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1. Introduction
With the increased price of petroleum-based fuel,

depletion of fuel sources, and environmental issues, 
biofuel has become the alternative choice. Derived from 
the biomass conversion from living organisms and rapid 
development in microbial engineering technology, 
organisms with profitability and capability in maximizing 
the production rate of important industrial metabolites 
have been gaining importance in the last few years. 
Hence, methods such as Flux Balance Analysis (FBA), 
Minimization of Metabolic Adjustment (MOMA), and 
Regulatory On/Off (ROOM), has been developed to 
simulate the genome-scale metabolic models of 
organisms, in order to exploit the usefulness of the 
models.  

Various techniques have been proposed, and one of 
them is genes/reactions knockout. Gene/reaction 
knockout is simulated by identifying gene/reaction that 
may possibly increase the biological objective function, 
mainly production rate or growth rate [1]. Normally, in 
order to ensure the organisms are viable after 

perturbations, a bi-level optimization is formulated. In 
this case, the organism is forced to produce the desired 
products and at the same time, keeping the viability of the 
organisms. In computation, however, the bi-level 
optimization is focused on optimizing a single objective. 
They also produced one single near-optimal solution of 
the problem.  

As mentioned before, most of the developed methods 
such as OptKnock, OptFlux, and OptGene, are only 
focusing on one objective [2–4]. Nevertheless, in 
bioprocesses, mainly it involves several of other 
objectives such as growth rate, byproduct formation, 
desired product yield, and others. Therefore, several 
methods and techniques have been developed in 
optimizing more than one objective. Furthermore, 
multiobjective optimization has significantly shown more 
benefits compared to single objective optimization [5].  

However, unlike single objective optimization, 
multiobjective optimization involves optimizing multiple 
conflicting objectives. As an example, in E.coli, the 
production of succinate acid is at the highest rate when 
the growth rate is at 0 and vice versa. Thus, it is necessary 
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to determine a set of trade-off points that represent the 
near-optimal solutions. Despite that, these points are no 
preference, usually, the decision makers will scan through 
the solutions and decided on one final solution based on 
their own preferences. Generally, multiobjective 
optimization provides a set of solutions that trade-off 
between conflicting objectives.   

In this paper, we aim to review the methods and 
techniques of multiobjective optimization in metabolic 
engineering. The paper is organized as follows: Section 2 
describes the general definition of multiobjective 
optimization. The following Section 3 describes the 
overview of multiobjective optimization methods and 
approaches in handling multiple conflicting objectives. 
Section 4 introduces the multiobjective optimization 
methods in metabolic engineering. Lastly, Section 5 gives 
the conclusion, including trend, future directions, and 
factors that hindered the multiobjective optimization in 
metabolic engineering. 

2. Multiobjective Optimization 
Optimization is defined as maximizing or 

minimizing a function from a set of decision variables, 
that is restricted by a series of constraints [6]. 
Optimization can be divided into two problems 
depending on the number of objective function being 
optimized; (1) single objective optimization (SO) and (2) 
multiobjective optimization (MO). The former 
optimization is related to optimize a single objective 
function, whereas the latter involves more than one 
objective being optimized. However, the objective 
functions being optimized are always conflicting to each 
other, thus a trade-off among the solutions need to 
consider.  

The trade-off is losing a thing in order to gain another 
thing. For a solution, therefore, it may be good for one 
function, but it may be bad for another function. The 
mathematical expressions for MO problems can be 
expressed as follows: 

 min/max Z = Z(x*) = [Z1(x*), Z2(x*), …, Zk(x*)]      (1) 

Subject to: 

 gj(x*) = bj (j = 1, 2, …m)                              (2) 

where k is the number of objectives to optimized, m is 
the number of constraints and g is the constraints being 
imposed to the solution space. Fig. 1 below illustrates the 
multiobjective optimization problems.  

 

 

 

 
 

 

Fig. 1: Illustration of multiobjective optimization. 

Based on Fig 1, there are an n-dimensional decision 
variable vectors (x1, x2, … xn) initialized in the solution 
space X, and find a vector of x* that optimizes the set of k 

objective functions Z(x*). The solution space is restricted 
by a series of constraints, bj. In MOP, an acceptable, in 
this case feasible, solutions are the solutions that satisfy 
the objectives without being dominated by any other 
solution. Furthermore, in MOP, dominance is crucial in 
determining a goodness of a solution. A solution x is said 
to dominate another feasible solution y when: (1) the 
solution x is no worse than the solution y in all objectives 
and (2) solution x is better than solution y in at least one 
objective. In this case, solution x is said to be a non-
dominated solution, whereas solution y is a dominated 
solution. 

