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1. Introduction

Shape memory polymers (SMP) is considered as 

smart materials in which it can memorized temporary 

shape upon applying an applicable stimulus (heat, 

moisture, light pH value) and else [1] and recover back to 

its original shape. SMP have several advantages and have 

attracted a considerable analysis interest from academia 

due to their potential innovative applications as actuators, 

temperature sensors, packaging, medical specialty 

devices, and damping parts [2]. 

There are many other available SMP but in this 

research, polyurethane shape memory was chosen due to 

its reasonable advantages when compared with the other 

SMP. Polyurethane SMP offers many great advantages 

such as low temperature flexibility, abrasion resistance, 

biocompatibility, and resistance to many chemicals [3]. 

These characteristics make polyurethane remarkably 

flexible material established to be fit for various 

application from building coatings, aviation, and 

biomedical application. However, their applications in 

structural become limited due to its comparatively low 

modulus and low strength of SMP [1]. 

Hence, the reinforcement of fibers and fillers for 

polyurethane which are comparatively weak has gathered 

several interests. The addition of reinforcement will 

provide significant improvement in both mechanical and 

thermal properties. Previous research has proven that 

polyurethane is a reasonable matrix for a number of 

reinforcing fillers including: carbon nanotubes (CNT) [4], 

silicon carbide [5], carbon black, silica and aluminium 

oxide [6] and others for the development of shape 

memory polymer composites (SMPC). By reinforcing 

polyurethane with this fibers and fillers, the utilization of 

SMPC might be wide. 

Though, before applications of SMPC in structural, it 

is important to do some testing measures. This is because 

to incite the performance of the composite structure and 

behavior under occasional stress for example damping 

behavior [7]. Dynamic mechanical analysis (DMA) is 

beneficial in portraying composite structure and damping 

behavior dependence to frequency, temperature, time, or 

a combination of these parameters. [8] Besides, it also 

will provide information related to the physical or 

structural arrangement of phases such as interface, 

morphology and the nature of constituents [9,10]. 
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In this study, shape memory polyurethane together 

with reinforced chopped strand mat glass fibers will be 

fabricated as composite material. Glass fibers were 

selected due to their excellent mechanical properties. 

Glass fibers will significantly increase the strength and 

stiffness when compared with unreinforced materials. 

Researchers elaborated that the presence of reinforcement 

have governed the dynamic mechanical properties of a 

composite material [11]. The aim of this present study is 

to obtain optimum volume fractions of glass fibers in 

SMPC as well as to characterize the dynamic mechanical 

properties of SMPC. 

 

2. Methodology 

2.1 Materials 

Chopped strand mat glass fibers (EM100SH) was 

obtained from Nippon Electric Glass (M) Sdn. Bhd while 

SMP Polyurethane (MP5510) was obtained from SMP 

Technologies Inc, Tokyo Japan. It was supplied in two 

parts, which are resin (A) and hardener (B), and was 

processed according to manufacturer’s guidelines. Table 

2.1 below shows the properties of SMP Polyurethane 

(MP5510). 

 

Table 2.1  Properties of SMP Polyurethane [12] 

Item MP 5510 

Color tone Light 

Yellow 

A/B
 
Weight Ratio 40/60 

Viscosity (MPa) Solution A 200-600 

Solution B 200-800 

Specific Gravity Solution A 1.062 

Solution B 1.215 

Residue 1.21 

Strength G/R Bending Strength 

(MPa) 

75 

Bending Modulus 1800 

Tensile Strength 

(MPa) 

52 

Elongation (%) 10-30 

Hardness (Shore D) 80 

R/R Tensile Strength 

(MPa) 

20 

Elongation (%) >400 

100% Modulus 

(MPa) 

4.5 

Hardness (Shore D) 40 

Glass Transition Point (°C) 55 

Cure Pot Life (Standard) 180sec 

Cure Temp 

(°C x time) 

70°C x 

1hr-2hr 

 

2.2 Composite Preparation 

Both chopped strand mat glass fibers and SMP 

Polyurethane were prepared as composite materials by 

using hand lay-up method. Different volume fractions of 

glass fibers were used in this study which are 0%, 5%, 

10%, 15%, and 30% and are referred as pure SMP, 

5SMPC, 10SMPC, 15SMPC and 30SMPC, respectively. 

The volume fraction (Vf) of fibers were calculated based 

on the Equation (1) [13] below : 

 

      
   mmff

ff

f
WW

W
V








            (1)    

 

Where V, W and  represents the volume, weight and 

density respectively, while the subscripted  and  

represents fiber and polymer matrix, respectively.  

