
International Journal of Integrated Engineering, Special Issue 2018: Civil & 
Environmental Engineering,  Vol. 10 No. 2 (2018) p. 87-92 
© Penerbit UTHM 
DOI: https://doi.org/10.30880/ijie.2018.10.02.017

*Corresponding author: ijimak@cc.saga-u.ac.jp
2018 UTHM Publisher. All right reserved. 
penerbit.uthm.edu.my/ojs/index.php/ijie 

87

Mechanically rational forms of curved surface structures 
shaped from the uniform strain elements 

Koki Tanaka1, Katsushi Ijima1, Hiroyuki Obiya1, Muhammad Nizam bin 
Zakaria2

1 Department of Civil Engineering and Architecture, Graduate School of Science and Engineering, Saga University, 1, 
Honjo, Saga, 840-8502, Japan. 
2 Department of Structural and Material Engineering, Faculty of Civil & Environmental Engineering, University Tun 
Hussein Onn Malaysia, 86400 Parit Raja Batu Pahat, Johor Darul Ta’zim, Malaysia. 

 Received 01 January 2018; accepted 15 April 2018, available online 07 May 2018 

1. Introduction
Curved surfaces with isotropic tension possess equal

geometric stiffness all over the surface against the out-of-
plane deformation. Since membrane structures keep the 
shapes with the internal tension, the forms that the tension 
is isotropic and even are ideal for the membrane 
structures [1]. 

There are many methods for obtaining the curved 
surfaces with isotropic tension. For example, a method is 
to use triangular elements mechanically modeled on a 
soap film in the geometric nonlinear analysis for 
computing the equilibrium forms [2], and there is another 
one called the updated reference strategy based on FEM 
discretization [3]. Since the forms determined from the 
methods keep the balance of the isotropic tension, 
occasionally joining inner pressure, almost all the 
methods do not use material stiffness affecting the in-
plane deformation and the stiffness may be obstacles to 
the computation. Many methods proposed, however, are 
inapplicable to the form finding with conditions slightly 
varying from the conditions shaping isotropic tension 
forms, because the iterative computations almost diverge 
under the condition with no solution. 

The paper applies the uniform strain element 
possessing the material stiffness to the form finding. The 
element is being generally used for the geometric 
nonlinear analysis of membrane structures. Since the 
element has strain energy, the stationary principle of total 
potential energy precedes the variation related to minimal 

surface area. The method is to seek iteratively a balanced 
form consisting of the uniform strain elements that the 
errors of the strains against the objective strain are less 
than the allowable one. The computation is surely stable 
resulting from using the material stiffness and moreover 
analyzing tensile forms at all times by setting the 
objective strain positive. 

The method cannot yield only isotropic tension forms 
under the conditions with a minimal surface, but also 
forms with the strains varying as narrowly as possible 
under the conditions impossible to shape minimal surface 
and forms consisting of compressive elements under 
gravitation. 

2. Algorithm for form finding with the
uniform strain element
The algorithm first computes an equilibrium form

from the geometric nonlinear analysis by using a 
triangular shape, assumed at the start, of each element in 
non-stress, and next corrects the triangular shape in non-
stress by using the objective strain given in advance and 
the present shape of the element in equilibrium, and then 
iteratively repeats the two stages until the errors of the 
strains in all the elements become in an allowable margin 
against the objective strain.  

The theories in the two stages are the followings. 
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2.1 Geometric nonlinear analysis for 
computing equilibrium forms 
Since the algorithm always sets the objective strain 

positive, the inner force all over the form is tensile, so 
that the equilibrium solution is unique and the geometric 
nonlinear analysis essentially needing iterative 
computation is always and surely stable. The paper uses 
the iteration of Newton-Raphson method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.1.1 End force equation of the uniform 

strain element 
When the nodal positions of the three apexes, as 

shown in Fig. 1, are given in the coordinates, the 
positions determine the three lengths of the sides defined 
as l1 , l2  and l3  in Fig. 2. The side lengths of the non-

stress element of l10 , l20  and l30 are unvarying until 

getting an equilibrium form. When the Young’s modulus, 
Poisson’s ratio and the thickness of the surface are E, ν 
and t, respectively, the relation between the end forces of 

the element e, Pe  P1 P2 P3 T
 and the elongations 

of the sides, le  l1 l2 l3 T
 is derived from 

assuming the strain in the element to be uniform as well 
as the minute deformation, as follows: 

 
Pe  kele ,                              (1) 

 
where, 
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(2) 
  (1 ) / 2 , A0 : the area of the non-stress element 

and  : the distance between the apex i and the orthocenter 
in the non-stress element. 

The stiffness equation of equation (2) indicates that 
the equation depends on only the side lengths of the non-
stress element except the material constants. Therefore, 
when all the elements have appropriate side lengths in 
non-stress, the form can be the state in isotropic and even 
strain. 

 
2.1.2 Equilibrium equation of the uniform 

strain element 

The nodal forces Ue  U1 U2 U3 T
 balanced 

with the end forces of equation (1) at the three nodes 
connected to the apexes of the element e is, 

 
U e   ePe ,                                 (3) 

where, 
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and  i  is the unit vector with the direction of the 

side i as shown in Fig. 1. 
 
