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1. Introduction 

Finite element analysis is widely used to simulate the 

behavior of stresses and strains when the structures or 

components are subjected to mechanical or thermal 

loading. It is due to the fact that finite element analysis 

(FEA) offers better and faster preliminary insight of the 

designed products or structures. One of the capability of 

FEA is in conducting and solving the problem of fracture 

mechanics. Courtin et al. [1] presented a work to show the 

application of J-integral in calculating the stress intensity 

factor (SIF) using ABAQUS finite element software. They 

compared the values of SIF using both displacement 

extrapolation and J-integral methods. It is found that the 

SIFs are strongly agreed to each other.  

Kuang and Chen [2] used a displacement 

extrapolation method to investigate the two-dimensional 

mixed-mode problems. They applied this technique to 

study the inclined crack due to axial force to obtain modes 

I and II SIFs and then compared with the SIFs obtained 

using Barsoum equation [3] using different size of 

elements around the crack tip. It is found that the results 

are well-agreed to each other and it is also observed that 

the differences between SIFs decreased when the 

elemental size around the crack tip is decreased. 

Similarly, Albinmousa et al. [4] also calculated the 

mode I and II SIFs for single edge notched tension plate 

under axial tension. In this paper, different slanted angles 

are used in order to study the effect of the SIFs where the 

SIFs are determined using displacement extrapolation 

method available in ANSYS. On the other hand, they are 

also proposed a flexible model capable to predict the SIFs 

for different slanted angles. This model is then validated 

through comparison with existing analytical and numerical 

solutions as well as experimental results.  

Jones and Peng [5] proposed a simple method for 

calculating the SIFs for cracks emanating from a notch 

under arbitrary loading. The work is actually initiated by 

Broek [6] and Smith and Miller [7] based on the depth and 

the notch radius. The SIFs produced using their expression 

are well-agreed with the existing results.  

Strobl et al. [8] reassessed the formula developed by 

Newman and Raju [9] using ANSYS finite element 

software. J-integral method with quarter node collapsed 

crack tip element was used to calculate the SIFs. The SIFs 

are then compared with the results obtained from [8] and 

the different are insignificant. Some review on the SIFs can 

be found in [10-15].  

Ismail et al. [16] used J-integral analysis available in 

ANSYS finite element software version 14.0 in studying 

the surface cracks in round bar under combined mode I 

loading. Crack model is developed and constructed using 

ANSYS Parametric Design Language (APDL). The 

preliminary results are validated with the existing SIFs 

data and found that the results are well-agreed. In this 

version, the application of J-integral produced a single 

value of J-value and then convert to SIFs. Recently, in 

ANSYS version 16.0 and above the determination of SIFs 

using J-integral approach can be separated into different 

mode of failure. This can be realized using interaction 

integral approach [17] and other can be found in [18-26].   
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Based on the literature survey above, most of the 

method used world-wide to determine the SIFs for 

different kinds of crack shapes and geometries is finite 

element method. It is important task to produce an 

overview of FEA capabilities especially in analyzing the 

problems related with fracture mechanics.   

2. Understanding Failure Modes 

Formation of cracks are due to several causes such as 

metallurgical defect, design discontinuities and at the joint 

between two materials. Once the crack formed, the 

behavior of cracks is determined by the direction of forces 

or moments as in Figure 1. Mode I is an opening mode 

where the force is perpendicular to the crack faces, mode 

II is a sliding mode where crack faces slide on each other 

and the forces are parallel to the crack faces and mode III 

is a shearing mode where this is mainly due to torsion 

moments. Griffith firstly introduced the concept of energy 

release rate, G as in Eq. (1). 

2
=

a
G

E
  (1) 

The stress intensity factor, K and the energy release rate, G 

is then related by Eq. (2). 

2

'
=

K
G

E
  (2) 

where, a is crack length,  is applied stress,  is a Poisson’s 

ratio, E is a modulus of elasticity and E’ is depend on 

whether plain stress or strain.  

 

Fig. 1 Type of failure modes, (a) mode I, (b) mode II and 

(c) mode III. 

 

2.1 Stress Intensity Factor (SIF) 

Stress intensity factor (SIF) is widely used in analyzing the 

cracks surrounding by elastic medium. It is called Linear 

Elastic Fracture Mechanics (LEFM). If the plastic 

deformation around the crack tip is significant the 

application of SIF breakdown and it is then replaced with 

other fracture parameters such as J-integral and other 

parameters can be found in [27]. In ANSYS, there are two 

ways to calculate the SIFs, (i) Displacement Extrapolation 

Method (DEM) and (ii) Interaction Integral Method (IIM). 

