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Abstract: Due to the various applications of the quadrotor unmanned aerial vehicle (UAV) systems increase daily, 

the researchers recently granted it considerable attention. In this manuscript, the mathematical model of the 

quadrotor UAV has been presented. The feedback linearization (FBL) technique is implemented to linearize the 

attitude and altitude dynamic equations of the quadrotor UAV. The proportional-integral-derivative (PID) 

controller is designed to the obtained linearized model (attitude and altitude subsystems). The quadrotor UAV that 

used for outdoor applications is influenced by the wind guest disturbances and parameter uncertainties, which 

result in the deterioration of the PID controller performance, and gain re-tuning is required. Therefore, for a robust 

performance against the wind disturbance and the parameter uncertainties, the adaptive feedback linearization 

(AFBL) is proposed and implemented to stabilize the quadrotor attitude and altitude subsystems. The parameter 

uncertainties have been adaptively estimated based on the Lyapunov stability function, which was able to cancel 

the quadrotor system uncertainties. The proposed controller has been evaluated by simulation Matlab/Simulink and 

provided better performance against parameter uncertainties and wind guest disturbances, where the error in the 

attitude and altitude have been reduced about % 82 and % 53, respectively, compared to the conventional exact 

FBL controller. 
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1. Introduction 

Unmanned Aerial Vehicle quadrotor (UAV) is an aircraft operated without a human pilot on board. Earlier, the 

UAVs came-up with the large size, which results in the expensive cost for the design. However, the recent technologies 

in such as batteries, electronics, mechatronics, etc. result in small and cheap UAVs that can be used for civilian and 

military applications effectively. The Newton-Euler formalism is commonly used to drive the mathematical model of 

the quadrotor [1]–[4]. Then, depends on the control design requirements, the driven model is put in various 

mathematical expressing to describe the translational and the rotational dynamics of the quadrotor UAV. 

The description of various representations of the quadrotor dynamics is presented, and from the trajectory tracking 

point of view, the problem of computing desired roll and pitch angles is discussed, which are basically the virtual 

signals derived to achieve the desired position. In addition, the review of the quadrotor control design (linear and non-

linear controllers) such as in are presented to provide a better understanding of the quadrotor control design and 

experiments. Various types of flight test-beds were shown to validate the controller [5]. 
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The quadrotor is an under-actuated, nonlinear, and unstable system; these complex characteristics lead to a 

challenge in the control design stage. Therefore, many control techniques are implemented for the quadrotor in the 

literature, such as the proportional-integral-derivative (PID) controller, which widely used to control the quadrotor 

systems because of its simplicity in the implementation [6]–[9]. Ataka et al [10] developed a linear model of the 

quadrotor at some equilibrium points, then the controllability and observability testing of the extracted linear model was 

done as well. Madani et al [11] divided the quadrotor system into three subsystems and then applied the backstepping 

control to stabilize the whole system. 

Mukherjee et al [12] derived a direct adaptive feedback linearization for quadrotor and the stability tested by using 

the Lyapunov theory. Lee et al. [13] applied two nonlinear control methods on quadrotor UAV, a feedback linearization, 

and adaptive sliding mode controllers. Voos [14] designed the controller based on decomposition into a nested structure, 

and then the feedback linearization is implemented to the quadrotor system. The attitude controller is designed based on 

quantitative feedback theory, and then, a fuzzy logic controller is applied to provide position trajectory tracking for the 

quadrotor [15], [16]. 

In this paper, the dynamic model of quadrotor UAV has been mathematically presented. The exact feedback 

linearization technique is used to linearize the attitude dynamic equations of the quadrotor. The PID controller has been 

implemented to the obtained linear model (attitude and altitude subsystems). However, due to the nature of the 

quadrotor applications (outdoor applications) in which the quadrotor will be subjected to the wind guest disturbance 

and parameter uncertainties, therefore, a robust controller is required to overcome these challenges. The adaptive 

feedback linearization is proposed and implemented to the quadrotor attitude and altitude subsystems for a robust 

performance against the wind disturbance rejection and the model parameter uncertainty. The stability approach of the 

proposed controller has been derived based on the elected Lyapunov theory. The proposed controller (adaptive 

feedback linearization) has been envaulted by simulation using MATLAB/SIMULINK platform in the presence of 

wind guest disturbance rejection and parameter uncertainty. The performance of the proposed controller has been 

compared with the conventional exact feedback linearization in terms of the trajectory tracking error, and the presented 

simulation results showed significant improvement. 

