
International Journal of Integrated Engineering:
Special Issue 2018: Data Information Engineering, Vol. 10 No. 6 (2018) p. 66-74.
© Penerbit UTHM DOI: https://doi.org/10.30880/ijie.2018.10.06.009

Towards Formulating Dynamic Model for Predicting Defects
in System Testing using Metrics in Prior Phases

Muhammad Dhiauddin Mohamed Suffian1,2*, Dayang Norhayati Abang
Jawawi1, Rd. Rohmat Saedudin3, Mohd Adham Isa1
1School of Computing, Faculty of Engineering,
 Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
2Business Solution and Services
 MIMOS Technology Solutions Sdn. Bhd., 57000 Kuala Lumpur, Malaysia.
3School of Industrial Engineering, Telkom University,
 40257 Bandung, West Java, Indonesia.

Received 28 June 2018; accepted 5 August 2018, available online 24 August 2018

1. Introduction
WATERFALL has been well-known as one of the

traditional software engineering process model. The
model arranges the phases according to linear sequence
[1], namely concept definition, requirement, design, code,
testing and maintenance phases [2]. Early testing has
been put into emphasis when the improved model of
Waterfall referred as V-model was introduced [3]. In V-
model, early testing means every phase has to undergo
rigour verification and validation (V&V) activities before
releasing the software to end-users or its operational
environment. These activities may include the following,
but not limited to requirement review, design review,
code inspection and corresponding test level: unit test,
integration test, system test as well as acceptance test [4].
This allows defects to be discovered hence fixed as early
as possible in the life cycle.

System testing is executed when all required
subsystems are fully integrated into one system [5] that
consists of wider range of functional and non-functional
testing. Typically, independent testing team is responsible
for carrying out system testing to ensure software under
test meet user’s requirement and expectation. The defects

found either functional or non-functional defects are sent
back to developers for fixing and then retested again for
confirmation. One of the challenges faced by team in
completing test execution is making sure all defects have
been found by testers and fixed by developers within the
timeline. Furthermore, it is also expected that when all
defects have been detected and fixed during system
testing in which the environment setup mimics the
production environment, the same defects should not be
re-introduced and detected again in the end-user’s
environment. However, this might not be the ideal case
since there is no clear mechanism or measurement to help
the team in giving such confirmation. Thus, early and
reliable indicator is essential in helping testing team to
know the predicted total number of defects to be found at
the start of system testing execution.

It is important to have prediction of defects
specifically for system testing. Testing team could use the
prediction as the guide on the number of defects that they
should find in the software under test. The more the
defects could be found, the lesser or zero-known defects
escapes to end-users. From management point of view,
the right number of testers could be allocated across

Abstract: Many studies have been carried out in formulating software defect prediction but it is of limited
knowledge that those studies emphasized on predicting defects in system testing phase. This study specifically
focuses on establishing a prediction model for system testing defects by exploiting metrics prior to system testing
under V-model development. The initiative helps independent testing team to prevent as many defects as possible
from escaping to production environment. The proposed model analyzes development-related and testing-related
metrics collected from requirement, design and construction phases in determining which of those could
significantly predict defects at the start of system testing. By applying statistical analysis to those metrics, this
model able to formulate one generalized mathematical equation for predicting defects in system testing. The model
applies 95% prediction interval to ensure the accuracy of the prediction.

Keywords: system testing, metrics, model, prediction, software

*Corresponding author: mdhiauddin2@live.utm.my/dhiauddin.suffian@mimos.my
2018 UTHM Publisher. All right reserved.
penerbit.uthm.edu.my/ojs/index.php/ijie

66

https://doi.org/10.30880/ijie.xx.xx.xxxx.xx.xxxx

M.S, M Dhiauddin et al., Int. J. Of Integrated Engineering: Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 66-74

multiple test projects by comparing historical data on
testers per total defects found in previous projects against
the current prediction. Realistic number of days for test
execution could also be scheduled by referring to this
information. All these shall contribute towards the
completion of system testing within the time frame.
Defect prediction also influences the test strategy
employed by testing team in finding defects. Putting the
prediction in place allows the team to plan and adopt
most effective test types and techniques so that the
defects found are closer enough with the prediction due to
understanding that it is difficult to have 100% accuracy in
predicting defects. This will increase the coverage of
testing and lead to the production of high quality
software. Therefore, in order to predict defects in system
testing, a right and systematic approach is required for
developing the prediction model. In this research context,
the focus is to analyze, utilize and select significant
metrics collected from development and testing-related
activities taking place before system testing as predictors
for defects. As mentioned earlier, V-model is chosen as
the process model for the research since V & V activities
are heavily carried out from requirement to deployment
phase involving the collection and monitoring of various
metrics.

