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Abstract 
Measurements relating to ionospheric plasma drift have been made by the Wireless and Radio 
Science Centre (WARAS) at Universiti Tun Hussein Onn Malaysia (UTHM) Parit Raja station in 
Batu Pahat, Johor, since 2004. This is done using a digital doppler interferometer which allows 
investigations into the dynamics of the ionosphere at this equatorial station to be carried out. These 
measurements include Doppler shifts and angles of arrival of the reflected HF signals that also 
allows simultaneous determination of plasma drift directions, drift distance covered and velocities 
as well as virtual heights of reflection, from ionospheric scattering point sources embedded within 
the moving plasma. By employing Doppler inteferometry reception technique at four receivers 
connected to four square array antennas nearby, it is possible to identify the locations, movements 
and velocities of  the bulk scattering points reflected from the ionospheric F-region from the 
vertically incident HF waves.  These waves are transmitted at frequencies of 6MHz, 7MHz, and 
8MHz which cover the local F-layers since the critical frequencies lie between 5.9MHz and 8MHz. 
This work is based on data collected from the F2-layer of this local station at about 300km of 
virtual height during the measurement period of 2005. 
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Ionospheric Drift Motions  and Velocities at 
UTHM’s Parit Raja Station During Periods of 

Low Solar and Geomagnetic Activities 
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With the received signal, a variation in the 
bearing or directions of arrival is also evident 
giving rise to positive and negative Doppler 
shifts. These are attributed to the reflections 
from the layers of ionospheric irregularities 
drifting across the points of reflections. From 
[3], the drift velocity is related by: 

 
  Ds = (1/π)v.ks  

       (3) 
 

where  s  =  index number of reflection point 
 D =  Doppler shift of reflection point 

at Rx 
 v  = reflecting plasma drift vector 

velocity 
 k  = unit vector from the ionospheric  

         reflection point towards digisonde 

3. MEASUREMENTS 

The digisonde at WARAS is used to measure 
and monitor the plasma drift or convection 
behaviour as a function of time for the Parit 
Raja station located at latitude 1o 52’ N and 
longitude 103o 48’ E. The digisonde operates 
alternately between the ionogram mode and 
drift mode whereby the ionograms are spaced 
by fixed slots and the time in-between is filled 
with a number of F-region drift measurements 
from vertically-incident fixed HF frequencies 
of 5.9MHz.  

The 4 receiving dipole antennas are arranged 
in a North-South and East-West configuration 
and co-located beside the delta-type 
transmitting antenna. The system also 
integrates a 13-bit (+1+1+1+1+1-1-1+1+1-1+1-
1+1) Barker-coded phase coding technique that 
help minimise the need for much isolation 
between the transmitting and receiving 
antennas.  

This 13-bit code binary-phase-modulate the 
transmitted RF frequency producing a digital 
BPSK compressed waveform with constant 
sidelobe levels at the output with radiation 
patterns that reduces interference between the 
transmitter and receiver antenna sidelobes. This 
will enhance the transmit power by 11dB or 13 
times more at the output, giving an effective 
radiated power of about 7.8kW. 

The technical specifications of the digisonde 
used in the measurements are given by the 
following table below:- 
 

Table 1 Specification of Doppler Interferometer 
Used 

 
 

The receiver antenna array configuration are 
based on an arrangement proposed by Wright 
and Pitteway [4]. There are 4 dipoles along the 
centres of 4 sides of a 30m square. Each dipole 
is an untuned dipole of overall length 25m. The 
centre of each dipole is fed to a balanced high 
input impedance preamplifier. In order to make 
vector measurements related to plasma drift, 
the system is operated in a spaced receiver 
mode whereby the 4 antennas at the field are 
linked to the 4 identical phase-coherent 
receivers [5]. 

Drift measurements made with fixed 
transmitter frequencies of 5.9MHz, 7MHz, and 
8MHz correspond to wavelengths (λ) over a 
range of 37.5m up to 50.8m. In terms of half-
wavelengths (λ/2), these correspond to 18.75m 
up to 25.4m for half-wave dipole (λ/2) 
operation. Since the length of each receiver 
dipole used is 25m (see Table 1), it will cover 
up to the critical frequency of the F3-layer for 
this station (foF3 = 8MHz) [6]. 

For each sounding, the in-phase (I) and 
quadrature-phase (Q) amplitudes are measured 
for each of the 4 receivers. A drift measurement 
is made for 60 seconds interleaved between 5-
minute intervals of ionogram measurements 
and consists of 20 μsec 6MHz HF soundings 
made at a pulse repetition frequency (PRF) of 
40Hz. After A/D conversion, the 64-point FFT 
complex time series vectors for each duration 
bin for each antenna is then Fourier 
transformed in real-time. This way, the 
reflected echo amplitude and phase coefficients 

1 Transmitter Peak Power 600W 
2 Transmitter RF Frequency Range 1 – 20 MHz 
3 Receiver Bandwidth 35 KHz 
4 Pulse Repetition Frequency 40 Hz 
5 Pulse Width 20 μsec 
6 Range Resolution 3 Km 
7 Pulse Compression 13-bit 

Barker code 
8 Number of Receivers 4 
9 Number of Receive Antennas 4 
10 Dimension of Receive Dipole 25m 
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of the composite signal can be estimated so as 
to be able to extract the basis functions 
representing the multipath echoes making up 
the received signal. 

