male-typical activities (e.g. 

Miller & Halpern, 2014; Uttal et al., 2013).  Research like one by Haier et al. (2009) further added that such male-typical 

activities could also caused neural changes in cortical thickness, as well as ex-differentiated patterns of brain activation. 

Despite extensive studies on brain connectivity conducted by a number of Malaysian researchers (Hashim et al., 

2015; Kosnan, Safri & Khalid, 2015; Safri et al., 2008), it was found that less work had been done in incorporating 

neuropsychological concepts into that particular research area. Based on these observations, the researchers strongly 

believe that to explore brain functional connectivity from the neuropsychological perspective within the local subjects 

was worth researching on. In fact, Matlin (2014) suggested that problem solving strategies are contextualised and that 

researchers should consider individual and cultural differences when attempting to explore this dimension.  

Owing to the gap within the Malaysian literature and having been guided by the recent and relevant literature within 

the neurocognitive aspect of problem-solving, this research seeks to identify the differences of performance based on 

brain functional connectivity with regards to gender of the Malaysian subjects. Hence, guided by the science of cognitive 

sex differences as emphasised by Miller and Halpern (2014), this research aimed to examine the Malaysian 

undergraduates' problem solving ability from the neurocognitive approach that specifically focuses on brain functional 

connectivity.  

The analysis for structure of the brain begins with the identification of the various functional parts of the brain with 

their interconnections (Park & Friston, 2013). Each functional part is referred as a node where the interconnection 
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between each node can be defined by three types of connectivity: structural connectivity, for anatomical links; functional 

connectivity, for undirected statistical dependencies; and effective connectivity, for directed causal relationships among 

distributed responses Friston (1994). Functional connectivity is generally inferred by the correlation between nodal 

activities on the basis of blood oxygenation level–dependent (BOLD) functional MRI (fMRI) or coherence in electro- or 

magnetoencephalogram (EEG/MEG) signals. 

EEG is one of techniques used to measure the electrical activity of the brain at different sites of the head. This is 

typically using electrodes placed on the scalp, i.e. by using cap electrode. One of its main benefits over other brain signal 

recording techniques are its high temporal resolution and the fact that it can be recorded noninvasively (Freeman & 

Quiroga, 2013). EEG is a very accessible and useful tool for the analysis of high level brain processes since it is relatively 

low cost and widely used both in clinical settings and research laboratories (ibid.)  

Past literature suggested that EEG has been used on healthy participants or subjects in studies related to brain 

mapping (e.g. Tóth et al., 2017; Wens et al., 2015), within studies that examined the nature of brain connectivity in terms 

of its structure and functions (e.g. Allen et al., 2018; Amico et al., 2017; Chu et al., 2015; Hardmeier et al, 2014), as well 

as studies related to specific clinical conditions involving sleep patterns (e.g. Miraglia et al., 2018), or during a particular 

intervention (e.g. Myers et al., 2015). Within the clinical setting, EEG has also been utilised to study brain functional 

connectivity in research involving patients with certain diseases (e.g. Nunez, Srinivasan & Fields, 2015), autism (e.g. 

Righi et al., 2014), epilepsy (e.g. Adebimpe et al., 2016; Lagarde et al., 2018; Sargolzaei et al., 2015), dyslexia (e.g. 

González et al., 2018), Alzheimer’s disease (e.g. Engels et al., 2015; Vecchio et al., 2017; Yu et al., 2016), Parkinson’s 

disease (e.g. Yuvaraj et al., 2016), and schizophrenia (e.g. Damaraju et al., 2014). 

 

2. Methodology 

2.1 Subjects  

In this study, 29 healthy undergraduates from the then Faculty of Electrical Engineering (now School of Electrical 

Engineering), Universiti Teknologi Malaysia (UTM) served as the subjects. They consisted of 16 female and 13 male 

students. This as to accommodate the suggestions by Matlin (2014) that problem solving strategies are contextualised 

and that researchers should consider socio-cultural differences when attempting to explore this dimension. In this study, 

the subjects’ educational background was the main socio-cultural variable that was taken into consideration. The number 

of subjects was also aligned with other past studies conducted within the Malaysian context (e.g. Hashim et al., 2015; 

Kosnan, Safri & Khalid, 2015). The selection of subjects was based on convenience sampling approach. Those who 

volunteered to participate in the experiment were given choices to choose preferred time slots based on the schedules that 

the researchers provided.  
 

