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1. Introduction

In recent years, indoor and outdoor noise pollution 

has become a global concern, especially in developing 

countries. Noises from construction activities, traffic, and 

industrial areas are known to be a major cause of this 

problem. Many research, methods, regulations, and 

awareness have been done in order to prevent and reduce 

this pollution [1-2]. 

When it comes to the interiors of a space or building, 

it should not only have to look greats, but it also needs a 

good acoustic design too. Creating an acoustically 

pleasing environment is as important as creating a 

visually appealing environment in order to give a better 

comfortability in a particular space. Room or spaces with 

poor acoustic design may cause discomfort, dizziness and 

continuous exposure to an excessive amount of unwanted 

sound which will affect human health physically and 

psychologically [3]. Basically, an enclosed room will 

have a reflective sound path and direct sound path. The 

sound usually reflected between the surface such as wall, 

floor and ceiling and takes a while before it dies out.  

Sound absorbers able to prevent and reduce the 

strength of reflected noise effectively by converting 

sound energy into heat energy. Porous and fibrous 

absorbent has been widely used in architecture because of 

its absorption performance and its inexpensive cost 

compared to other sound absorbers. However, porous 

materials need to be thick to be effective and also have a 

hygiene and health issue where open pore become 

clogged with dust and spread harmful fibre into the air. 

Therefore, these negative effects have increased the 

attention towards natural fibre. Natural fibre has been 

known to be more environment friendly, safe and also 

have an ability to absorb sound energy [4-6]. 

Micro perforated panel (MPP) has been introduced 

by Maa [7-9] as an alternative to porous materials 

because of its features and performance in absorbing 

sound. Lightweight, cheap, fibre free, durable and have 

an attractive appearance becomes the most significant 

advantages of MPP absorber. Since that, MPP potential as 

sound absorbing material has been studied extensively. 

However, MPP only depends on Helmholtz resonator 

type of sound absorption. In order to improve this 

limitation and produce an efficient sound absorbing 

system with wide range of sound absorption, another 

absorption mechanism needs to be introduced. Numerous 

studies have been carried out to broad up the MPP 

absorption frequency range [10-13].  

Basically, MPP is made from a solid thin sheet of 

impermeable material such as wood, metal plate and 

plasterboard with drilled submillimeter holes backed by 

an air cavity and a rigid wall. Membrane absorbers also 
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called as panel absorber but with a thin flexible sheet 

instead of a solid panel and both absorbers share similar 

sound absorption characteristics. The Membrane is 

stretched and mounted over rigid support and then 

converted sound energy into heat energy through the 

vibration of the membrane. More than a decade, 

membrane material has been widely used in architecture 

due to its aesthetic and ergonomic features [14]. Low 

cost, easy to be constructed, positive aesthetic appeal and 

energy– efficient are the reason why membranes become 

popular and attract researchers attention to study its 

potential as a sound absorber.  

Membrane flow resistance, mass density, air gap, 

surface tension, and thickness are often varied by 

researchers in order to determine the acoustic properties 

of the membrane. From previous studies, it has been 

discovered that the flow resistance and mass density will 

affect the permeable membrane sound absorption [15-17]. 

Adjustment of air gap thickness could alter the peak of 

the sound absorption coefficient of the membrane [17- 

19]. Membranes with no surface tension have a better 

sound absorption if compared to applied surface tension 

membranes [20]. Membranes also have better sound 

absorption when the thickness of membrane/panel 

increases [17, 21]. Multi layered absorbers have more 

absorption and give higher absorptivity in a broad range 

of frequency compared to a single layer absorber [22, 23].  

When different types of absorber are combined together, 

it produces better absorption [13]. Perforations will turn 

the absorption of panel/membrane absorber into 

Helmholtz resonance MPP type absorption [24]. 

In recent years, membrane and panel absorber 

application and improvement have been studied 

extensively. However, there is not much theory and 

information given about perforated membrane absorption 

characteristics. Based on this motivation, this study is 

aimed to investigate the effect of perforation size on 

membrane sound absorption performance. At the end of 

this study, the optimal size of perforation for membrane 

absorber could be determined  

In this study, the sizes of perforation were varied and 

the sound absorption performances in terms of Sound 

Absorption Coefficient, α and Noise Reduction 

Coefficient, NRC. Three types of membranes were used 

to study the effect of material and physical properties of 

membrane specimens.  