This discussion in this paper is organized into several
sections. Section II describes the related works while
Section III highlights about testing and V-model. Section
IV discusses the findings of the proposed model followed
by Section V, which illustrates the implementation of the
proposed model in case study. Section VI summarizes the
key contributions of the research together with the
opportunities for future works

2. Related Works
Although defect prediction is not a new area of

interest, there is limited information on how prediction of
defects is done specifically for system testing. Among the
earliest works on defect prediction was done by [6] which
used cyclomatic complexity and lines of code (LOC) as
defect predictors. [7] demonstrated that predictors for
defects can be categorized into project management,
process improvement and work product assessment. [8]
took similar approach by using review, code testing, code
peer review, product release usage and defect validation
metrics to formulate prediction model via regression
analysis. Software defects could also be predicted by
adopting mathematical distributions [9] or applying
Defect Type Model (DTM) which relies on defect
severity based on Bayesian Network [10]. In different
perspective, [11] viewed defect prediction as defect
inflow prediction that could be obtained by employing
multivariate linear regression. Quality Function
Deployment (QFD) and transfer function in Six Sigma
were another techniques used to predict defects in
software [12]. Apart from that, instead of predicting total
number of software defects, [13] approached it in
different ways by utilizing COnstructive QUALity Model
(COQUALMO) to predict defect density.

Software defect prediction can be observed from
various angles. [14] viewed defect prediction as the area
of remaining defect when testing activities are still on-
going. On the other hand, defects found in e-mail and
website of open source software became the area of
concern for [15]. Under the study using Rayleigh model,
[16] consider each phase in software life cycle as the area
of defect prediction. This supported by similar effort by
[17] and [18] via the use of Bemar and CDM model,
respectively.

Choosing and using the right predictors serve as the
crucial element in prediction as this will determine how
significant the predictors are in discovering defects. [15]
believed object-oriented metrics serve as good predictors
for defects while [19] were more comfortable in using
developer-related metrics to predict software defects.
These involve metrics on number of developers who
made modification prior to release, during the release and
all releases. Metrics from historical were also used as
defect predictors [20]. This is similar to the work by [21]
that used detailed requirements and potential defects from
each phase in development to develop the prediction
model. Furthermore, [22] managed to develop an
effective defect prediction model by adopting only three
software metrics as significant predictors.

Performance and accuracy of the formulated model is
important to ensure the model can successfully predict the
correct or acceptable number of defects. Percentage of
faults found was one of the good measures for a
successful prediction [23]. In other forms, a defect
prediction is said to successful when the prediction result
could be used for software maintenance in the future [24].
Number of commit data can also serve as good
measurement for prediction performance [25]. However,
regardless of any method or result of the prediction, it can
only serve as a good benchmark if the data set used is
significantly huge [26].

Several areas of concern have been addressed by
several recent studies on predictors for defect. One of
them is about categorization of data for generating the
defect prediction into qualitative and quantitative [27],
which is more focused on early stage defects in
development life cycle. Qualitative data can be found in
COQUALMO. For quantitative data, it can be referred to
team size, effort, test cases and software size. Both
categories of data exist as product and process metrics
which are employed in this research. Apart from that,
defect prediction should also address various context and
nature of software. [28] proposed phases of preparation,
model creation and model usage to form the framework
for context-specific prediction towards producing reliable
software defect prediction. It is also important to use finer
granularity of metrics, tackle new ‘customers’ for
prediction and deal with prediction noise [29]. By
incorporating such aspects, a practical model of defect
prediction can be established and serves as the basis for
the term called “Defect Prediction 2.0”. The works on
future defect prediction should also address various
challenges such as prediction for new areas, fast pace

67

M.S, M Dhiauddin et al., Int. J. Of Integrated Engineering: Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 66-74

development and understanding of ways for fixing
defects (30).