2.2 Research Design 

In order to gather the data, experimental research was used. Specifically, repeated measure design was employed to 

allow the same subjects to experience the same control and experimental conditions (Shaughnessy & Zechmeister, 1997). 

Through such method, subjects’ cognitive abilities can be explored and compared (Elmes, Kantowitz & Roediger, 2012). 

 

2.3 Measurement 

The experiment began with the researchers gaining approvals from the subjects through informed consent. Subjects 

were given a brief explanation regarding the terms and conditions in proceeding experiment as well as the experimental 

procedure (Priscilla, 2014). They were then set up with EEG instrument. The experiment was conducted inside a 

laboratory room where the room was equipped with natural experiment setting with limited users, in order to avoid any 

extraneous environment disturbance. The subject’s head was attached with EEG electrode and the signals were recorded 

using NeuroFax EEG 9000 signal acquisition software. The electrode placement for each subject is shown in Figure 1 

while the experiment procedure flow chart is shown in Figure 2. 

 
 

Fig. 1:  Electrode label points based on the 10/30 electrode placement system 
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Fig. 2:  The experimental procedure 

The labeling electrodes placements were based on adjacent brain areas which the letter represented structural brain 

regions identification (Priscilla, 2014). The number besides the letter signified the position of the placements on the head 

where odd numbers represented left side of the head and even numbers represented right side of the head (Trans Cranial 

Technologies, 2012). Table 1 illustrates the electrodes labeling letters that represent the brain regions. 

 

Table 1: Electrodes labeling representing brain regions 

  

Electrode Brain Region 

F Frontal 

T Temporal 

C Central 

P Parietal  

O Occipital 

 

For the control task, subjects were required to be at rest and relax, and if possible with emptied mind. The subjects 

were asked to open their eyes during this task to meet the requirement of the recordings. The control task was recorded 

for 30 seconds for one to three times depending on a subject’s mental condition (for instance, nervousness) before they 

proceeded with the problem solving task. 

The problem solving task consisted of two sub tasks: the arithmetic task and the Tower of Hanoi (TOH) task. In the 

arithmetic task, subjects were asked to mentally subtract 7 from 1000 continuously within 30 seconds. The final answer 

for each trial was noted and the process was repeated for three trials after resting for about 30 seconds per trial. EEG 

signals were recorded while the subjects were engaging in the thinking process. 

Finally, the TOH task was divided into three difficulty levels: easy, medium and hard. The levels were chosen based 

on the feedback from subjects of the preliminary experiment. EEG signals were recorded when subjects were engaging 

in thinking (i.e. 30 seconds) and while solving the puzzle (i.e. maximum of two minutes). The rest time interval for each 

level was also 30 seconds. Overall, 10 EEG data (.csv) were recorded for each subject and the recorded EEG data were 

named using short form of the tasks name as shown in Figure 3. 

 

 
Fig. 3: Codes for recorded EEG data 

 
The EEG signal is first analysed to determine the functional connectivity between the various areas of the brain using 

partial directed coherence (PDC) method followed by the distribution of power in frequency using power spectrum 
estimation (PSE). The concept of PDC proposed in Teplan (2002) is a frequency domain method that represents a 
multivariate autoregressive (MVAR) process. Conceptually, PDC analysis is performed to illustrated interactions between 
time direction and spectral properties signal at the brain (Teplan, 2002). Granger causality principle can be expressed in 
terms of the MVAR that states if some time series y[n] contains information in past terms that helps in the prediction of 
series x[n], then y[n] is said to cause x[n]. An illustration of how PDC analysis is performed on a 3 equations MVAR 
process is shown below. Suppose a MVAR process is defined by the following sets of equations: 
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(1) 

where x1[n], x2[n] and x3[n] represent the MVAR process at node 1, 2, and 3 which are driven by additive white Gaussian 

noise sources v1[n], v2[n] and v3[n]. These equations represent the MVAR process show the correlation between each node 

1, 2 and 3 except that for x3[n] there is no correlation with x1[n]. In general, x[n] with conjunction at y[n] in MVAR 

determines the directional functionality. Thus, x[n] is operated as information sources that bidirectional functional 

connectivity to y[n] is regarded as information sink. 