 

2. Theory and Formulation 

2.1 Sound Absorption coefficient 
Sound absorption coefficient, 𝜶 is the measure of 

material efficiency in absorbing sound and could be 

determined by a formula, expressed as:  

 

𝜶 = 1  ̶                                                                             (1) 

 

Where: 

𝜶 = Sound absorption coefficient 

IR = Reflected sound intensity 

II = Incident sound intensity 

Sound absorption coefficient, 𝜶 of materials are varies in 

between 0 and 1 without unit where 𝜶= 0 representing 

perfect reflection with no absorption, meanwhile 𝜶=1 

representing total absorption of all incident sound with no 

reflection at all. Materials with sound absorption 

coefficient value greater than 0.5 considered as a good 

absorber [25]. 

 

2.1 Noise Reduction Coefficient 
Noise Reduction Coefficient, NRC is the average value of 

absorption coefficient at 250, 500, 1000 and 2000 Hz. It 

denotes the sound absorption capability of a material. 

NRC also similar with 𝜶, where NRC = 0 represent a 

total sound reflection and NRC = 1 represent a total 

sound absorption. 

 

NRC =(2) 

 

3. Experimental Work 

3.1 Specimen Preparation 

The experimental works were divided into three parts. 

The first part was the measurement of material and 

physical properties of the specimens. In the second part, 

the sound absorption coefficients of the un-perforated 

membrane specimens were measured to be used as 

standards. In the third part, the effects of perforation size 

on sound absorption characteristics of membrane 

specimens were studied. 

       1
st
 Part: Three types of latex membrane had been 

chosen to ensure the outcomes of the study are valid for 

wide range of membrane types. Table 1 shows the 

physical and material properties of the membranes such 

as thickness, Young’s modulus and density. These 

properties were pre-determined by sets of simple 

laboratory experiment. 

      2
nd

 Part: The membrane specimens were prepared in 

two sizes; 28 mm and 100 mm in diameter for the sound 

absorption tests. The 28 mm and 100 mm specimens are 

for high and low frequency test respectively. Three 

specimens were prepared for each size and the obtained 

sound absorption coefficients were averaged. The 

membrane specimens are depicted in Figure 1. 

     

Table 1: Physical and material properties 

 Membrane 

A B C 

Thickness, 

mm 

0.08 0.20 0.58 

Density, 

g/mm
3 

9.8x10
-4 

1.1x10
-3

 1.14x10
-3

 

Young’s 

Modulus 

1.38 0.4 1.29 

 

3
rd

 Part: Three perforation sizes, d were studied; 

0.65 mm, 2.70 mm and 5.70 mm. The perforation sizes of 

Micro perforated and Macro perforated panel were used 

in this experiment because of its significant effect on 

absorption performance in the previous research. The size 

II 

IR
 

𝜶250 + 𝜶500 + 𝜶1000 + 𝜶2000 

                   4 
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of perforation for micro perforated panel usually less than 

1mm and macro perforated panel varies from 1 mm to 1 

cm [26-28]. 

 

     
Figure 1: Membrane A, B and C specimens. 

 

For this research, the perforations were set to 0.65 

mm, 2.70 mm and 5.70 mm after taking consideration of 

the available size of the needle to make the perforations. 

The perforated membrane specimens were also prepared 

in two sizes; 28 mm and 100 mm in diameter for the 

sound absorption tests. To ensure the outcomes of the 

study are also valid for wide range of perforation ratio, 

three perforation ratios, p were tested in the study; 4%, 

8% and 12%. The perforation ratios were obtained by 

equation: 

 

Perforation ratio, p =                x 100                             (3) 

 

Where 𝘯 is the number of perforation, rp is the radius of 

the perforation and rs is the radius of the specimen. The 

definition of the parameter illustrated in Fig.2. Table 2 

show the number of holes for different perforation size 

obtained from the calculation. The perforations were 

uniformly distributed onto the specimen surface. Three 

specimens were prepared for each perforation size and 

ratio combination and the obtained sound absorption 

coefficients were averaged. No surface pre-tension was 

applied to the specimens because the non-stretched 

surface specimens have better sound absorption if 

compared to the stretched specimens [19-20]. 

 
Fig.2: Definition of perforation size,d, perforation radius, 

rp and specimen radius, rs 

 

3.2 Sound Absorption Measurement System 

The sound absorption coefficients of the specimens were 

determined by using the impedance tube method. The 

impedance tube has two set of tube setup; 28 mm inner 

diameter is the small tube and was used for high 

frequency measurement within range of 1600 Hz -7100 

Hz and the large tube with 100 mm diameter was used for 

low frequency measurement within range of 90Hz-

1800Hz. Fig.3 shows the impedance tube used in the 

study. The two microphone transfer function method 

according to ISO 10534-2 standard was used to measure 

sound absorption coefficients. The two-microphone 

method use random noise source and coupled with a pair 

of microphones positioned at two fixed locations along 

the tube. The  specimens  were placed  15  mm  from  the 

rigid backed-wall  at  one  end  of  the  tube  because the 

15 mm air gap gives better sound absorption[19]. The 

schematic of specimen placement inside the impedance 

tube is depicted in Fig.4. 

