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1. Introduction

Fatigue is a regular cause of failure in mechanical

structures which are subjected to time variable loadings. 

Fatigue failure can occur in any structure even if the 

structure receives only low amplitude cyclic loads [1]. 

The cycle obtained is the main characterising element for 

fatigue damage. Fatigue vibration is the vibration that 

shows non-stationary behaviour. This vibration occurs 

while the structure responds at the natural frequency of 

the structure [2]. The usual approach is a time domain-

based analysis that evaluates time histories such as level 

crossings, range and rain flow. This approach allows the 

identification of cycles with different amplitudes and 

mean values. The time domain approach provides actual 

activities in time series, but has limited application for 

certainty in fatigue analysis. 

Therefore, frequency domain analysis has been 

adopted to analyse the responses from a vibration fatigue 

signal [3]. Power spectral density is a common approach 

in frequency domain analysis to identify the dominant 

frequency obtained. Although the frequency domain 

approach can reveal the amplitude of the signal 

frequency, the disadvantage is that it cannot pinpoint 

information about when that particular dominant 

frequency occurred [4]. The time domain and frequency 

domain approaches adopt linear analysis, but the actual 

random loading conditions on structures are by nature 

non-linear, with a varying interaction between loadings, 

changes in road roughness and turbulence loads. 

Therefore, those significant activities that contribute to 

failure cannot be detected [5]. 

In this study, the strain signals obtained from the coil 

spring were characterised in the time-frequency domain 

based on different types of road conditions. The 

characteristics of the wavelet decomposition signals 

related to the fatigue analysis. By using the time-

frequency domain, both elements - time and frequency - 

can be detected. Therefore, this approach is more efficient 

for vibration fatigue analysis. 

2. Theory

2.1 Fatigue Analysis 

In the time domain approach, fatigue life is predicted 

using strain-life approaches including the Coffin-Manson 

relationship, Smith-Watson-Topper (SWT) and Morrow 

models. Strain-life approaches are used with Palmgren-

Miner’s linear cumulative damage rule as shown in 

Equation (1) [6].  
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where D is the damage value, N is total number of cycles 

and in is the number of applied cycles. The Coffin-
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Manson relationship, SWT and Morrow models are 

expressed in Equation (2), (3) and (4), respectively. 

)2(')2(
'

ff
b

f
f

a NN
E

ε
σ

ε +=                                    (2) 

cb
fff

b
f

f
NN

E

++= )2('')2(
)'(

2
2

max εσ
σ

εσ           (3) 

)2(')2(
'

ff
b

f

meanf
NN

E
ε

σσ
ε +

−
=                          (4) 

where aε is the true strain amplitude, σ is the fatigue 

strength coefficient, b is the fatigue strength exponent, 

f'ε is the fatigue ductility coefficient, c is the fatigue 

ductility exponent, E is the Young’s modulus and fN2 is 

the number of cycle to failure. The fatigue life in the 

Coffin-Manson relationship is calculated based on strain 

amplitude at zero mean stress. The SWT and Morrow 

models consider the mean stress effect in the calculation 

of fatigue life. Morrow’s correction of the mean stress 

effect is more realistic. The fatigue damage can be 

calculated with Equation (5): 

fN
D

1
=               (5) 

where D is fatigue damage and fN is the number of cycle 

to failure. 

 

2.2 Discrete Wavelet Transform 

The main idea of the Discrete Wavelet Transform 

(DWT) analysis is to decompose a signal into different 

levels of resolution, a process known as multi-resolution 

[6]. This process provides a simple hierarchical 

framework to represent the information in a time series. 

At different resolutions, the details of a signal usually 

characterise different physical structures of themselves. 

These detail at each decomposed signals contains the 

different information obtained from the original signal 

[7].  