2.1.3 Unbalanced forces and the tangent 

stiffness equation for obtaining an 
equilibrium form 
Since the compatibility between the deformation of 

the elements and the nodal positions are nonlinear as well 
as the equilibrium equation (3), obtaining the end forces 
balanced with the nodal forces U needs the iterative 
computation. The unbalanced forces U naturally appear 
in the computation, as follows: 

 

U  U   ePe

e
 .                        (5) 

 
We define the equilibrium form holding the 

unbalanced forces less than the allowable force. In order 
to decrease the unbalanced forces, the tangent stiffness 
equation gives the displacement from the present nodal 
positions by using the unbalanced forces and the nodal 
positions can be renewed.  

Differentiating the equilibrium equation gives the 
tangent stiffness equation, as follows: 
 

U    ePe

e
   e Pe  e Pe 

e
  KO  KG u , 

Fig. 1 Nodal position vector and direction cosine 
vector of the sides in the element. 
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Fig. 2 End forces of the uniform strain element. 
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(6) 
where KO consists of equation (2) of the element 

stiffness against the in-plane deformation and KO is the 
tangent geometric stiffness against the out-of-plane 
deformation. The stiffness matrices in equation (6) are 
specifically referred to [4]. 

Applying the unbalanced forces U to equation (6) 
gives the displacement u from the present nodal 
position.  
 
2.1.4 The case of adding axial members 

When the strains of the elements composing a form 
are impossible to be even, adding axial members to the 
surface structure can sometimes make the strains unify in 
all the elements.  

Several mechanical models of the axial member can 
be considered in the analysis. However, the axial member 
without elongation stiffness but with constant axial force 
will be the most suitable model to the form finding using 
the uniform strain element. When the axial member has 
an unchanging axial force N, the end force acts on both 
nodes i and j connected by the axial member and the 
tangent stiffness equation of the axial member by the 
infinitesimal increment of the nodal force at the node i is, 

 

U i 
N

l
(e T )(ui u j ) ,             (7) 

 
where U i : the infinitesimal increment of the nodal 
force, l: the length of the axial member connecting the 
two nodes of i and j, e : the unit matrix of 3 by 3,  : the 

unit vector of the direction of the axial member and ui , 

u j : both of the infinitesimal displacements at the two 

nodes. 
 
2.2 Correcting side lengths of the non-stress 

element after getting an equilibrium form 
The paper shows the two cases of form finding. One 

is to find a form with even strain all over the form, and 
the other is to find a form consisting of all the elements in 
compression under gravitation. In finding the latter form, 
the main computation is practically to find a suspended 
form consisting of all the elements in tension under 
gravitation, and that is, as it were, a computational 
simulation of the experimental methods that Gaudíy and 
Otto each individually did [1]. The geometric nonlinear 
analysis computing an equilibrium form in tension is 
more stable and more certain than a compressive form. 
 
2.2.1 The case of forms composed by all the 

elements with an even strain in tension 
Since the strain in the element used in the analysis is 

isotropic and uniform, the objective strain 0 gives the 

side lengths li0 of the non-stress element from the side 

length li of the present deformed element in the 
equilibrium form, as follows: 

 

li0 
li

1 0

.                              (8) 

 
2.2.2 The case of forms composed by all the 

elements in compression only under 
gravitation 
From the present equilibrium form, the side lengths 

of the element and those of the non-stress element can 
determine the direction of the principal strain by the angle 
 p between the side 3 and the first principal axis, as 

shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
The positions of the apexes in the coordinates of both 

principal axes are, 
 

,           (9) 

 

, (10) 

 
Then, when this case sets the principal strains to the 

objective strains 10 and 20 , the positions of the apexes 
in the non-stress element are, 

 

,        (11) 

 

,       (12) 

 
where the apex 1 is fixed. 

The side lengths of the non-stress element are given 
as the following from the positions of the three apexes in 
the principal coordinates, 
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Fig. 3 The directions of both principal 
axes and the positions of the apexes in the 
coordinates (x p ,  yp ) . 
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.  (13) 

Correcting the side lengths of the non-stress element 
by using the objective strain can change the compressive 
elements to tensile elements in a curved surface 
suspended under gravitation. After transforming all the 
compressive elements to tensile ones, turning the curved  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
surface form upside down in the direction of gravitation 
gives the form consisting of all the compressive elements. 
 
3.  Computational examples 

3.1 Rotational hyperboloid and the related 
forms  

The first example shows that the uniform strain 
element can shape a rotational hyperboloid that is a 
theoretical solution of minimal surface. In the form of Fig. 
4(a) obtained from using the element, the two of the 
circular rims are fixed parallel to each other and the 
normal line of the planes goes through both centers. The 
rotational hyperboloid can be shaped under the condition 
that the ratio of the diameter and the distance between the 
two circles is over 1.51. The ratio of Fig. 4(a) is 2.11, so 
that the theoretical form exists. 