Using the MVAR model defined in Equation (1), PDC analysis is performed using the method defined in (Takahashi, 

2007) and the results shown as a 3 x 3 matrix layout as shown in Figure 4a). The diagonal terms are not considered in the 

PDC analysis since it represents an interaction between a signal with itself. Thus, it is of interest to look for interactions 

for two different signals based on an acceptable magnitude. For discussions on the interpretation of PDC analysis is 

described in (Takahashi, 2007). Actual magnitude is obtained from prior knowledge of the characteristics of the signal 

interaction. From an acceptable magnitude of 0.1 for this example, functional connectivity does not occur only for x1[n] 

to x3[n]. The resulting functional connectivity diagram is shown in Figure 4b). Since 19 electrodes are used in the 10/30 

electrode placement system, the resulting matrix layout is 19 x 19 with a total of 19 elements in the functional connectivity 

diagram. 

 

 
(a) PDC analysis 

 

 
(b) Functional connectivity 

 

Fig. 4: PDC analysis results shown in a 3 x 3 matrix layout and the derived functional connectivity. [Ch 1 refers to x1[n], 

Ch2 refers to x2[n] and Ch3 refers to x3[n]; vertical axis represents magnitude and horizontal axis represents frequency in 

samples]. 

The distribution of EEG signal power is segregated according to the following frequency bands: delta (0-4 Hz), theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-31 Hz), gamma (31-51) and high gamma (51-120 Hz) (Dai, 2017; Omidvarnia, 2011). 

How much the power is distributed over the frequency band very depends on the performed task. For example, a high 

level in the gamma frequency band relates to active thinking. Thus, PSE can be utilized to determine how the power of 

the EEG signal is distributed over the frequency band. The most basic method for PSE is the periodogram which is defined 

as follows (Proakis, 2006). 

 

1 1 2 3 1

2 1 2 3 2

3 2 3 3
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 (2) 

where x[n] is the signal of interest in discrete-time representation, and N is the duration of the signal. Since the 

periodogram is not an efficient estimator, alternative methods are considered which reduces the variance in the PSE as 

the signal length is increased. The Welch PSE is such a method and is utilized in this study (Proakis, 2006). An N length 

signal x[n] is segmented into length of M samples where the total number of sub-segments is L=N/M. The segmented 

signal can be expressed as 

 

 (3) 

 

For each segment, the PSE is calculated similar to Eq. 3 

 

 (4) 

 

where w[n] is the window function. Any window function such as Hamming or Bartlett window can be utilized for this 

purpose. Once all the PSE for each segment is calculated, the average PSE is obtained by 

 

 (5) 

 

Overlapping of segments can be applied for the Welch PSE. If 50 percent is used, effectively the total number of segments 

doubles that results in reducing the variance in PSE by half compared to non-overlapping segments.  

 

 

3. Results 

In this study, analyses of data were conducted based on two outputs from the experiment, i.e. the tabulated answer 

and the performances of subjects, and the recorded EEG data (.csv) during the tasks. The tabulated answer and 

performance of subjects refer to the subjects’ abilities in answering the given arithmetic questions with accurate final 

value for each trial. This also included their abilities to complete the TOH task within the maximum of two minutes 

provided for each level. Based on this, comparison for gender factors can be made by calculating the statistics of high 

performance versus low performance subjects as shown in Tables 2 and 3. It is further represented in a graphical form as 

in Figures 5 and 6. 

In contrast, the recorded EEG data were analyzed using two methods, namely partial directed coherence (PDC) and 

power spectrum estimation (PSE) methods. The PDC analysis provided a more visual comparison based on the 

information pathway between the channels or brain regions of subjects when doing the given tasks. On the other hand, 

the PSE method analysed the change in power distribution of the EEG waveforms. In this project, both the PDC and PSE 

outputs were obtained on C-program running on a Linux platform. The outputs were further analysed using Microsoft 

Excel (for t-test) and Paint (for drawing). 