The generated skymap is then able to show 
the various reflection sources from the drift 
measurements which was carried out. This 
skymap displays the directional distribution as 
well as Doppler shifts of ionospheric echo 
sources in a horizontal view at this station. 
Further processing will also provide 
informations regarding the virtual heights of 
reflections as well as the drift distance covered 
by the plasma and the drift velocity attained. 
 
 

4. RESULTS AND DISCUSSIONS 

   The earth’s geomagnetic as well as solar 
indices are important ionospheric parameters 
that can have direct impacts on the local 
directional behaviour of plasma movements as 
well as the drift velocities attained.  
Magnetometer  records  obtained from the US 
National Oceanic and Atmospheric 
Administration (NOAA) for the year 2005 are 
used to reveal the variation of the earth’s 
geomagnetic behaviour  on the ionospheric 
plasma motion.  
    It can be seen that for almost 100% of the 
time, the monthly mean of the daily 3-hourly A 
average falls below 27. This value corresponds 
to a planetary geomagnetic index of Kp<=4 (ie. 
undisturbed geomagnetic activity) taken as an 
average over one month.  
   This indicates that the year 2005 can be 
regarded as an exceptionally quiet period with 
low geomagnetic activity. Figure 1 shows the 
variations of Kp<=4 for 2005 whereas Figure 2 
displays the variations of the monthly mean of 
the daily A average for the same year. 
 

 
 

 
 

Fig 1 Barchart of Monthly Kp<=4 Variation for 
2005 

 
 

 
 

Fig 2  Barchart of Monthly Amean Variation for 2005 
 
 

Similarly, sunspot numbers (SSN)  obtained 
from  NOAA for the same year of 2005 are 
used to reveal the variation of the solar 
activities on the ionospheric plasma motion. 
This is summarised in Table 2(a) and Table 
2(b) below.  

 
Table 2(a) Variations of Solar SSN 
 

Year Jan Feb Mar Apr May Jun 
2000 90.1 112.9 138.5 125.5 121.6 124.9 
2001 95.6 80.6 113.5 107.7 96.6 134 
2002 114.1 107.4 98.4 120.7 120.8 88.3 
2003 79.7 46 61.1 60 54.6 77.4 
2004 37.3 45.8 49.1 39.3 41.5 43.2 
2005 31.3 29.2 24.5 24.2 42.7 39.3 
2006 15.3 4.9 10.6 30.2 22.3 13.9 
2007 16.8 10.7 4.5 3.4 11.7 12.1 
2008 3.3 2.1 9.3 2.9 3.2 3.4 
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Table 2(b)  Variations of Solar SSN – 
contd. 
 

Year Jul Aug Sep  Oct Nov Dec 
2000 170.1 130.5 109.7 99.4 106.8 104.4 
2001 81.8 106.4 150.7 125.5 106.5 132.2 
2002 99.6 116.4 109.6 97.5 95.5 80.8 
2003 83.3 72.7 48.7 65.5 67.3 46.5 
2004 51.1 40.9 27.7 48 43.5 17.9 
2005 40.1 36.4 21.9 8.7 18 41.1 
2006 12.2 12.9 14.4 10.5 21.4 13.6 
2007 9.7 6 2.4 0.9 1.7 10.1 
2008 0.8 0.5 1.1 2.9 4.1 0.8 

 
 
Plots of SSN variations are given in Figure 

3(a) and 3(b). Comparing with the yearly SSN 
variations from 2000-2008, it can be seen that 
2005 can also be considered as a year with an 
exceptionally quiet solar activity with an 
average  recording of 29.7 for the SSN taken 
over one year. 

 

 
 

Fig 3(a) Bargraph of Monthly SSN for 
2005 

 

 
 

Fig 3(b) Linegraph of Monthly SSN for 
2005 

 

From the measurements made, processing of 
the reflected echoes begins by forming the 
cross spectra from the saved spectrum 
segments for each of the E-W and N-S antenna 
pairs. Each saved FFT bin has significant 
power and is assumed to correspond to an 
ionospheric reflection point or source.  

The skymap display shows the reflection 
points drift direction as well as Doppler shift. 
The observable trend across the skymap 
indicates the bulk horizontal motion of the 
ionospheric reflection sources.  