The paper is organized as follows, started with section one, the introduction. Section two is dedicated to the 

quadrotor modeling. While section three introduced the feedback linearization technique. In section four, the proposed 

adaptive feedback linearization controller is designed for the quadrotor system to enhance the control system 

performance against the wind gust disturbance rejection and the model parameter uncertainty. Section five presented 

the detailed simulation results by using Matlab/Simulink platform. Finally, section six concluded the paper. 

 

2. Illustrations 

2.1 Quadrotor Description 

The quadrotor UAV consists of four rotors to generate the propeller forces , these rotors are mounted 

in a cross configuration and in symmetric shape, as shown in Fig. 1. 

 

 
Fig. 1 - Quadrotor UAV configuration 

 
 

Basically, the quadrotor movements are controlled by changing the speed of the rotors (called control inputs), and 

the idea is based on dividing these four rotors into two groups/pairs, the front and the rear rotors (1, 3), and the left and 

the right rotors (2, 4), respectively as depicted in Fig. 2. By convention, Rotors (1, 3) rotate in a clockwise direction, 

while rotors (2, 4) rotate in the anti-clockwise direction. 
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Fig. 2 - Rotors numbering in an anticlockwise direction 

 

The quadrotor moves in a vertical direction by increasing or decreasing the angular velocities of all 4 rotors with the 

same speed simultaneously, which results in producing a total lift force (thrust) against the gravity force. Therefore, the 

quadrotor will take-off, as shown in Fig. 3 (a) or landing, as depicted in Fig. 3 (b). 

 

Fig. 3 - Quadrotor UAV possible motions 

 

The right direction movement of the quadrotor is achieved by increasing the rotational speed of the rotor (2) and 

decreasing the rotational speed of the rotor (4), as the result of that the quadrotor will move in the right direction as 

shown in Fig. 3 (c). Similarly, the left direction movement of the quadrotor is achieved by increasing the rotational speed 

of the rotor (4) and decreasing the rotational speed of the rotor (2); as a result, the quadrotor will move in the left 

direction as shown in Fig. 3 (d). The right and left movements of the quadrotor are controlled by changing the roll angle 

 of the quadrotor. 

The forward movement of the quadrotor is achieved by increasing the rotational speed of the rotor (3) and 

decreasing the rotational speed of the rotor (1); as a result, the quadrotor will move in the forward direction as illustrated 

in Fig. 3 (e). Similarly, the backward movement of the quadrotor is achieved by increasing the rotational speed of the 

rotor (1) and decreasing the rotational speed of the rotor (3); as a result, the quadrotor will move in the backward 

direction as shown in Fig. 3 (f). The forward and backward movements of the quadrotor are controlled by changing the 

pitch angle . Finally, the anti-clockwise and clockwise movements of the quadrotor are controlled by changing yaw 

angle  as shown in Fig. 3 (g & h), respectively. 
 

2.2 Quadrotor UAV Kinematic Model 

Generally, there are two frames: earth fixed frame (E-frame) denoted by  and body fixed (B-frame) 

 as depicted in Fig. 1. 

 

Assume that                                              represents generalized coordinates of the quadrotor, where  represents the 

quadrotor position while            are the three Euler angles (literally are roll, pitch, and yaw) which describe the 

quadrotor orientation. Thus, the quadrotor mathematical model can be represented into two coordinate subsystems: the 

translational and the rotational subsystems. Therefore, the generalized coordinates of the quadrotor can be re-written as 

follows: 
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 (1) 

where, 

and, 

 

Therefore, the kinematic equations can be obtained as follows: 

 
 

 (4) 

 

Where,  and represent the linear velocity vectors in both frames the E-frame and B-frame, respectively. And R is the 

rotation matrix: 

 

 

 
(5) 

 

The quadrotor rotational movements are obtained as follows: 
 

 (6) 

 
where,  and represent the angular velocity vector with respect to the E-frame and B-frame, respectively. is the 

transfer matrix [17]: 

 

 

 
 

(7) 

 
2.3 Quadrotor Dynamic Model 

The Newton-Euler method has been used in this section to drive the quadrotor’s translational and rotational dynamic 

equations. The translational dynamic equation will be expressed with respect to E-fame, while the rotational dynamic 

equation will be expressed with respect to B-frame. 