Decomposition of the signals was performed using 

Daubechies (Db4) Wavelet order with 12 levels of 

decompositions, which are the optimal levels to remove 

most noise. Wavelet decomposition calculates the group 

index known as the wavelet coefficient [8]. The 

coefficients are obtained from the signal regression 

generated at different frequency scales in a wavelet. The 

generated signal establishes the correlation between the 

wavelet and the section of the signal being analysed. The 

Daubechies (Db4) Wavelet of class is defined in the 

following equation: 
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where 0h ,…, ℜ∈−12Nh  and N  is the order. 

 

3. Methodology 

Fig. 1 shows the location of strain gauges located on 

the coil spring of the car suspension system. The strain 

gauge was attached to the structure based on the ASTM 

E1237-93 (2009): Standard Guide for Installing Bonded 

Resistance Strain Gauges. The car was driven on different 

road profiles such as highway with speed 70-80 km/h, 

rural with speed 40-50 km/h and residential with speed 

20-30 km/h types, to obtain the strain signals. The 

duration for all signals collected was 120 seconds with a 

500 Hz sampling frequency. For each strain signal, a 

fatigue analysis was performed to obtain the fatigue 

damage and fatigue life of the structure. This method is 

essential to determine the suspension damage incurred on 

each of the different road types. 

 

 
 

Fig. 1 Position of strain gauge attached at car coil spring. 

 

Next, the signals underwent DWT into 12 levels of 

decomposition. A transformation decomposes a signal 

into basic functions known as wavelets [9]. This process 

was done separately for different segments of the time 

domain signal, and at different frequencies. This 

approach allows the usually non-stationary signal to be 

analysed [10]. Another advantage to this approach is that 

DWT also allow the construction of filters for stationary 

and non-stationary signals. 

 

4. Results and Discussion 

The selected road profile is considered a variable 

amplitude type, which can be regarded as the 

representative common road type in Malaysia. All signals 

were collected considering different vehicle speeds, 

which are dependent on the road condition. Fig. 2 shows 

the time domain signal obtained for all types of road; 

highway, rural and residential roads. From Fig. 2(a), the 

time domain signal for a highway is smoother and shows 

fewer peaks. This is due to the road surface being 

smoother compared to the other types of road which are 

bumpy with the existence of potholes and uneven road 

surfaces. The strain amplitude range and mean for the 

highway road is the lowest, between -20 µɛ until 50 µɛ 

with mean value 15 µɛ compared to rural and residential 

roads which are -100 µɛ until 200 µɛ with mean value 50 

µɛ and -100 µɛ until 150 µɛ with mean value 25 µɛ, 

respectively. This can be proven by referring to Table 1. 

In Table 1, the fatigue life of the highway is the highest 

compared to other road surfaces, with total fatigue life 

5.51x10
5
 cycles (highway road), 8.61x10

4
 cycles (rural 

road) and 4.99x10
5
 cycles (residential road). All these 

fatigue life values been calculated by using SWT model. 

This is due to this model is suitable for positive mean 

value. Hence, it can be concluded that the type of road 
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surface provides a crucial pattern on the time domain 

signals for suspension systems. 

 

Table 1 Fatigue analysis of four type of roads selected. 

 

Type of 

road 

Highway 

Road 

Rural 

road 

Residential 

road 

Damage 1.81x10
-6

 1.16x10
-5

 2.00x10
-6

 

Life 5.51x10
5
 8.61x10

4
 4.99x10

5
 

 

 
            (a) 

 
            (b) 

 
            (c) 

 

Fig. 2 The original signals for: (a) Highway road, (b) 

Rural road and (c) Residential road 

 

Fig. 3 presents the decomposition of the signals using 

the 4th order of Daubechies Wavelet Transform sampled 

at 500Hz. With 12 levels of signals generated, the 

corresponding frequencies were determined as listed in 

Table 2. From the decomposed signals, the general 

separation of the data is clearly divided into locally non-

overlapping time scale components [8]. For example, 

early levels for all signals are almost similar to the 

original signals and lie in the region of 2:1 and 1:2 as can 

be observed in Figure 4, which shows a comparison of 

the predicted fatigue life by the present strain-life model 

for all types of road conditions. It is seen that the early 

levels of decomposition fatigue life signals are in 

agreement with the original signal. This is due to the aim 

for decomposition is to remove noise in the original 

signal based on its own frequency band [11]. As the level 

increased, the fatigue life has been increased due to the 

high amplitude events that contribute to failure is 

eliminated. This is shown the higher level of 

decomposition is useful to form the signal without the 

effect of high amplitude.  Based on Figure 4, level 1 and 

level 2 for highway road and residential road are located 

in the acceptable region for fatigue life durability. 