Both methods determine the SIF at the crack tip as in 

Figure 2. The relationship between stresses and SIFs 

around the crack tip can be expressed as Eq. (3): 

( ) = − I
ij ij

K
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r
  (3) 

Under the action of mode I loading, the stresses around the 

crack tip as a follow: 
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Fig. 2 Schematic diagram of stress distribution ahead of 

crack front/tip [19].  

 

Since the SIFs are calculated referring to the displacement 

between two nodes situated along the crack faces around 

the crack tip as in Figure 3. 
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where, u, v and w are the displacements in the local 

Cartesian coordinate. r and  are the coordinate in the local 

cylindrical coordinate system. G and v are the modulus of 

rigidity and Poisson’s ratio, respectively. Ki is the stress 

intensity factor where i = 1, 2 and 3 (mode of loading). The 

parameter of  is depend on the type of plains: 
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3 4
For plain strain
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For plain stress
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2.2 Interaction Integral Method (IIM) 

Compare with the traditional displacement 

extrapolation method, Interaction Integral Method offer 

better accuracy, fewer mesh requirement and ease of use. 

In DEM, it is required to identify the nodes along the crack 

faces. However, the node at the crack tip is the only data 

require to calculate SIF. The J-integral, J(s) is evaluated at 

point s along the crack front as below (as in Figure 4): 

( )1 1

lim
( )

0
 



= − 
 →  i ij j iJ s W u n d    (11) 

where (s) is an integral contour surrounding the crack tip, 

ij is the Cauchy stress, W is the strain energy density, ujl 

are the components of the displacement gradient tensor and 

ij is the Kronecker delta.  

 

 
Fig. 3 Schematic diagram of typical crack face path 

definition (a) symmetrical face and (b) full faces [17]. 

 
Fig. 4 Area and volume J-integral around the crack front 

[28]. 

 

The area inside the integral contour represents the 

actual boundary of interest and it is called as the actual 

field as in Figure 5. If the auxiliary field is superimposed 

to the actual field, the J-integral associated with the 

combination of both fields, Jt can be expressed as below: 

= + +actual aux

totalJ J J I   (12) 

where Jact and Jaux are the J-integral values obtained actual 

and auxiliary fields, respectively. The interaction integral, 

I is also known as M-integral can be expressed as: 
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where  aux

ij
,  aux

ik
and 

ilu  are the auxiliary stress, strain and 

displacement fields. There auxiliary parameters are firstly 

defined by setting up their local coordinate system 

originated at point s on the crack front. The x’1 axis is 

aligned with the vector c, the x’2 axis is aligned in the b 

direction and x’3 is aligned parallel to the vector T.  

The auxiliary stress field is defined as: 
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where aux

IK , aux

IIK and aux

IIIK are the SIFs associated with the 

auxiliary fields and ( )if  is associated with the angular 

function of near tip fields.  

 
Fig. 5 Contour around the crack tip. 

 

The auxiliary displacement components are defined as 

below: 
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where  is the shear modulus. The auxiliary strain fields 

are dined as below: 

( )
1

2
 = +aux aux aux

ij ij jiu u  (20) 

Actual field 

(Blue line) 

Auxiliary field 

(Red line) 
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When the actual and auxiliary fields of stress intensity 

factors are substituted in the interaction integral, the 

expression below can be obtained: 

( )
22(1 ) 1

( )


−
= + +aux aux aux

I I II II III III

v
I s K K K K K K

E
 (24) 

Therefore, the actual stress intensity factors can be 

determined by evaluating such interaction integral. For an 

example, mode I SIF can be found by setting aux

IK =1 and 

other auxiliary SIFs are kept zero. Thus, mode I SIF is: 

2
( ) ( )

2(1 )
=

−
I

E
K s I s

v
 (25) 

 

2.3 J-integral 

The above two fracture parameters discussed above is 

only applicable when the insignificant amount of plasticity 

around the crack tip is observed. However, when the 

plasticity is large the application of SIF is breakdown and 

unusable. One of the advantages of using J-integral as a 

fracture parameter is it can be used both conditions for 

elastic and inelastic regions. J-integral is determined firstly 

by constructing the contour around the crack tip. Several 

number of contours must be used in order to ensure that the 

value of J-integral converged. The evaluation of J-integral 

is based on the domain integral method which is firstly 

derived by Shih and Moran [29]. There are two types of 

domain integral for area and volume integrations where it 

is better and accurate than the contour or surface integral. 