 
As for the hand lay-up method, the two components, 

A and B are thoroughly hand-mixed for 30s in the ratio of 

40:60 by mass. The mixing was done slowly to prevent 

any excess air bubbles in the resin. The resulting reactive 

mixture had a pot life of about 5 minutes, so that it is 

necessary to pour it into the mold with chopped glass 

fibers immediately after mixing. An exceptional care was 

taken to eliminate all air bubbles possible by using hand 

rolling tool. A roller was used to roll and spread the 

mixture all around the mold surface after poured and to 

achieve desired thickness. It was then consequently cured 

for 10 minutes at room temperature and then post-cured 

for 4 hours at 70°C, to give reproducible, void-free 

specimens with smooth surface. Finally, the specimens 

were cut into 35mm x 6mm x 2mm for dynamic 

mechanical test. All the specimens were kept at room 

temperature prior to testing. 

         

2.3 Dynamic Mechanical Analysis (DMA) 

Dynamic mechanical analysis (DMA) is an effective 

tool for determining the morphology and viscoelastic 

performance behavior of the composite materials. Sample 

testing was performed on Dynamic Mechanical Analyzer 

(Mettler Toledo) (see Fig 2.1) at a fixed frequency of 1 

Hz, under a heating rate of 3°C/min, with a constant 

deformation of 0.1%. 5 sample with different volume 

fractions of fibers (Pure SMP, 5SMPC, 10SMPC, 

15SMPC, 30SMPC) was tested with dimension of 35mm 

x 6mm x 2mm each. DMA test was done in temperature 

range of room temperature, 25°C to 150°C by using three-

point bending mode [14]. The experimental conditions for 

dynamic mechanical analysis are summarized in Table 2.  

 

  
Fig 2.1 Experimental photos of DMA test and sample 

testing 
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Table 2.2 Experimental conditions for dynamic 

mechanical analysis of SMPC 

Parameter Unit Range 

Temperature °C 25-150 

Heating rate °C/min 3 

Frequency Hz 1.0 

Sample dimensions mm 6 x 35 

Deformation % 0.1 

Loading mode - Three-point bending 

Sample number - 5 

 

3. Results and Discussion 

DMA has been broadly used in evaluating the 

performance of fibers and fillers as reinforcement in 

thermosetting or thermoplastic based composites. The 

dependence of storage modulus (E’) for different volume 

fractions of glass fibers versus temperature were 

illustrated in Fig. 3.1 and Fig. 3.2 while loss modulus 

(E”) and tan delta (tan δ) versus temperature for different 

volume fractions of glass fibers were illustrated in Fig. 

3.3 and Fig. 3.4. 

 

 
Fig. 3.1 Temperature dependence curves for storage 

modulus (E’) for SMP composites in different volume 

fractions of glass fibers. 

 

 Storage modulus (E’) is the measure of stored 

energy, representing the elastic region of the material. 

Based on Fig. 3.1, it is apparent that the storage modulus 

(E’) decreases with increase in temperature. It can be 

related to the matrix softening which is due to the 

increase in movements of chain at higher temperature 

[15].  

 The E’g, E’ and E’r values were taken at 30°C, 55°C 

and 120°C, respectively. The E’g values for pure SMP 

and SMPC are almost close to each other which indicates 

that at low temperatures, fibers do not have much 

contribution to the stiffness of the material. (See Table 

3.1) [16]. From Fig. 3.2, it can be observed that higher E’ 

values noted for SMPC when compared to Pure SMP. 

This was probably because of the composition of matrix-

fiber that prompts to better stress transport from resin to 

fiber due to the improved in cross-linking density and 

huge amount of hydrogen bonding between the composite 

[18]. The effectiveness of fibers for the composites can be 

represented by a coefficient C such as below : [16] 
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 The lower the value of constant C shows high 

effectiveness of fibers or fillers in composite material 

[16]. Table 3.1 below presents the constant C values for 

different volume fractions of SMPC. In this study, the 

lowest value of constant C has been obtained for 5SMPC 

and 15SMPC which confirming the effectiveness of the 

interactions of fiber-matrix. 

 

 
Fig. 3.2 Storage modulus (E’) at different region of 

temperature (glassy, glass transition, rubbery) for 

different volume fractions of glass fibers. 

 

Table 3.1 The value of the constant C 

Sample 

Name 

E’g 

(MPa) 

E’ 

(MPa) 

E’r 

(MPa) 

C 

Pure SMP 878.14 61.4 2.52 - 

5SMPC 1052.5 475.2 32.88 0.092 

10SMPC 1114.9 636.7 17.09 0.187 

15SMPC 963.69 637.0 30.00 0.092 

30SMPC 280.78 197.0 6.15 0.131 

 

Other than E’, the determination of loss modulus 

(E”) is also significant. Loss modulus (E”) or dynamic 

loss modulus, is a viscous response of the materials and 

can be related to the materials tendency to dissipate 

energy applied to it [17]. It is also associated with 

“internal friction” and is subtle to different kind of 

motions, such as molecular chains, transitions, process of 

relaxation, structure of morphology and others. 
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Fig. 3.3 Temperature dependence curves for loss modulus 

(E”) for SMP composites in different volume fractions of 

glass fibers. 