Considering all those prior efforts, this research has
been undertaken with the emphasis on establishing a
systematic model to formulate realistic prediction for
defects to be found in system testing by making use of
development and testing-related metrics in prior phases.
The focus is only for software projects that adopt V-
model as the development process.

3. Testing and V-Model
Generally, the introduction of V-Model is to show
corresponding test activities for each phase of
development [4]. The left ‘V’ represents the typical
waterfall phases while the right ‘V’ depicts the related
test levels. [3] added smaller details in between the left
and right ‘Vs’ by putting planning activities for each test
level. [3] described the phases for left ‘V’ as requirement,
analysis, high-level design and low-level design while [4]
refer those phases as requirement specification, functional
specification, technical specification and program
specification. But, both refer to the same understanding
of typical waterfall phases comprise of user requirement,
system requirement, system design and component or unit
design, respectively. The V-model diagram as illustrated
by [3] can be represented below in Figure 1:

Fig. 1: V-model development process. It clearly shows
each waterfall phase with its corresponding test level.

From Fig. 1, there is no detail description on how V&V
activities are incorporated and integrated into the V-
model process. Thus, the diagram is revisited and
reconstructed to illustrate these activities. The revised
diagram also includes the area of defect prediction. This
is represented below in Figure 2:

Fig. 2: Verification and validation activities in V-model
development process. Note the testing phase as area of
prediction, which is highlighted in dotted-square area.

The diagram divides the V&V activities into upper part
for development-related activities while the lower part for
testing-related activities that take place in parallel
throughout the software life cycle. Development-related
activities under V&V can include but not limited to
requirement review, high-level design review low-level
design review and Graphical User Interface (GUI) design
review. In parallel, V&V activities related to testing are
also carried out including test planning and review, test
cases design and review, test scripts design and review,
sanity testing, system testing as well as post-testing
activities such as user acceptance test (UAT), beta testing,
pilot implementation and software release. However,
post-testing activities are not considered in this research
as the scope is up to system testing phase only.
Each activity is tracked and measured by collecting
metrics, either by developer or tester. These details are
summarized in Table 1. As for Table 2, it outlines the
possible metrics to be collected for each phase.

Table 1: V-model phases, activities and metrics
Phase Activities Role

Requirement Requirement analysis
and development

Developer

Requirement review Developer
Design Design development Developer

Design review (high-
level design, low-level
design, database design,
GUI design)

Developer

Test plan development Tester
Test plan review Tester

Construction
/
Coding

Coding Developer
Code inspection Developer
Unit testing Developer
Integration testing Developer
Test cases development Tester
Test cases review Tester

Testing System testing Tester

68

M.S, M Dhiauddin et al., Int. J. Of Integrated Engineering: Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 66-74

Table 2: V-model phases and metrics
Phase Metrics
Requirement Number of requirement pages

Defects in requirement
Effort in requirement

Design Number of high-level design pages
Number of low-level design pages
Number of database design pages
Number of GUI design pages
Effort in design
Defects in high-level design
Defects in low-level design
Defects in database design
Defects in GUI design
Number of test plan pages
Defects in test plan
Effort in test plan

Construction/
Coding

Defects in code
Lines of code
Cyclomatic complexity of code
Effort in coding
Defects in unit testing
Defects in integration testing
Number of test cases
Defects in test cases
Effort in test cases design
Defects in sanity testing

Testing Defects in system testing
Effort in system testing

Since the focus is to predict defects in system testing,
metrics collected in prior phases to testing are considered
as independent variables that will serve as potential
predictors for the model while metrics in testing phase are
treated as dependent variables. The actual metrics that
will be finally used in the model could only be obtained
once the analysis is completed. Further explanation is
provided later in the Case Study section.

4. Findings of Proposed Model

The model of using prior phases metrics to formulate
the prediction for system testing incorporates process and
practices of executing development and testing-related
activities, collecting metrics, storing metrics, analyzing
metrics, verifying results and implementing the verified
prediction model. The whole comprehensive model for
formulating and implementing this defect prediction is
represented in Figure 3. Important note here is that the
model involves historical data as well as new data.