Fig. 4(b) shows the comparison of the two forms, and 
the computational form well agrees with the analytical 
form, where r is the distance from the circular center and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
h is the distance from the midpoint of the two circles. 

The computation uses the practical constants of 
membrane material of Et=88.2kN/m and ν=0.4, and the 
objective strain is  0 =0.01. The material constant is 
based on the membrane material of polyester fabric 
coated by vinyl chloride [5]. Even if the material 

Fig. 4 Computational result of a rotational hyperboloid 
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(b) Verification of the computational form. 
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(a) Computational form. 

Fig. 5 Convergent process in computing forms related to a rotational hyperboloid 
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Fig. 6 Forms related to hyperboloid 

constants or the objective strain change, the form of Fig. 
4(a) does not vary at all but the convergent process does. 
The blue line in Fig. 5 shows the convergent process of 
the error rate of the strains to the objective strain in the 
case of R/H=2.11 and that the error rate surely decreases 
to nearly zero. If the material stiffness is larger than that 
of this case, the iterative times need more than that. The 
iterative times mean the times of computing equilibrium 
forms. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 shows other cases of the ratio R/H also. When 
the ratio is less than 1.51, any rotational hyperboloid 
cannot be formed. When the ratio is 1.40, for example, as 
shown by the orange line in Fig. 5, the maximum of the 
error rates to the objective strain first decreases but 
increases after passing the minimum. If we use 
computational models with no in-plane stiffness, the 
process will lead to divergence. The method proposed in 
the paper, however, can give the form that the maximum 
of the error rates becomes the minimum in the iteration as 
shown in Fig. 6(a). 

Further, proceeding the iterative process in the case 
of R/H=1.40 changes from Fig. 6(a) to Fig. 6(b). Fig. 6(b) 
resembles the theoretical minimal surface that is the two 
disks in the circles of fixed boundaries under the 
condition of R/H<1.51. 

Fig. 6(c) is the form that the three ring frames in 
compression are attached to the form of Fig. 6(a). The 
axial forces of the rings are -1.6kN and -0.8kN. The green 
line in Fig. 5 shows the convergent process in computing  
the form, and the maximum of error rates decreases to the 
value of 0.047 less than that in Fig. 6(a). 
 
3.2 A hyperboloid and the form related to 

one 
Fig. 7(a) shows a hyperboloid that the fixed 

circumference in the form consists of the sides of the two 

equilateral triangles crossing at right angles. Further, Fig. 
7(b) has the four corners fixed that are the same position 
as Fig. 7(a) and that the cables are attached to the free 
circumference. The proposed method can yield the forms 
composed by all the elements with the isotropic strain of 
nearly 0 =0.01 in the two cases, namely both maximums 
of error rates decrease to the value less than 0.01, as 
shown in Fig. 8. The material constants used in the 
computations are the same as that of the previous 
example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 A hyperboloid and a form related to the one 
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3.3 Compressive curved surface under 

gravitation 
This example shows a mechanically rational form 

under gravitation. If we take the self-weight of structural 
material into consideration in form finding, the analysis is 
impossible to shape a form with isotropic and even strain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

all over the curved surface. When structures made of 
reinforced concrete, however, are the forms with no 
tensile stress though no even strain, the forms will be 

mechanically rational, as Gaudíy and Otto each 
individually experimented and found the practical forms 
[1]. 

The proposed method is just to simulate numerically 
the experimental procedures. The form of Fig. 9(a) is 
obtained from the iterative computation correcting side 
lengths of non-stress elements in order to change 
compressive strain to tensile strain. The self-weight per 
unit area is 2.3kN/m2 corresponding to RC plate with 
10cm in thickness. Finding the suspended form uses the 
stiffness of Et=0.28MN/m that is smaller than the real, in 
order to obtain quickly the form. Then, the form inverted 
of Fig. 9(b) is obtained from the geometric nonlinear 
analysis using the practical stiffness of the RC plate of 
Et=28000MN/m. The side lengths of the non-stress 
elements are computed from solving equation (1) that the 
end forces change positive to negative with keeping the 
absolute value together with inverting the shape. Since 
the non-stress side lengths are unknown in equation (1), 
the computation is a nonlinear problem. The change of 
the material stiffness in equation (1) means that the 
strains of the elements decrease to 10-4 of the strain of the 
elements in the suspended form of Fig. 9(a). 

 
4. Conclusion 

The paper proposed a method of form finding using 
the uniform strain elements. The method is to correct side 
lengths of the non-stress elements according to the 
objective strain in the equilibrium form obtained from the 
geometrical nonlinear analysis. The method uses the in-
plane stiffness corresponding to real material, though 
many methods published so far do not need it or regard it 
as obstacles. The paper shows that using the in-plane 
stiffness makes the computation robust, so that the 
method can manage problems of form finding with 
conditions that does not possess a minimal surface or the 
method can suggest how to attach cables to make the 
strains as even as possible in the form. 
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Fig. 8 Convergent process in computing the  
hyperboloids of Fig. 7 

Fig. 9 A compressive arch-like shell form  
under the self-weight 2.3kN/m2 