Meanwhile, levels 1 up to 3 for rural roads lie in the 

acceptable region. The fatigue life values from level 10 

until level 12 for rural and residential road type are very 

small. Therefore, the value is not given due to being 

below the endurance limit. This result can be used as an 

indicator that the proposed early level of decomposition 

signal is related to the fatigue life of the component and 

that the other levels can be considered as a lesser effect or 

noise from the road surface. From the results obtained, 

this method is capable of correlating the fatigue life of the 

component. DWT can filter the noise from the signal and, 

from the authentic signals, construct a new signal able to 

give the characteristic for each signals constructed [10]. 

 

 
(a) 

 

 
(b) 
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(c) 

 

Fig. 3 The 12 levels of decomposition signals for:          

(a) Highway road, (b) Rural road and (c) Residential road 

 

Table 2 Fatigue life of 12 levels of decomposed signals at 

different frequency. 

 

Signal 
Frequency 

(Hz) 

Highway 

road 
Rural road 

Residential 

road 

Level 

1 
0-500 3.39x105 1.01x105 5.97x105 

Level 

2 
0-250 3.26x105 1.24x105 7.81x105 

Level 

3 
0-125 1.38x105 1.86x105 1.56x106 

Level 

4 
0-62.5 9.06x104 9.05x105 3.31x106 

Level 

5 
0-31.25 6.77x104 5.60x105 2.14x106 

Level 

6 
0-15.625 6.49x104 4.10x105 2.16x106 

Level 

7 
0-7.813 1.10x105 7.88x105 1.19x107 

Level 

8 
0-3.906 2.16x106 5.55x106 1.78x108 

Level 

9 
0-1.953 2.70x106 9.17x107 6.02x108 

Level 

10 
0-0.9766 9.65x106 - - 

Level 

11 
0-0.4883 2.23x107 - - 

Level 

12 
0-0.1221 1.51x108 - - 

 

 
 

Fig. 4 Correlation analysis to determine the suitability of 

fatigue life. 

 

5. Summary 

The road surface effect was studied by using three 

road types, which were highway, rural, and residential 

roads. The time domain signal for a highway road showed 

fewer peaks compared to the other type of roads with 

values of fatigue life at 5.51x10
5
 cycles, 8.61x10

4
 cycles 

and 4.99x10
5
 cycles for highway road, rural road and 

residential road, respectively. The different fatigue life 

values usually occur because smooth road surfaces have a 

higher fatigue life compared to other road surfaces, which 

may be bumpy with potholes and uneven road surfaces 

contributing to a shorter fatigue life. Therefore, the 

Daubechies Wavelet Transform method is used to 

decompose the signals into each levels in order to 

characterise the signal behaviour. 

A performance of Daubechies Wavelet Transform 

revealed that this approach can be used to separate 

different frequency components of the signal efficiently. 

A close similarity was observed between the original 

signal and early level decomposition signals. Based on a 

comparison of predicted fatigue life by the presented 

strain-life model for all types of road conditions, the early 

levels of decomposition fatigue life signals are in 

agreement with the original signals. Level 1 and level 2 

for highway roads and residential roads are within the 

acceptable region for fatigue life durability, while level 1 

up to level 3 lies in the acceptable region for rural roads.  

In conclusion, this result can be used as an indicator 

that the proposed early level of a decomposition signal is 

related to the fatigue life of the component, and that the 

other levels can be regarded as a lesser effect or noise 

from the road surface. From the results obtained, this 

method is capable of correlating the fatigue life of the 

component which contributes to failure of the suspension 

system. 
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