Several assumptions are made in this study. 
It is assumed that there is minimal refraction 
effects since only the bottomside of the 
ionosphere is probed and that the plasma is 
moving with a uniform bulk flow. This also 
means that the reflection point sources being 
detected by the doppler interferometer are 
actually embedded in the bulk flow. This 
assumption is reasonable as only the cluster of 
reflection points with a pronounced ‘cloud’ 
having a dominant horizontal convection 
pattern in either the North-South (N-S) or East-
West (E-W) directions are considered. In 
addition to that, for plasma motion 
determination above the doppler interferometer, 
the most relevant echo points for consideration 
should have incidence angles towards the 
receiving antennas that are close to vertical. 
Therefore point sources with a maximum 
zenith angle of 45o have been selected.  

    The following results obtained shows the 
movement of plasma in various directions 
representing north, south, east, west, northwest, 
northeast, southwest, southeast and central 
locations as shown in Table 4(a) and 4(b). The 
percentage of drift by directions is also shown 
in  Figure 4. 
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Table 6(a)  Drift Velocity Magnitudes for Jan 
2005 
 

 
 
    Table 6(b)  Drift Velocity Magnitudes for Jan 
2005- contd. 
 

 
 
From the above table, the following plots can 
be made:- 
 
 
 
 
 
 
 
 
 
 
 

 
 
   Fig 6 Daily East-West Plasma Motion 
Velocity Variations 
 
 

 
 
Fig 7 Daily North-South Plasma Motion 
Velocity Variations 
 
 

 
 
   Fig 8  Probable Time Occurrence of E-W Velocity 
Spread 
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Day East-West LT North-South LT 
1 25m/s 1130 40m/s 2130 
2 40 2030 40 2230 
3 5 1430 10 1430 
4 40 2130 50 2000 
5 50 0430 20 0430 
6 50 2100 20 2030 
7 50 2300 50 2230 
8 10 2400 30 2230 
9 25 1830 35 2000 

10 50 2000 40 2100 
11 90 2330 50 2330 
12 10 1230 30 1900 
13 100 2330 100 2350 
14 120 2300 30 2300 
15 120 2200 30 2300 

Day East-West LT North-South LT 
16 70 2300 100 2200 
17 90 0200 90 0600 
18 10 1800 35 2030 
19 90 2130 80 2130 
20 60 2330 40 2200 
21 30 0900 30 1000 
22 50 2030 40 2100 
23 25 2030 10 0830 
24 60 2130 90 2200 
25 10 2030 50 2130 
26 40 2130 80 2030 
27 80 2130 50 2130 
28 100 2030 10 1930 
29 N/A N/A 10 2130 
30 20 2300 70 0900 
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   Fig 9  Probable Time Occurrence of N-S Velocity 
Spread 

5.  CONCLUSIONS 

Since 2005 is exceptionally quiet, with low 
geomagnetic as well as solar activity, it can be 
postulated that the plasma motion recorded in 
this study is due to the presence of local causes 
like strong effects due to regional prevailing 
ionospheric winds in this equatorial zone. The 
wind contribution would have more prominent 
influence than the effects of the earth’s 
geomagnetic activity or the sun’s solar 
behaviour, which are minimal.  

In so far as the plasma drift velocity is 
concerned, the East-West direction registers a 
maximum speed of 120m/s whereas the North-
South direction reaches a maximum speed of 
100m/s. It can also be observed from the plots 
that the plasma drift velocity magnitudes occur 
randomly due to the prevailing ionospheric 
winds and do not have a correlation with any 
day of the month. The last two figures indicate 
that these moving plasma changes velocities for 
the most part during local times from 1800 Hrs 
to 2400 Hrs. 
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9 

Mean of  
Daily A 
Average  

Number of 
days Kp<=4 
in a month 

JAN 14 45 45 62 40 15 13 6 2 0 22.3 27 

FEB 17 68 61 47 25 5 1 0 0 0 10.6 28 

MAR 19 74 61 54 24 12 1 0 0 0 11.6 31 

APR 12 67 87 36 25 8 1 2 0 0 11.6 29 

MAY 5 49 63 66 35 10 9 2 1 1 19.6 29 

JUN 6 58 92 45 23 10 3 1 0 0 13.0 29 

JUL 0 46 78 62 31 17 6 0 0 0 16.2 29 

AUG 5 38 88 63 25 12 3 1 1 1 16.2 30 

SEP 6 38 72 48 33 21 12 3 0 1 21.2 27 

OCT 53 85 55 36 16 0 0 0 0 0 7.1 31 

NOV 44 69 68 38 14 1 0 0 0 0 7.6 30 

DEC 61 74 51 38 11 4 0 0 0 0 7.2 31 

TOTAL 242 711 821 595 302 115 49 15 4 3 164.2 351 (95%) 
Kp % 8.5 24.9 28.7 20.8 10.6 4.0 1.7 0.5 0.1 0.1  (out of 365) 
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