The translational dynamic equations can be expressed as follows: 

 
 

 
(8) 

where m represents the mass of the quadrotor, g is the gravity acceleration, is the unite vector along the 

z- axis and uT is the total lift force produced by the four rotors and it's defined as follows: 

 

 

 
(9) 

Where  and  represent the thrust force and the speed of rotor i, respectively, b is the thrust 

factor. The rotational dynamic equations can be expressed as follows: 

 
 

 (10) 

 (2) 

 
 (3) 
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where   represent the inertia matrix,  and  are the gyroscopic effect, while is the control inputs. and 

are defined as: 

 

 

 
(11) 

and, 

 
 

 

 

(12) 

 
Where  is the rotor inertia, l is the distance between the center of the quadrotor and the center of a rotor, and b is 

the drag factor. 

Thus, from (8) and (10) the overall dynamic equations in terms of position  and rotation of the quadrotor 

body can be put as follows: 

 

 

 
(13) 

 

 

 

 

 

 

 
(14) 

 
 

Finally, the overall dynamic equations of quadrotor UAV in 6-DOF can be written as follows: 

 

 
 

 

 

 

 

 

 

 

 

(15) 

 
Where             are the control inputs of the quadrotor UAV system and have the following formula: 

 

 

 

 
(16) 
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While  represents the disturbance, and expressed as follows: 

 
 

 (17) 

 

The control inputs (16) can be written in a matrix as: 

 

 

 

 
 

(18) 

 

 

 

 

 

 
 

(19) 

 

3. Feedback Linearization 

The feedback linearization method for attitude and altitude control of the quadrotor UAV system is presented in 

this section. Simply, the feedback linearization method uses to transfer the nonlinear systems to an equivalent linear 

system, which can be handled easily. The quadrotor non-linear dynamic equations (20) can be written in a generic non-

linear systems formula as in (21), which can be converted to a linear system by applying equation (22). Therefore, the 

quadrotor attitude and altitude linear system are obtained as in (25), and the overall linearized model is depicted in Fig. 4. 

 

Fig. 4 - Linearized model 

 

The attitude and altitude quadrotor UAV subsystem dynamic equations are: 

 

 
 

 
 

 

 

 

 

 
 

(20) 
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The feedback linearization for a class of non-linear system as in (21), can be done as follows: 

 
 

 

 (21) 

 

Where     is the state vector,  is the non-linear function (vector), and the control input    which can be 

selected in such a way to cancel all non-linear terms in (21) and leads to the linear system. Therefore, u can be chosen 

as follows: 

 

 (22) 

 

By substituting (22) into (21) leads to a linear system: 

 
 

 (23) 

 
Thus, by following the same procedures, the control inputs             and      in (20) can be selected as follows: 

 
 

 
 

 

 
 

 

 

 

 

 
 

(24) 

 

where, 

 

 

Therefore, by substituting (24) into (20) leads to the following linear systems: 

 
 

 
 

 
 

 
 

 

 

 
(25) 

 

The nonlinear dynamic attitude and altitude model is transformed into an equivalent linear, and the state space of 

representation of the linearized model can be written as follows: 

 
 

 (26) 

The output is: 

 
 

 (27) 

where the state variables are: 
 

 

and, 
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, , and 

 

 

 

 

 

4. Control Design 

4.1 The Proportional-Integral-Derivative (PID) Controller 

The error between the desired and measured attitude of the above model is defined as follows: 

 
 

 
 

 
 

 
 

 

 

 
(28) 

 

Therefore, the PID controller is applied for each as follows: 

 

 

 
(29) 

 

where, i = 1, 2, 3,4 
 

 

Fig. 5 PID - Controller for the linearized model (closed loop) 

 

4.2 Adaptive Feedback Linearization 

Redefining the equations’ parameters, (20) can be formulated as follows: 

 

 
 

 
 

 

 

 
 

(30) 

 

By introducing the parameter uncertainties occur in the quadrotor, roll dynamic equation can be rewritten as follow: 