Metrics are collected for related activities in every

development phase and stored into their own repository,
which can be referred as logical repository. All these
logical repositories make up the master repository of
product and process metrics that can be decomposed
further into defect-related metrics, size-related metrics
and effort-related metrics. They are differentiated based
on type of software project and the methodology used.

This model will then use this repository as the main
source for creating the prediction model. Once the data
are extracted, they are filtered so that only accurate data
are used for further analysis, in which only metrics from
software projects that adopt V-model are considered.

During the analysis stage, statistical analysis

techniques are applied to the metrics. The interactions
between metrics for independent variables and metrics for
dependent variables are observed to determine which set
of independent variables can serve as significant
predictors for the discovery of defects in system testing
phase. Several mathematical equations are produced as
the results of the statistical analysis, which are also kept
in own repository for future reference. These equations
can be referred as candidates of defect prediction model
for system testing. In order to verify which equation is fit
for final implementation, every prediction model
candidate is applied into fresh new projects which are yet
to enter system testing phase. These projects should not
be part of the set metrics used for generating the
equations. During this verification stage, actual defects
found are compared against defects predicted by each
equation for each project. The suitable equation for defect
prediction model is selected from the equation that
produces the most significant prediction result, in which
it could predict the defects within the specified prediction
range. This equation is then finally incorporated and
implemented back into the software development process.

69

M.S, M Dhiauddin et al., Int. J. Of Integrated Engineering: Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 66-74

Fig. 3: Proposed model of formulating prediction for
system testing defects by exploiting metrics in prior
phases. It shows the cycle that need to be followed for
generating the model and implementing back into V-
model software process
.

In this research perspective, only multiple regression
analysis is adopted as the statistical technique to generate
the prediction equation. The reason being is to
demonstrate that this model works and able to produce
reliable prediction.

In the proposed model, there is a stage of conducting
statistical analysis, in which several mathematical
equations are formulated. In more detail, this stage
involves following procedures:

1. Identify metrics to be collected from each phase in
V-model: requirement, design, construction or
coding and testing. Metrics from phases prior to
testing are put as independent variables while
metrics in testing phase are treated as dependent
variables.

2. Collect the identified metrics from development
and testing repositories.

3. Filter and validate the metrics data to ensure only
accurate metrics are used.

4. Perform statistical analysis by using the validated
metrics interchangeably, in which in this research

context multiple regression analysis. During this
analysis, observe the interaction between various
independent variables and dependent variables to
determine which set of interactions produce the
best mathematical prediction equation.

5. Acceptance criteria for selecting the mathematical
equation as prediction equation candidate is based
on R-squared and R-squared (adjusted) values of
at least 90% as well as P-value of less than 0.05.
This is to make sure the equation is a strong
equation. Therefore, for this statistical analysis
exercise, if the formulated equation satisfies all
three aspects in the acceptance criteria, the
equation could be considered as candidate for
defect prediction model. Otherwise, if it fails to
meet the acceptance criteria, revise the predictors
(independent variables) used and perform
regression analysis again.

6. Apply the selected candidates of prediction
equation into new testing projects as explained
earlier. Compare the actual defects found against
predicted defects. Select the best defect prediction
model when the actual defects found is between
the specified range of 95% Prediction Interval (PI)
for that particular equation. Otherwise, revise the
selection of metrics if the actual defects found are
out the PI range and repeat the analysis process.

The above procedures are depicted below in Figure 4:

Fig. 4: The statistical analysis procedures in formulating
prediction model for defects in system testing. The
procedures need to be repeated in the event when the
acceptance criteria are not satisfied.

As mentioned previously, the mathematical equation

that has been selected as the final defect prediction model
is incorporated back as part of the V-model software
development process for actual implementation. The
prediction model is still subjected for further refinement
should the actual defects found do not fall within PI
range. Figure 5 shows the implementation of the final
prediction model.

70

M.S, M Dhiauddin et al., Int. J. Of Integrated Engineering: Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 66-74

Fig. 5: Implementation of final defect prediction model
for system testing back into the V-model software
development process. Comparison between actual defects
found and predicted defect is done throughout the testing
phase.