 

Table 2: Number of perforation for different perforation 

sizes. 

 

Perforation size 

(mm) 

Numbers of perforation, 𝘯 

p = 4% p = 8% p=12% 

100mm 

specimen 

0.65 952 1904 2855 

2.70 54 110 165 

5.70 12 24 36 

28mm 

specimen 

0.65 74 150 224 

2.70 5 9 13 

5.70 1 2 3 

 

 

 
 

Fig.3: Impedance tube: A for low frequency and B high 

frequency measurement. 

 

 
Fig.4: Schematic of specimen placement inside the 
impedance tube. 

 

4. Results and Discussion 

4.1 Correlation between Acoustical, Material 

and Physical Properties of Membrane 

Specimens 

Fig.5 shows the comparison between absorption 
coefficients of unperforated Membrane A, B and C. It can 

A 

B 

𝘯πrs
2 

𝘯πrp
2 
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be seen that the peak absorption coefficient of all the 
three membranes are approximately identical. Absorption 
coefficient of Membrane A reaches 0.84 within the 
widest range from 1100 Hz to 3300 Hz.  Absorption 
coefficient of Membrane B reaches 0.86 within the 
frequency range from 800 Hz to 2000 Hz. Meanwhile, 
Membrane C reaches 0.86 within the frequency range 
from 500 Hz to 1000 Hz. As can be observed, the peaks 
of the sound absorption shift to low frequency region 
with the increasing of the thickness of the membrane. The 
finding is consistent with [17]. 

The correlation between the acoustical, material and 
physical properties is showed in Fig. 6. From the result, 
the frequency ranges vary with changes in the thickness 
of the membrane. As the membrane thickness is 
increased, the frequency range become narrower. This 
result suggests that the width of frequency ranges is 
determined by the thickness of the membrane. The peak 
values of sound absorption coefficient are in good 
agreement with the densities of the membranes. This 
result also suggests that the peak value of absorption 
coefficient is determined by the density of the membrane. 
This finding is also consistent with [15-17]. Young’s 
modulus does not influence the acoustical properties of 
the membrane.  

 
Fig.5: Absorption coefficient of unperforated specimen 

A, B, and C. 

 
 

Fig.6: Correlation between acoustical, material and 

physical properties of membrane specimens. 

 

4.2 Effect of Perforation Size on Absorption 

Coefficient of Membrane A 

Fig 7(a)-(c) shows the effects of the perforation sizes, d 

on Sound Absorption Coefficient, 𝜶 of membrane A, 
measured with three different perforation ratio: 4%, 8%, 
and 12%. Referring to the result, it can be seen that the 
absorption coefficient increases as the d increases, 
however, decreases as d increases further. The peak of 
absorption of 0.65 mm perforation did not change much 
and mainly positioned at lower frequency range similar to 
unperforated specimens. Specimens with 2.70 mm 
perforation have the best value of 𝜶 which is over 0.90 
within the frequency range from 2000 Hz to 3000 Hz. 
While, the peak of 𝜶 dropped when the perforation size 
increased to d = 5.70 mm. The increases of d also widen 
the frequency range and shift the peaks toward the high 
frequency region, but reverted as d is getting too large. 
The maximum 𝜶 value obtained from 8% of 2.70 mm 
perforation specimens, reaching 0.98 inside the range of 
2500Hz to 2900Hz. As can be seen, the increases of 
perforation ratio also improve the absorption between 
4000 Hz-5000 Hz.  

 
a)  

 
b)  

 
c)  

Fig.7: Effect of perforation size on sound absorption 

coefficient of Membrane A with perforation ratio: (a) 4%, 

(b) 8%, and (c) 12%. 
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4.3 Effect of Perforation Size on Absorption 

Coefficient of Membrane B 

The effects of perforation size on Sound Absorption 
coefficient, 𝜶 of Membrane B shown in Figure 8(a)-(c). 
Similar with Membrane A, in which other parameters 
remained the same, the results show that the perforation 
size, d had some effect on the absorption peaks and 
frequency range width.  

 
 

 

 

 

 

 

 

 

 

 

 

a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

b)  

 
c)  

Fig.8: Effect of perforation size on sound absorption 

coefficient of Membrane B with perforation ratio:  (a) 4%, 

(b) 8%, and (c) 12%. 