 

 Based on Figure 3.3, it can be observed that E” 

decreased upon the increment of temperature. It was the 

same trend as E’ that have been discussed previously. For 

E”, the E”g and E”r values were also taken at 30°C and 

120°C. (See Table 3.2). At below glass transition, it can 

be observed that the E peak value decrease with higher 

volume fractions of glass fibers while for above the glass 

transition temperature, the E” value increase upon higher 

volume fractions of fibers. Previous research also has 

shown the same trend of E” values [16]. Based on Table 

3.2, 15SMPC have higher amount of E” for both below 

glass transition and above glass transition region. This 

shows that 15SMPC have good interfacial bonding 

between fiber-matrix. This is because a composite with 

poor interfacial bonding tends to dissipate more energy 

[18]. Besides, it can be observed that the width of peak 

for SMPC becomes broader than pure SMP. This 

indicates that there are relaxations of molecules in SMPC 

which are not present in the pure SMP. These molecular 

motions at the interfacial region generally contribute to 

the damping of the material [19]. 

 

Table 3.2 The values of loss modulus, peak height and 

peak width. 

Sample 

Name 

E”g 

(MPa) 

E”r 

(MPa) 

Peak 

height 

(cm) 

Peak

width 

(cm) 

Pure SMP 53.37 0.24 102.67 14.03 

5SMPC 29.61 1.24 128.47 16.29 

10SMPC 60.75 1.24 133.90 30.63 

15SMPC 47.92 2.95 129.20 26.27 

30SMPC 11.87 0.46 36.77 20.94 

 

The ratio of loss modulus (E”) to storage modulus 

(E’) is known as loss factor (tan δ). The tan δ is the study 

on the material changes from rigid shape to elastic shape 

(crystallization to rubbery phase) due to the changes in 

the polymer chain structures. The incorporation of fibers 

in a system affects the damping composite. This is 

principally due to the formed shear stress between matrix-

fibers, which reduces the additional power dissipation in 

the composite material [14]. Based on Fig. 3.3, it can be 

observed that the tan delta values for SMPC are 

significantly lower than pure SMP, as expected, because 

of the decrease of the matrix content by the presence of 

fiber [14]. Among these composites, 15SMPC present the 

lowest tan δ peak, affirming the reinforcing effectiveness 

of glass fibers [20].  

 

 
Fig. 3.4 Temperature dependence curves for tan delta for 

SMP composites in different volume fractions of glass 

fibers. 

 

Table 3.3 The values of tan delta and Tg. 

Sample Name Tan delta (δ) Tg (°C) 

Pure SMP 0.778 69.06 

5SMPC 0.502 66.88 

10SMPC 0.569 75.59 

15SMPC 0.429 75.71 

30SMPC 0.610 77.25 

 

The temperature at which the tan δ occurs is 

generally known as the glass transition temperature (Tg) 

[14]. Tg was assessed from the derivative curves of tan δ. 
It was observed that the Tg of pure SMP is the lowest 

when compared to the other SMPC. The incorporation of 

fibers shifting the temperature. The shifting of Tg to 

higher temperatures can be associated with the decreased 

mobility of the chains by the addition of fibers [16]. 

 

6. Summary 

Dynamic mechanical properties of SMP containing 

glass fibers are significantly dependent on the volume 

fraction of the glass fiber. The storage modulus was 

enormously improved with incorporation of glass fibers. 

The results have shown that 15SMPC have highest 

storage modulus when compared to the other SMPC and 

it also have lowest value of C constant. Based on the loss 

modulus value, 15SMPC also shows the highest value for 

both region of temperature (below Tg and above Tg) 

which proves that 15SMPC have good interface bonding 
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and do not dissipate more energy when compared to the 

others. Besides, it also has the lowest tan delta value at 

0.429 which affirming the reinforcing effectiveness of 

this volume fractions of glass fibers.  

As the conclusion, the maximum improvement in 

properties is observed for composites with 15% fiber 

loading, which is chosen as the critical fiber loading. 

Summarizing, the present paper opens new possibilities 

of applications of shape memory polymer composites 

(SMPC). This is due to the reinforcement of glass fibers 

which enhance its functionality in terms of damping 

vibration properties 
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