For the two-dimensional problem, the area domain integral 

is defined as: 

1

1

 
  

= − 
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
j

ij i
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u q
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where ij is the stress tensor, uj is the displacement vector, 

w is the strain energy density, ij is the Kronecker delta, xi 

is the coordinate axis and q is referred to as the crack 

extension vector. For the three-dimensional problem, 

volume domain integral is used around the crack tip. In 

ANSYS [17], command CINT is used to perform the 

calculation of J-integral.  

 

2.3 Virtual Crack Closure Technique (VCCT) 

The virtual Crack Closure Technique (VCCT) is based on 

the energy balance which is firstly proposed by Irwin. The 

SIF, K is calculated according to the expression below: 

2

= i

i

K
G

E
 (27) 

where G is energy release rate and i = 1, 2 and 3 depending 

on the mode of loading. E is a modulus of elasticity,  is a 

Poisson’s ratio and  = 1 for plane stress and  = 1-v2 for 

plain strain. The energy release rate is based on the 

assumption that the energy release in the process of crack 

expansion is equal to the work require to close the crack to 

its original state as the crack extends by a small amount of 

c and it is expressed as: 

0

1
( ) ( )

2




= −
c

W u r r c dr  (28) 

where, u is the relative displacement,  is the stress, r is 

the distance from the crack tip and c is the change in 

virtual crack length as in Figure 6. Then, the energy release 

rate can be derived as: 

0

lim lim 1
( ) ( )

0 0 2




= = −
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c
W

G u r r c dr
c cc c

 (29) 

 
 

Fig. 6 Two-dimensional finite element model in the 

vicinity of a crack tip before the virtual closure. 

 

In ANSYS, for the case of two-dimensional model as in 

Figure 6, the energy release rate for mode I, GI and mode 

II, GII are calculated using the expression below, 

respectively: 

1

2
= − 


I YG R v

a
 (30) 

1

2
= − 


II YG R u

a
 (31) 

where, u and v are the relative displacement between 

the upper and bottom nodes of the crack faces, 

respectively. While Rx and Ry are the reaction forces at the 

crack tip in x- and y-axes and a is the crack extension. For 

the case of three-dimensional, an additional z-axis is 

required used to calculate the energy release rate for mode 

III, GIII expressed as below: 

1

2
= − 


III ZG R w

a
 (32) 
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For this case, a is based on the area crack extension as 

revealed in Figure 7. 

 

3. Numerical Example 

In the present study, a central crack in a plain strain 

plate is used and modelled using ANSYS Parametric 

Design Language (APDL) in ANSYS finite element 

program. Figure 8 shows two type of cracked plates such 

as single-edge and central-crack in plates. Since the cracks 

are symmetrical, only half and quarter crack models are 

used and constructed in ANSYS, respectively. Before 

constructing finite element model, it is firstly assumed that 

there are two type of plates, H/W = 0.4 (rectangular-

shaped) and H/W = 1.0 (square-shaped). Details of crack 

length are tabulated in Tables 1 and 2.   

 
(a) 

 
(b) 

Fig. 7 Schematic of finite element model for (a) two-

dimensional and (b) three-dimensional [17]. 

 

Table 1. Geometry and crack sizes of H/W = 0.4. 

a/W W a H/W H 

0.1 50 5 0.4 20 

0.2 50 10 0.4 20 

0.3 50 15 0.4 20 

0.4 50 20 0.4 20 

0.5 50 25 0.4 20 

0.6 50 30 0.4 20 

0.7 50 35 0.4 20 

 

Table 2. Geometry and crack sizes of H/W = 1.0. 

a/W W a H/W H 

0.1 50 5 1.0 50 

0.2 50 10 1.0 50 

0.3 50 15 1.0 50 

0.4 50 20 1.0 50 

0.5 50 25 1.0 50 

0.6 50 30 1.0 50 

0.7 50 35 1.0 50 

 

 
(a) 

 
(b) 

Fig. 8 Rectangular plain strain plate with (a) single-edge 

crack and (b) central cracks [29]. 

 

There are many ways to construct the plate with crack. One 

of the simplest method is to identify the important 

coordinates (in APDL command it is called KEYPOINT 

or K) as in Figure y as in Table 3. Once the coordinates are 
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formed and then create the area (APDL code for AREA is 

A) based on such coordinates. The line 1-2 represents the 

crack face. 

 

Table 3. Key points used to construct the model. 

Key Points 
Coordinates 

x y z 

1 0 0 0 

2 5 0 0 

3 50 0 0 

4 50 20 0 

5 0 20 0 

 
Figure 9. Single edge / central crack model. 

 
Figure 10. (a) Half-model of single edge crack and (b) 

Quarter-model of central crack. 