5. Case Study

One organization was selected to conduct the case
study. It is a research and development (R&D)
organization that heavily involves in applied research
activities, both in software and hardware. The interest is
in their software development activities, which allow the
demonstration of suitability for this model into real
implementation. Furthermore, most software projects in
the organization adopted V-model as their methodology
or process model.

Historical data were collected from all completed
projects, which comprise of following types of software:
standalone or desktop-based, web-based and web-service.
These projects were developed using various
programming languages, namely PHP, Java and .NET.
From the master repositories hold all metrics from
requirement, design, coding and testing phase, following
metrics were collected:

• Number of requirement pages
• Number of design pages
• Code size – kilo lines of code (KLOC)
• Number of test cases
• Effort in test cases design
• Effort in phases prior to system testing
• Defects in requirement
• Defects in design
• Defects in code and unit testing
• Defects in test cases
• Defects in system testing (for every software

project)

Data for each metric were validated so that only

accurate data are used for statistical analysis. For final set
of data, fourteen (14) software projects were selected. For
dependent variable, it is differentiated by either all
defects in system testing or functional defects in system
testing. The analysis used these two defects
interchangeably to determine which category of defects
can be closely predicted. Same thing for effort-related

metrics used for independent variables. Effort spent in
test cases design and total effort spent for activities in
requirement, design and coding phases that also include
effort in test cases design were also used interchangeably
so that the right effort-related predictor is used during the
analysis. Table 3 outlines the final data set used in
statistical analysis, which is regression analysis.

Table 3: Data set used for statistical analysis

Several sets of independent variables (predictors) and

dependent variable (target/prediction) were used to
conduct the regression analysis. The results of the
analysis present the predictors that could be significant in
predicting either functional defects only or all defects.

Table 4: Sets of independent and dependent variables for

regression analysis
Set Independent

Variables (Predictors)
Dependent

Variable (Target/
Prediction)

Set A • Requirement defects
• Code defects
• KLOC
• Requirement pages
• Design pages
• Total test cases
• Total effort

Functional defects

Set B • Requirement defects
• Code defects
• KLOC
• Requirement pages
• Design pages
• Total test cases
• Total effort

All defects

Set C • Requirement defects
• Code defects
• KLOC
• Requirement pages
• Design pages
• Total test cases
• Effort in test design

Functional defects

Set D • Requirement defects
• Code defects
• KLOC
• Requirement pages
• Design pages
• Total test cases
• Effort in test design

All defects

71

M.S, M Dhiauddin et al., Int. J. Of Integrated Engineering: Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 66-74

The results of regression analysis for each set in

Table 4 are presented below in Figure 6, Figure 7, Figure
8 and Figure 9, respectively. Take note that there were
slight differences in terms notation used when the data
were put in the statistical software. Requirement error
was used to refer to requirement defects, code and unit
testing (CUT) error refers to code defects, effort days for
total effort, effort test design refers to test cases design
effort and total TC for total test cases.

Fig. 6: Regression analysis result for Set A

Fig. 7: Regression analysis result for Set B

Fig. 8: Regression analysis result for Set C

Fig. 9: Regression analysis result for Set D

The reasons for having four (4) sets of regression

analysis were to determine whether the equations could
better predict all defects or functional defects only, and
whether effort for test case design or all efforts in phases
prior to system testing should be considered as one of the
predictors.

In general, all equations produced R-Squared and R-
Squared (adjusted) of at least 90% while the P-value for
each predictor was less than 0.05. For further
confirmation on which equation should be selected as the
defect prediction model, all equations were verified by
applying them into new and fresh projects that have not
yet entered system testing phase, in which their data were
not part of the analysis. Prediction Interval (PI) for each
equation was used as guidance for the range of prediction.
PI of 95% specified the minimum and maximum number
of defects that should be found by that particular
equation. The verification results are presented below in
Table 5:

Table 5: Verification results for each equation

E

qu
at

io
n

Pr
oj

ec
t

Pr
ed

ic
tio

n

D
ef

ec
ts

Fo

un
d

95
%

 P
I

(m
in

,
m

ax
)

A Project 1 182 187 (155, 210)
Project 2 6 1 (0, 14)
Project 3 1 1 (0, 6)