 
 

 
 

 
 

 
 

 

 

 
(31) 
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where, and  are the lumped uncertainties which can express as follow [18]: 

 
 

 
 

 
 

 
 

 

 

 

 
(32) 

Therefore, the errors dynamics are written as follows: 

 
 

 
 

 
 

 
 

 

 

 
(33) 

 
And, the error between lumped uncertainties and , and estimated lumped uncertainties  and 

 are written as follows: 

 
 

 
 

 
 

 
 

 

 

 
  (34) 

  

Thus, the following Lyapunov functions are selected to calculate the control laws as follows: 

 
 

 
 

 
 

 
 

 

 

 

 

 
(35) 

 
Where and positive constants which called the adaptation law gains. The derivative of (35) is calculated as 

follows: 

 
 

 
 

 
 

 
 

 

 

 

 
(36) 
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If the adaptation laws are selected as follows: 

 
 

 
 

 
 

 

 

 

 
 

(37) 

 
Then, by substituting (37) into (36) yields to: 

 
 

 
 

 
 

 
 

 

 

 
(38) 

 

And, by substituting (33) into (38), comes up with the following: 

 
 

 
 

 
 

 
 

 

 

 
(39) 

 
Therefore, the control inputs and are selected as follow: 

 
 

 
 

 
 

 
 

 

 

 
(40) 

 

Leads to: 

 

 

 

 

 
(41) 

 
Where   and  are positive constants; therefore (41) shows that the derivative of the selected Lyapunov 

functions are negative, which prove that the control system is asymptotically stable. 

 

5. Simulation Model 

 
The quadrotor mathematical model has been simulated using Matlab/Simulink platform, and the model parameter values 

used in this simulation have been selected from [19] and listed in Table 1. The numerical solution of the quadrotor 

dynamic model and the proposed controllers have been solved using the ode45 variable-step solver (with the default 

setup). PID and the proposed controller (adaptive feedback linearization) controller’s parameters are listed in Table 2 and 

Table 3, respectively. 
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Fig. 6 - The overall Simulink model of the quadrotor UAV and the PID controller 

 

 

Fig. 7 - The overall Simulink model of the quadrotor UAV and the AFBL controller 

Table 1 - Parameters of the quadrotor 

 

 

 

 

 

Table 2 - PID Controller Parameters for the Linearized Model 

Parameter z 
 

 
 

 
 

 

P 80 30 30 30 

I 10 8 8 8 

D 10 8 8 8 

 

Table 3 - AFBL Controller Parameters 

Parameter z ϕ θ ψ 
 

 20 8 15 8 

K 80 8 15 8 

Name Parameter Value Unit 

mass m 0.650 kg 

inertia on x-axis  7.5e-3  

inertia on y-axis  7.5e-3  

inertia on z-axis  1.3e-2  

thrust coefficient b 3.13e-5  

drag coefficient d 7.5e-7  

rotor inertia  6e-5  

arm length l 0.23 m 
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1. Simulation Results 

 
The performance of the proposed controller (adaptive feedback linearization) has been evaluated and compared with the 

conventional exact feedback linearization into two different scenarios in term of trajectory tracking error as follows: 

 

Scenario 1: The ideal case, in which it has been assumed that the obtained mathematical model of the quadrotor is 

exactly representing the physical quadrotor system. Therefore, the effects of the parameter uncertainty and disturbance 

have been ignored. 

 

The attitude and altitude of the quadrotor by applying conventional FBL and proposed AFBL has been presented in Fig. 

8 and Fig. 9, respectively. While the error in attitude and altitude tracking has been illustrated in Fig. 10 and Fig. 11, 

respectively, in which the proposed AFBL showed a significant improvement in terms of the trajectory tracking error 

reduction and results in a robust tracking. For further simulation validation, the reference signals have been changed to 

sinusoidal (smooth signal), as depicted in Fig. 12, and the associated tracking error is presented in Fig. 13. 

 

Scenario 2: In this case, the performance of the proposed controller has been tested against the presence of the parameter 

uncertainty occurred in the mass of the quadrotor by applying payload equal up to %50 of the quadrotor mass nominal 

value; meanwhile, a pulse-type disturbance has been applied into the directions of the attitude and altitude as depicted in 

Fig. 14 and Fig. 15, respectively. 