 

Since, there are two types of crack. Figure 8 can be 

used for both crack configurations and the only difference 

is boundary condition. Figure 9 shows the boundary 

condition used to characterize different crack 

configurations. Figure 10 shows the half-model for a 

single-edge crack. The bottom line is constrained in y-

direction except for the line of crack face. The model is 

also constrained at the bottom-right point in x-direction to 

prevent body rotation. It is also revealed the finite element 

mesh used to model the plate and singular element is used 

to model the crack tip. It is important to simulate the 

square-root of stresses and strains around the tip especially 

when DEM is used. If VCCT is used, singular element 

around the tip is not necessary. 

For a central crack on a quarter model is used in order 

to reduce the number of elements/nodes and therefore 

reduce the computational time and cost. For all cases of 

crack, upward pressure is applied directly to the upper 

lines. Once the construction of model is completed, 

mechanical properties such as modulus of elasticity and 

Poisson’s ratio are assigned to the model and the model is 

meshed with suitable two-dimensional plain strain element 

for an example of Quadrilateral element or PLANE183.  

For validation purposes, the SIFs are determined using 

a displacement extrapolation method. In order to eliminate 

the effect of sizes, the SIFs are normalized as below: 

 

 
=

K
F

a
              (33) 

 
where, F is a normalized SIF, K is a SIF,  is an applied 

stress and a is a crack length. Figure 11 reveals the stress 

distribution when uniaxial stress is applied to the plate. 

Figure 12 shows that the validations between the present 

and the existing finite element models. It is also observed 

that both models are well-agreed to each other and it can 

be used for further works.  

 

 

 
Fig. 11 Finite element model of single edge crack under 

tension stress. 

 

x 

y 

1 2 3 

4 5 
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Fig. 12 Deformed single-edge crack under axial force. 

 

4. Comparative Study 

In this section, four crack driving forces are 

determined and compared where linear elastic deformation 

are strictly considered. For the sake of comparison, all the 

crack driving forces are converted to SIFs using the 

expression below for plain strain condition especially for 

J-integral and Virtual Crack Closure Technique (VCCT): 

21
=

−

I

I

G E
K

v
     (34) 

21
=

−

I

I

J E
K

v
     (35) 

where G is an energy release rate obtained using VCCT 

while J is a J values obtained using J-integral method. An 

elastic deformation is characterized considering the 

modulus of elasticity, E and Poisson’s ratio, v. For other 

methods for examples displacement extrapolation method 

and interaction integral method, the stress intensity factors 

can be extracted directly and therefore there is no need for 

conversions. For comparison purposes, square plain strain 

plate (H/W = 1.0) is considered. 

 

 
(a) 

 
(b) 

Fig. 13. Validation of finite element model of different 

plate aspect ratios, (a) H/W = 0.4 and (b) H/W = 1.0 of 

single edge crack. 

 

Fig. 13 shows the comparison between four different 

methods available in ANSYS can be used to calculate the 

SIFs. All results are then compared with the data obtained 

from Yan [30]. It is observed that both the results obtained 

using DEM and VCCT are almost closed to the Yan [30]. 

On the other hand, IIM method seemed leading to 

underestimate the SIFs since the values showed significant 

fluctuations. The details of SIF values are tabulate in 

Table 4. 

 

5. Summary 

Based on the numerical simulation using ANSYS 

finite element program through the use of ANSYS 

Parametric Design Language (APDL), successful fracture 

mechanics analysis is conducted to study the plain strain 

plate contained crack. In ANSYS, there are several 

techniques can be used to calculate the stress intensity 

factor (SIF) such as Displacement Extrapolation Method 

(DEM), J-Integral, Interaction Integral Method and Energy 

Release Rate Method. The last three methods can be 

utilized to extract the SIF as long as the analysis remain 

within the elastic limit. On the other hand, such methods 

are not necessary to implement singular element around 

the crack tip except for the case of displacement 

extrapolation method. 

 

 
Fig. 14. Comparison between four techniques can be used 

to calculate the stress intensity factors.  

 

Table 4 List of SIFs values using different techniques 

available in ANSYS. 
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a/w Yan (2007) DEM J-integral IIM VCCT 

0.1 1.1880 1.1916 1.2829 1.1682 1.1768 

0.2 1.3695 1.3707 1.3706 1.3120 1.3578 

0.3 1.6631 1.6642 1.6609 1.3737 1.6496 

0.4 2.1096 2.1166 2.1137 2.1978 2.0978 

0.5 2.7962 2.8305 2.7590 2.5614 2.8038 
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