 

From the results, 0.65 mm perforation does not affect 

much on absorption peak value if compared to the 

unperforated specimens, but the peaks shift to the higher 

frequency region. When the perforation size is 2.70 mm, 

the peaks becomes higher and wider. The absorption 

coefficient of 2.70 mm reaches 0.93 within the frequency 

range from 1000 Hz to 2000 Hz. However, the absorption 

coefficient becomes low when the perforation size is 5.70 

mm. This low absorptivity occurs due to the decreases of 

acoustic resistance caused by larger perforation 

diameters. The finding is consistent with [28-30]. The 

perforation ratios also have a significant influence on the 

peak of absorption. The maximum sound absorption can 

be obtained by 2.70 mm size with 8% of perforation at 

frequency range 1000 Hz to 2000 Hz. From the result, the 

increases of perforation ratio give better absorption, 

however larger perforation ratio will reduces its 

performance. 

 

 
a)  

 
b)  

 

c)  
Fig.9: Effect of perforation size on absorption coefficient 
of Membrane C with perforation ratio of (a) 4%, (b) 8%, 
and (c) 12%. 
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4.4 Effect of Perforation Size on Absorption 

Coefficient of Membrane C 

Figure 9(a)-(c) shows the effects of perforation size on 

Sound Absorption Coefficient, 𝜶 of Membranes C. The 

experiment was conducted using same parameters as 

experiment Membrane A and Membrane B.  Referring to 

Figure 8(a)-(c), it can be seen that the effective sound 

absorption of membrane C is at low frequency region, 

from 500 Hz to 1200Hz. The increases of perforation 

size, d affect the peak of absorption while the increases of 

perforation ratio slightly improve the absorption within 

the frequency range from 1400 Hz- 2000 Hz. Based on 

the result, 0.65mm perforation with the increases of 

perforation ratio does not really improve the absorption 

since there is no significant change in the graph trend if 

compared to the unperforated specimens. The absorption 

coefficient peak is maximized when the size of 

perforation, d is 2.70 mm. The peak reaches 0.9 within 

the frequency range from 500 Hz to 1000 Hz. However, 

the increases of perforation size to 5.70 mm slightly 

dropped the peak values below 0.9. As can be observed, 

the width and the peaks remain in the low frequency 

range.  

 

4.5 Effect of Perforation Size on Noise 

Reduction Coefficient, NRC 

Noise Reduction Coefficient, (NRC) is an average 

absorption coefficient and its characteristics are affected 

by the peak value and the width of sound absorption 

coefficient against frequency graph. Figure 10 shows 

membrane B has the highest NRC value if compared to 

the other membrane. The maximum NRC value reaches 

0.41 at 2.70 mm size with 8% perforation. Membrane A 

also has a good NRC value at 2.70 mm size. However, 

NRC value for membrane C only reaches 0.26 at 5.70 

mm size. The NCR values of Membrane C become lower 

due to the narrow frequency range of the sound 

absorption coefficient peak, 𝜶, even though it has very 

good 𝜶 value. The NRC values not more than 0.45 for all 

specimens because most of the width of the membrane 

sound absorption coefficient is relatively small. 

 

5. Conclusion 

Based on the experiment results, the peak value of 
absorption coefficient is determined by the density and 
thickness of the membranes. The increases in the density 
and thickness also move the peaks of absorption to low 
frequency region. The effects of perforation sizes and 
perforation ratios on the sound absorption coefficient also 
have been studied. The results show that the perforation 
sizes affect the sound absorption coefficient and the width 
of the frequency range. The increases of perforation size 
improve the sound absorption coefficient and move the 
sound absorption peaks toward high frequency region. 
However, the peaks become low as the perforation size 
increases further. The maximum 𝜶 value reaches 
approximately 0.98 obtained by Membrane B with 8% of 
2.70 mm holes. It can be observed that moderate 

perforation size with optimal ratio will significantly 
improve the sound absorption of the membrane. Small 
perforation sizes will makes the sound waves difficult to 
penetrate into the holes. As a result, most of sounds 
waves are reflected on the surface thus indicate less 
absorption similar with unperforated specimens. 
Meanwhile, when the size is too large, the acoustic 
resistance and reactance become smaller thus reduces the 
sound absorption. The NRC values for all specimens not 
more than 0.45 because of the width of the membrane 
sound absorption coefficient is relatively small. 

 

 

 

 

 

 

 

 

a) Membrane A 

 

 

 

a) 

 
b)  

 
c)  

Fig. 10: Noise Reduction Coefficient for (a) Membrane 
A, (b) Membrane B and (c) Membrane C. 

 

Overall, the perforated membranes give better 
sound absorption coefficient and wider frequency range 
compared to the unperforated membranes. Combination 
of membrane and Helmholtz type absorption seem to 
have better sound absorption coefficient, α and Noise 
Reduction Coefficient, NRC values over the unperforated 
membrane. From the experiment, it can be conclude that 
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the perforated surface of the membrane with optimal size 
and ratio produced better sound absorption. 
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