These solutions are known as Pareto solutions and 
when mapped to a graph, it is known as Pareto graph [7]. 
In MOP, the obtained non-dominated solutions should as 
close as possible to the true Pareto solution and uniformly 
distributed over the Pareto graph while capturing the 
whole graph. Once the non-dominated solutions are 
found, the decision makers may decide on the final 
solution based on their own preference according to the 
optimization problems.  

3. Approaches in Multiobjective 
Optimization 

3.1 Overview of Multiobjective Optimization 
Approaches 
The MOP can be tackled in two approaches: (1) 

traditional approach and (2) Pareto methods, as shown in 
Fig. 2. The first approach involves analytical and 
numerical method. Among them are scalarization 
methods, which include weighted sum approach, goal 
attainment, and lexicographic method; and non-Pareto 
methods, which include ɛ-constraint. However, the 
numerical method requires mathematical equations 
including defining the iteration [8].  However, the former 
approach is able to generate one solution at each iteration 
and they are sensitive to the shape of Pareto curve, 
although they have fast convergence and high searching 
efficiency.  

Therefore, in order to overcome the limitations of 
traditional approaches, the Pareto-based approach has 
been introduced and developed. The Pareto-based 
approach can be further divided into non-evolutionary 
algorithms and evolutionary algorithms. The method in 
non-evolutionary Pareto-based approach is Normal 
Boundary Intersection (NBI). However, NBI is only 
suitable for maximum two objectives and the generated 
non-dominated solutions are not guaranteed to be a near-
optimal [9].  

Nowadays, intelligent algorithms such as those 
inspired by true-nature events are well-known in solving 
the optimization algorithms. Thus, evolutionary based 
algorithms such as Genetic Algorithm (GA), Harmony 
Search Algorithm (HS), Differential Search Algorithm 
(DSA), and others, has been used in solving the MOP [10–
13]. The self-adaptation and flexibility of these Pareto-
based evolutionary algorithms have successfully solved 
various MOP including electrical flow, scheduling, an 
engineering problem, and others. 
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3.2 Differences in Multiobjective 
Evolutionary Algorithms (MOEA) 
The framework in MOEA can be distinguished into 

three categories, which are (1) fitness assignment, (2) 
elitism, and (3) diversification. Each of these categories 
corresponds to the different goals of multiobjective 
optimization. Fig. 3 represents the methods in each 
category.  

According to [14], most researchers developed their 
algorithms by adapting strategies from these differences. 
Each of these methods has been thoroughly reviewed in 
[14]. Fitness assignment is used to obtain non-dominated 
solutions that are near to the true Pareto. There are three 
differences, which are weighted sum approach, altering 
the objective function and Pareto ranking. In weighted 
sum, a weight is assigned to each objective function, and 
the sum of total weight used is equal to 1. A weighted 
sum is a classical approach that has been applied in 
WBGA-MO, MOGA, RWGA, and others; due to the 
simplicity of implementation and computationally 
efficient [15,16].  

 

Fig. 2: Overview of Multiobjective Optimization. 
 

The second approach, altering the objective function; the 
population is divided into subpopulation, thus the 
crossover and mutation are proportional to these 
subpopulations being made. However, the random 
division of subpopulations may indirectly cause the 
solutions to be biased. This is because the populations 
tend to converge to the best solutions instead of the poor 

solutions. A third approach is Pareto ranking, which is the 
most popular approach being used by the researchers in 
developing a new multiobjective algorithm. Pareto 
ranking uses the concept of Pareto dominance in 
determining the non-dominated solutions according to the 
fitness [17]. 
 
 
 

 
 
 
 
 
 

 

Meanwhile, elitism is used to ensure the obtained 
non-dominated solutions are able to cover the whole range 
of true Pareto. There are two approaches, either 
maintaining the elitist solutions or store the elitist 
solutions in an external archive. The first approach is easy 
to implement, but not suitable for a large number of non-
dominated solutions, while the latter is time inefficient, 
although it is able to keep the previous non-dominated 
solutions without being replaced by new non-dominated 
solutions.  

The third category is diversification, which is 
important in allowing the solutions to be uniformly 
distributed along the Pareto graph. There are three 
approaches, crowding distance, cell-based density and 
fitness sharing. The most popular approach is crowding 
distance as it does not require a user-defined parameter. 
Moreover, crowding distance can be used as a parameter 
to determine the density of a solution. However, it does 
not suitable for a small number of the population [18].  