 

Table 2: Subjects’ performance statistics for female subjects 

Tasks 4FRH 4FLH 1FRH 1FLH F % Overall Overall 

(%) 

a1 3 2 2 2 9 56.25  

30 

 

62.5 a2 2 2 2 4 10 62.53 

a3 3 4 2 2 11 68.75 

ea 4 4 4 4 16 100  

28 

 

58.33333 ma 4 3 2 2 11 68.75 

ha 0 0 0 1 1 6.25 

 

Table 3: Subjects’ performance statistics for male subjects 

Tasks 4FRH 4FLH 1FRH 1FLH F % Overall Overall 

(%) 
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a1 4 1 2 1 8 61.53846  

24 

 

61.53846 a2 4 0 2 1 7 53.84615 

a3 3 2 3 1 9 69.23077 

ea 4 2 4 3 13 100  

28 

 

71.79487 ma 3 1 4 3 11 84.61538 

ha 2 0 1 1 4 30.76923 

 

 

 

Fig. 5: Graph of gender performances (%) against tasks: all trials 

 

Fig. 6: Graph of gender performances (%) against tasks: overall tasks 

4. Discussions 

4.1 PDC Analysis 

Using the methodology described in Section 2.3, the PDC output was plotted in the form a 19x19 matrix layouts of 

all the 19 channels used during EEG data recording for the 29 subjects and tasks. Figure 7 shows an example of function 

connectivity pattern for subject 1 while doing arithmetic task a1 and a2. For all functional connectivity patterns shown 

in this paper, the source for the signal is labeled as yellow while the sink for the signal is labeled as blue for male subject 

and pink for female subject respectively. Referring to task a1, the signal source is from the F2 region and the signal 

source for task a2 is from T4 region. Due to the large number of patterns, it is not possible to discuss each pattern for a 

given subject and task. The approach taken in this analysis is tabulate the signal sources according to task and gender as 

shown in Tables 4 and 5, and determine if there is any difference in the distribution of signal sources source from the 

functional connectivity pattern.  
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 (a) All Trials. (b) Overall Tasks. 

 

 

 

 

4.2.2 Handedness Differences 

 

 

Based on the data, the following statistics were obtained and tabulated as 

shown in Table 4.2. 
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4.2.2 Handedness Differences 

 

 

Based on the data, the following statistics were obtained and tabulated as 

shown in Table 4.2. 
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(a) 1a1 

 
(b) 1a2 

 

Fig. 7: Functional connectivity diagram for respondent 1 of task a1 and a2 

 

Basically, the functional connectivity pattern for problem solving should originate mainly from the frontal lobe. The 

tabulated PDC results have also shown that most of the signal sources for both the male and female subjects are from the 

frontal (F) regions. The results suggested that the female subjects outperformed the male subjects in arithmetic task while 

male subjects outperformed female subjects in TOH task.  

The summarised signal sources as shown in Table 6 especially proved that the female subjects use more frontal 

regions in arithmetic task, while the male subjects use more frontal regions during TOH task. This shows that the 

utilization of the frontal regions as the source of EEG information flow during a task is proportional to the subject’s 

performance shown in Tables 2 and 3. 

 

Table 4: Gender differences in PDC sources of information pathway for high task performance - Female 

subjects 

a1 a2 a3 et ea mt ma ht ha 

 

Fp1,  

Fp2, F8 

 

F7, F8 

 

 

Fp2, F3, 

F7, F8, Fz 

 

Fp1, Fp2, 

F7, F8 

 

Fp1, Fp2, 

F7, F8 

 

Fp1, F7, 

F8 

 

 

Fp1, F7, 

F8 

 

 

F7 

 

F7 

 

T3, T4, 

T5, T6 

 

 

T3, T4,  

T5 

 

 

T3, T4,  

T5 

 

 

T3, T4,  

T5 

 

 

T3, T4,  

T5 

 

 

T3, T4,  

T5 

 

 

T3, T4, 

T5, T6 

 

  

T3 

 

  

O1 

 

O2 

 

 

O1, O2 

 

 

O2 

 

 

O2 

 

 

O1 

 

  

   

Pz 

 

Pz 

 

Pz 

 

Cz 

 

   

 

 

Table 5: Gender differences in PDC sources of information pathway for high task performance - Male subjects 

a1 a2 a3 et ea mt ma ht ha 

 

Fp1, Fp2, 

F7, Fz 

 

 

Fp1, Fp2, 

F7 

 