The attitude and altitude of the quadrotor by applying conventional FBL and the proposed AFBL has been presented in 

Fig. 16 and Fig. 17, respectively. While the error in attitude and altitude tracking has been illustrated in Fig. 18 and Fig.  

19, respectively, in which the proposed AFBL showed a significant improvement in terms of the trajectory tracking error 

reduction and results in robust tracking even in the presence of the parameter uncertainty and disturbance. For further 

simulation validation, the reference signals have been changed to sinusoidal (smooth signal), as depicted in Fig. 20, and 

the associated tracking error is presented in Fig. 21. 
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Fig. 8 - Take-off and Landing of the quadrotor 

UAV using FBL and AFBL Controllers 

 

Fig. 10 - Altitude error signal 

 

 

 

 

Fig. 9 - Attitude of the quadrotor UAV using FBL 

and AFBL Controllers 

 

 
 

 
 

 
Fig. 11 - Attitude error signals 

 
 

Fig. 12 - Smooth attitude trajectory tracking Fig. 13 - Attitude error signals under smooth 

tracking
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Fig. 14 - Pulse type disturbance on the quadrotor 

Attitude 

Fig. 15 - Pulse type disturbance on the quadrotor 

Altitude 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 16 - Take-off and Landing of the quadrotor 

UAV using FBL and AFBL Controllers 

Fig. 17 - Attitude of the quadrotor UAV 

using FBL and AFBL Controllers

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 19 - Attitude error signals 

Fig. 18 - Altitude error signal 

 

 
 

  
 

  
 

Fig. 20 - Smooth attitude trajectory tracking Fig. 21 - Attitude error signals under smooth 

tracking 
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For further investigations, the integral square error (ISE) has been calculated based on the (42) for the attitude and (43) 

for the altitude in both scenarios to measure the performance of the conventional FBL and the proposed AFBL controller 

values in term of tracking error for scenario 1 and 2, and the results have been presented in Table 1 and Table 2 as 

follows: 
 

 
(42) 

 

Table 4 - ISE for the attitude errors 

Scenario Feedback linearization Adaptive feedback linearization 

ISE value (ideal case) 0.0120 0.0027 

ISE value (in case of uncertainty & disturbance) 0.0158 0.0027 

 

As presented in Table 4 and equation (42), the ISE has been calculated for the quadrotor attitude tracking errors for the 

exact conventional FBL and the proposed AFBL controllers, and the results showed that the proposed AFBL provided a 

significant improvement by reducing the ISE tracking error from 0.0120 to 0.0027 which is about % 77 reductions 

(improvement) in the ideal case, while in the presence of the parameter uncertainty and disturbance, the ISE tracking 

error has been reduced from 0.0158 to 0.0027 which is about % 82 improvements. 
 

 
(43) 

 

Table 5 - ISE for the altitude errors 

Scenario Feedback linearization Adaptive feedback linearization 

ISE (ideal case) 0.0155 0.0098 

ISE value (in case of uncertainty & disturbance) 0.0214 0.0099 

 

As shown in Table 5 and equation (43), the ISE has been calculated for the quadrotor altitude tracking errors for the 

exact conventional FBL and the proposed AFBL controllers, and the results showed that the proposed AFBL provided a 

significant improvement by reducing the ISE tracking error from 0.0155 to 0.0098 which is about % 36 reductions 

(improvement) in the ideal case, while in the presence of the parameter uncertainty and disturbance, the ISE tracking 

error has been reduced from 0.0214 to 0.0099 which is about % 53 improvements.  
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2. Conclusion 

 
The dynamic model of quadrotor UAV has been mathematically presented. The conventional exact feedback 

linearization technique is used to linearize the attitude and altitude dynamic equations of the quadrotor. The PID 

controller is applied to the linearized model. However, to improve the performance against the disturbance rejection and 

the model parameter uncertainties that may occur in the quadrotor system (such as a change in the mass), the adaptive 

feedback linearization has been proposed and implemented to the attitude and altitude quadrotor system. The stability 

approach of the proposed controllers has been derived based on the elected Lyapunov function. The simulation results 

validate that the proposed controller showed a significant improvement in the presence of parameter uncertainty and 

disturbance. 
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