Meanwhile, for cell-based density, it is suitable for a 
small number of population with sparse distribution. In 
cell-based density, the objective space is divided into K-
dimensional cell, and the number of solutions allocated in 
each cell defines the density of the cell. Thus, higher 
density corresponds to the higher number of solutions and 
more diverse. This approach is applied in several 
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algorithms including PESA, SPEA2, SPEA, and PAES 
[19, 20]. 

For fitness sharing, the solutions in a densely 
populated area are assigning a penalty to its fitness in 
order to search for unexplored sections. However, this 
method is computationally expensive as it requires niche 
count defined by the user. Table 1 shows the strategies and 
approaches used in multiobjective evolutionary algorithms 
(MOEA). 

Table 1: List of Multiobjective Evolutionary Algorithms 

Algorithm Fitness 
Assignment Diversification E A 

VEGA [21] 
Altering 
objective 
function 

☓ ☓ ☓ 

MOGA [22] Pareto ranking Fitness sharing ☓ ☓ 
NPGA [23] ☓ Fitness sharing ☓ ☓ 
WBGA [15] Weighted Sum Fitness sharing ☓ ☓ 
RWGA [16] Weighted Sum Fitness sharing ✓ ✓ 
NSGA [24] Pareto ranking Fitness sharing ☓ ☓ 

SPEA [25] Pareto ranking Cell-based density ✓ ✓ 

SPEA2 [20] Pareto ranking Cell-based density ✓ ✓ 
PAES [17] Pareto ranking Cell-based density ✓ ✓ 
PESA [19] ☓ Cell-based density ✓ ✓ 

PESA-II [19] ☓ Cell-based density ✓ ✓ 
NSGA-II 

[26] Pareto ranking Crowding distance ✓ ☓ 

MEA [27] Pareto ranking Fitness sharing ✓ ✓ 
Micro-GA 

[28] Pareto ranking Cell-based density ✓ ✓ 

RDGA [29] 
Solve MO as 

single 
objective 

Cell-based density ✓ ✓ 

DMOEA 
[30] Pareto ranking Cell-based density ✓ ☓ 

Note: Checkmark (✓) represents it being used in the algorithm and cross 
mark (☓) represents not being used in the algorithm. 

A – Archive, E - Elitism 

 

4. Multiobjective Optimization Algorithms 
in Metabolic Engineering 
Metabolic engineering is a process to increase the 

production of certain metabolites by optimizing the 
metabolic and biosynthetic pathways of an organism [31]. 
The aim of metabolic engineering is to improve the 
design of organisms by means of (1) gene/reaction 
knockout, (2) modification of specific regions in 
metabolic network that may contribute in enhancing the 
production yield, (3) manipulation of metabolic networks 
using various existing network reconstruction tools and 
manipulation of biological molecule using biological 
molecule manipulation tools, and (4) integrating new 
non-native pathway into the host. To date, most 
researchers focused on improving the metabolic network 
due to simplicity yet full information resides and can be 
gained from the manipulation of the metabolic network.  

Due to this, several methods and tools have been 
developed, including constraint-based methods. 
Furthermore, the constraint-based methods such as FBA, 

ROOM, and MOMA, has been coupled together with an 
optimization algorithm, due to the nature of constraint-
based, which are only able to find the flux values and not 
optimizing the production. Therefore, there are new 
methods developed, including Flower Pollination-Clonal 
Selection Algorithm, IdealKnock, OptGene, 
RobustKnock and others [3, 32–34]. These methods are 
able to find mutants with a high value of production rate 
and growth rate. Furthermore, the aforementioned 
methods work by identifying reaction knockout that may 
improve the production of desired metabolites while 
keeping the organism viable.  

However, previous research in in silico metabolic 
engineering are only focusing on optimizing one single 
objective, majorly production rate. Yet, in bioprocesses, it 
involves multiple and conflicting objectives such as 
production rate of desired metabolites, growth rate, and 
byproduct rate. Therefore, current focus has shifted 
towards multiobjective optimization. Not only in this 
domain but other domain as well [35–37]. Nevertheless, 
the multiobjective optimization in in silico metabolic 
engineering is still new.  

In metabolic engineering, the important factors that 
need to be considered are production rate and growth rate. 
This is because the target of the mutant is not only 
producing the promising amount of desired metabolites 
but also viable after the extreme perturbations. Organisms 
that largely manipulate in large scale are Escherichia coli 
and Saccharomyces cerevisiae. Considering that their 
metabolic and biological information are studied 
tediously and most updated, therefore most research used 
these organisms to manipulate for producing products in 
bulk forms such as ethanol, succinic acid, and acetic acid. 