B Project 1 298 230 (241, 356)
Project 2 9 9 (0, 24)
Project 3 2 1 (0, 12)

C Project 1 183 187 (201, 392)
Project 2 8 1 (0, 19)
Project 3 2 1 (0, 9)

D Project 1 296 230 (142, 225)
Project 2 11 9 (0, 37)
Project 3 3 1 (0, 19)

Based on the verification result, it is clear that

Equation A demonstrated the most promising prediction
within the specified PI range. This means that by using
requirement defects, code defects, KLOC, requirement
pages, design pages, total test cases and total effort spent
by testers in phases prior to testing, functional defects for
software under test adopting V-model process could be
predicted. Besides that, this final result also explained
that due to limited number of data used for analysis, the
proposed model could only generate one generalized
defect prediction that is only able to predict functional
defects for any software under test. Thus, this proposed
model is subjected to more improvements in the future to
make it more robust and reliable in predicting defects for
different type and nature of software produced.

72

M.S, M Dhiauddin et al., Int. J. Of Integrated Engineering: Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 66-74

6. Conclusion
This effort has successfully proposed, established

and demonstrated a systematic model of formulating
prediction for system testing defects by using prior
phases’ metrics, specifically for software adopting V-
model development process. Metrics associated with
development and testing activities collected during
requirement, design and construction phases had been
analyzed and exploited in order to discover the most
significant predictors for system testing defects.
Statistical analysis via regression analysis had served as
useful and powerful technique in coming out with such
mathematical equation for predicting defects.
Furthermore, this had helped in proposing a model that
predicts defects within a specified minimum and
maximum range, not by absolute numbers.

As future measures for improving the proposed
model, more metrics need to be considered in
determining the suitable predictors. This shall include
more product metrics rather than process metrics and also
metrics granularity. Apart from this, this model could also
look into ways of predicting defects beyond than just
functional defects, such as performance defects, usability
defects, and security defects. It is also expected that this
model shall cater for formulating different defect
prediction for different types of software. Obviously, any
mechanism is welcomed to see the procedures introduced
in this model can be automated for dynamically
generating defect prediction for system testing in real-
time.

References
[1] Jalote, P.A. Concise introduction to software

engineering. Springer, 1st ed. (2008), New
York.

[2] Laplante, P.A. What every engineer should
know about software engineering. Taylor &
Francis Group. (2007), Boca Raton, FL.

[3] Hambling, B. Software testing: an ISTQB-ISEB
foundation guide, second edition. British
Information Society Limited, (2010), North Star
Avenue, Swindon.

[4] Desai, S. and Srivastava, A. Software testing: a
practical approach. PHI Learning Private
Limited, (2012), New Delhi.

[5] Spillner, A., Linz, T. and Schaefer, H. Software
testing foundations: a study guide for the
certified tester exam. Rocky Nook, (2007), Santa
Barbara, CA.

[6] Fenton, N.E. and Neil, M. A critique of
software defect prediction models. IEEE
Transactions on Software Engineering.
Volume. 25 (5), (1999), pp.675-689.

[7] Clark, B. and Zubrow,D. How good is the
software: a review of defect prediction
techniques. Software Engineering Symposium,
(2001), Carnegie Mellon University.

[8] Wahyudin, D., Schatten, A., Winkler, D., Tjoa,
A.M. and Biffl, S. Defect prediction using
combined product and project metrics: a case
study from the open source “Apache” MyFaces
project family. Proceedings of Software
Engineering and Advanced Applications (SEAA
'08), 34th Euromicro Conference, (2008), pp.
207-215.

[9] Sinovcic, I. and Hribar, L. How to improve
software development process using
mathematical models for quality prediction and
element of six sigma methodology. Proceedings
of the 33rd International Conventionions 2010
(MIPRO 2010), (2010), pp. 388-395.

[10] RadliRski, L. Predicting defect type in software
projects. Polish Journal of Environmental
Studies, Volume 18 (3B), (2009) pp. 311-315.

[11] Staron, M. and Meding, W. Defect inflow
prediction in large software projects. E-
Informatica Software Engineering Journal,
Volume 4 (1), (2010), pp. 1-23.

[12] Fehlmann, T. Defect density prediction with six
sigma. Presentation in Software Measurement
European Forum (2009).