 

Fp1, F4, 

F7, Fz 

 

 

Fp1, Fp2, 

F7, F8 

 

 

Fp1, F7 

 

 

F4, F8 

 

 

Fp1, F7 

 

 

F8 

 

 

T3 

 

 

T3, T5,  

T6 

 

 

T3, T4 

 

 

T3, T4 

 

 

T3, T4,  

T6 

 

 

T3, T4,  

T6 

 

 

T3, T4,  

T6 

 

 

T3, T4 

 

T3, T4 

 

O2 

 

 

O1 

 

 

O2 

 

 

O2 

 

O2 

    

  

Pz 

 

    

Pz 

 

  

Pz 

 

Pz 

 

61 

 
 

   
 

61 
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Table 6: Gender differences in PDC sources of information pathway for high task performance - Overall task 

 

Arithmetic Task 

 

TOH Task 

 

Female 

 

Male 

 

Female 

 

Male 

 

Fp1, Fp2, F3, F7, F8, Fz 

 

 

Fp1, Fp2, F4, F7, Fz 

 

 

Fp1, Fp2, F7, F8 

 

 

Fp1, Fp2, F4, F7, F8 

 

 

T3, T4, T5,T6 

 

 

T3, T4, T5,T6 

 

 

T3, T4, T5, T6 

 

 

T3, T4, T6 

 

 

O1, O2 

 

 

O1, O2 

 

 

O1, O2 

 

 

O2 

 

 

Pz 

 

 

Pz 

 

 

Cz, Pz 

 

 

Pz 

 

 

4.2 PSE 

An example of the power spectrum measured at Fp1 is shown in Figure 8 where the distribution of signal power is 

segregated as follows bands: delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-31 Hz), gamma (31-51) and high 

gamma (51-120 Hz). In this example, it is observed that there is significant power at frequency less than 31 Hz indicating 

brain activities in the delta, theta, gamma and beta bands. 

 

 
Fig. 8: Example of a power spectrum at Fp1 for a subject while performing a task 

 

The power spectrum for all the subjects, bands and electrodes are compared between the male and female subjects 

for all the tasks. The example for Fp1 and Fp2 is shown in Figure 9 for the delta band. The horizontal axis represents the 

tasks defined in Figure 9 while the blue and red bars represent the power measured for the male and female subjects 

respectively. T-test was used to determine if there was a significant difference between the male and female subjects for 

all task, electrodes and bands. 
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Fig. 9: Comparison between the power in the delta band for Fp1 and Fp2 at state of rest with the various tasks 

 
The gender differences results based on PSE show changes in control task to problem solving tasks ratio for each of 

the EEG waveform mentioned. For both male and female subjects, the labeled significant difference can be observed 

mostly at the frontal regions. During arithmetic task, the power of delta and theta band (especially in frontal region) 

increases for both genders with the decrease in power for the alpha, beta, gamma and high gamma bands. The major 

frequency band used by the female subjects is the theta band while the male subjects used theta and beta bands especially 

during the mental arithmetic task. In contrast, during TOH task, there is an increase in power for high gamma band for 

female subjects, while the power increases in both the gamma and high gamma power bands for male subjects. The 

difference power over the various bands during the problem solving tasks is directly related to the subjects’ performance. 

For instance, male subjects who showed the best performances in TOH task have correspondingly higher gamma and 

high gamma power compared to the female subjects. 

 

5. Conclusion 

From this study, it can be inferred that the term ‘differences in problem solving’ not only refers to the ability of an 

individual to solve a given problem, but also refers to his/her way of thinking, thinking pattern or strategy in a given time 

to solve an encountered problem in order to reach the desired goal. This is especially when dealing with a close-ended 

solution problem. Often individuals would reach the same solution for the problem regardless of their gender or 

background. However, the way each individual solves a certain problem or the time taken for his/her to solve the same 

problem may differ from one to another. 

Hence, the study of gender differences in problem solving highlighted by this study has been conducted by comparing 

the performance of subjects based on the gender groups (i.e. male and female). The EEG data analysed which involved 

PDC and PSE were useful to determine the relation between the subjects’ performances and the different parts of brain 

regions involved (as shown in PDC results) and wave power distributions (as shown in PSE results). 
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