Roughly, the developed MOEAs are mostly due to the 
limitation of FBA that only limited to single objective 
function. The earliest multiobjective optimization in 
enhancing the production of succinic acid is carried out by 
[38]. The authors applied Strength Pareto Evolutionary 
Algorithm 2 (SPEA2) and Non-Dominated Sorting 
Genetic Algorithm II (NSGA-II) in identifying reaction 
knockout strategies in E.coli to optimize the production 
rate and growth rate. This finding has kick-start for other 
developed methods, including LPPFBA, NISE and FBA, 
and Metaboflux [39–42]. Table 2 shows the list of MOEA 
in in silico metabolic engineering. 

Table 2: List of MOEA in Metabolic Engineering 

Algorithm Fitness 
Assignment 

Diversification Elitism Archive 

LPPFBA 
[39] 

Pareto 
ranking 

Cell-based 
density 

✓ ☓ 

NISE+FBA 
[40] 

Weighted 
sum 

approach 

Cell-based 
density 

✓ ☓ 

NSGA-II 
[38] 

Pareto 
ranking 

Cell-based 
density 

✓ ✓ 

SPEA2 [38] Pareto 
ranking 

Cell-based 
density 

✓ ☓ 

Metaboflux 
[42] 

Altering 
objective 
function 

Fitness sharing ☓ ☓ 

Note: Checkmark (✓) represents it being used in the algorithm and cross 
mark (☓) represents not being used in the algorithm. 
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Linear Physical Programming-based Flux Balance 
Analysis (LPPFBA) is developed due to the limitation of 
FBA, which only focus on single objective function. 
LPPFBA is applied to hepatocyte function in a 
bioartificial liver system for determining a set of optimal 
solutions for various pairs of urea secretion, albumin, 
NADPH, and glutathione syntheses. Although LPPFBA is 
suitable for more than 2 objectives, however, the user 
needs to define degrees of significance for each objective 
function. 

Following that, Noninferior set estimation (NISE) has 
been applied with FBA to improve the production of poly 
(3-hydroxybutyrate) in E. Cali. NISE method is used to 
estimate the non-dominated near-optimal solutions. 
Furthermore, NISE is able to give a good approximation 
of Pareto set, however, it does not consider enzymatic 
information. Meanwhile, Metaboflux is developed for 
exploiting the metabolic network of an organism, thus 
allows the incorporation of multipurpose characteristics of 
a cell. Eventually, it contributes to the significance of a 
model, although it is time inefficient. 

Furthermore, there is another research that finding the 
combination of reactions for the knockout and simulate 
them in the experimental laboratory [43]. Using E.coli 
strains [44], they focus on increasing the production of 
target organic acids, including acetic acid, lactic and 
succinic acids, while minimizing the formation of 
byproducts. By using Flux Balance Analysis and based on 
criteria defined, they obtained 4 mutants for different 
target organic acids.  

 

5. Conclusion 
Most real-world problems are centered upon 

multiobjective. This include designing, scheduling, 
controlling, and others in various areas such as economics, 
financial, electrical power systems, and others. Not so 
long ago, the traditional chemical synthesis processes have 
been shifting towards computational simulation due to the 
benefits in terms of time, raw materials source, and prior 
knowledge. Additionally, the multiobjective optimization 
has extended in computational biology and bioinformatics 
as well, especially in optimizing the production rate and 
growth rate. Yet, the multiobjective optimization involved 
finding a set of solutions that better in one objective but 
worst in another objective. This trade-off is somehow 
difficult as it involves different conflicting objectives. 
Thus, more research, algorithms, and approaches has been 
developed to solve the problem. 

In this review, we started with the description of 
multiobjective optimization problem. Due to the 
traditional approaches in obtaining the non-dominated 
solutions, which can only generate one single solution at 
one time, thus intelligent algorithms such as swarm-based 
and evolution-based algorithms were proposed. 
Eventually, it drastically improves the performance in 
terms of accuracy of the near-optimal solutions and 
diversity of the solutions. Furthermore, we also provide 
the differences of strategies and approaches used in 
multiobjective evolutionary algorithm, together with 

several MOE algorithms distinguished by their strategies 
and approaches 

At last, we focus on multiobjective optimization 
problem in solving the metabolic engineering problem. 
Several algorithms that have been developed are reviewed 
as well, together with advantages and disadvantages. As 
mentioned before, there are three goals associated with 
MOP, and each goal is distinct with their strategies, 
approaches, and functionalities. Regardless of the 
difference, customizing together these approaches and 
strategies may introduce a new multiobjective algorithm. 
Still, further validation is still needed in both biological 
and computational. 
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