[13] Mittal, A. and Dubey, S.K. Defect handling in
software metrics. International Journal of
Advanced Research in Computer and
Communication Engineering, Volume 1(3),
(2012), pp. 167-170.

[14] Haider, S.W., Cangussu, J.W., Cooper, K.M.L.
and Dantu, R. Estimation of defects based on
defect decay model: ED3M. IEEE Transactions
on Software Engineering, Volume 34 (3),
(2008), pp. 336-356.

[15] Gyimothy, T., Ferenc, R. and Siket, I. Empirical
validation of object-oriented metrics on open
source software for fault prediction. IEEE
Transactions on Software Engineering, Volume
31 (10), (2005), pp. 897-910.

[16] Thangarajan, M. and Biswas, B. Software
reliability prediction model. Tata Elxsi
Whitepaper, (2002).

[17] Bertolino, A. and Marchetti, E. A simple model
to predict how many more failures will appear in
testing. Proceedings of Quality Week Europe,
(1998), Brussel, Belgium.

[18] Karcich, R.M., Cangussu, J.W. and Earl, A.
System testing process behavior prediction at
sun microsystem. 14th International Symposium
on Software Reliability Engineering 2003
(ISSRE 2003), (2003).

[19] Weyuker, E.J., Ostrand, T.J. and Bell, R.M.
Using developer information as a factor for fault
prediction. Proceedings of the Third
International Workshop on Predictor Models in
Software Engineering (PROMISE'07), (2007),
pp.8.

[20] Zimmermann, T., Nagappan, N. and Zeller, A.
predicting bugs from history. Software Evolution
(Software Evolution), (2008), pp. 69-88.

73

M.S, M Dhiauddin et al., Int. J. Of Integrated Engineering: Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 66-74

[21] Zawadzki, L. and Orlova, T. Building and using
a defect prediction model. Presentation in
Chicago Software Process Improvement
Network, (2012).

[22] Wang, H., Khoshgoftaar, T.M. and Seliya, N.
How many software metrics should be selected
for defect prediction?. Proceedings of the
Twenty-Fourth International Florida Artificial
Intelligence Research Society Conference,
(2011), pp. 69-74.

[23] Ostrand, T.J. and Weyuker, E.J. How to measure
success of fault prediction models. Proceedings
of Fourth International Workshop on Software
Quality Assurance, (2007), pp. 25-30

[24] (SOQUA ’07), pp. 25-30, 2007Li, L.P. , Shaw,
M. and Herbsleb, J. Selecting a defect prediction
model for maintenance resource planning and
software insurance. Proceedings of 5th
Workshop on Economics-Driven Software
Engineering Research (EDSER '03), (2003), pp.
32-37.

[25] Cavezza, D.G., Pietrantuono, R. and Russo, S.
Performance of defect prediction in rapidly
evolving software. Proceedings of IEEE 3rd
International Workshop on Release Engineering,
(2015), pp. 8-11.

[26] D’a q, M., Lanza, M. and Robbes, R.
Evaluating defect prediction approaches: a
benchmark and an extensive comparison.
Journal of Empirical Software Engineering,
Volume 17 (no. 4-5), (2012), pp. 531-577.

[27] Wang, D., Wang, Q., Hong, Z., Chen, X.,
Zhang, L. and Yang, Y. Incorporating qualitative
and quantitative factors for software defect
prediction. Proceedings of the 2nd International
Workshop on Evidential Assessment of Software
Technologies (EAST’12), (2012), pp. 61-66.

[28] Wahyudin, D., Ramler, R. and Biffl, S. A
Framework for Defect prediction in specific
software project contexts. Book Section,
Software Engineering Techniques, Lecture Notes
in Computer Science, Volume 4980, (2011), pp.
261-274.

[29] Kim, S. Defect, Defect, defect: defect prediction
2.0. Proceedings of the 8th International
Conference on Predictive Models in Software
Engineering (PROMISE’12), (2012), pp. 1-2.

[30] Kamei, Y. and Shihab, E. Defect prediction:
accomplishments and future challenges.
Proceedings of IEEE 23rd International
Conference on Software Analysis, Evolution and
Reengineering (SANER), (2016), pp. 33-45.

74

