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1. Introduction

Titanium (Ti) is widely used in dental and orthopedic 

implants because of its good biocompatibility and high 

corrosion resistance [1,2]. It is believed that these 

favourable properties are related to oxide layer (TiO2) 

thin film that grows spontaneously upon exposure to air 

[3]. However, TiO2 is bioinert, which usually leads to 

insufficient osseointergration [4,5]. Therefore, the surface 

modification of Ti is required to enhance their bioactivity 

[6]. TiO2 has shown to exhibit strong physicochemical 

bonding between Ti implant and living bone because of 

its ability to induce bone-like apatite in a body 

environment [7]. TiO2 has three crystalline forms such as 

anatase, rutile and brookite [8] that may present both in 

amorphous and crystalline structures, depending on the 

process parameters. Crystalline oxides, which are anatase 

and rutile present several distinctive features, such as 

photocatalytic behaviour [9,10], superhydrophilicity [11] 

and biocompatible properties [12,13]. 

To improve Ti bioactivity, several surface-modifying 

techniques have been applied, such as chemical treatment 

[14], thermal treatment [15], electrochemical treatment 

[16,17] and anodisation methods [18,19]. Anodic 

oxidation is considered one of the most attractive 

methods for modifying Ti implanted surface [13,20,21]. 

Anodic oxidation can form porous and relatively firm 

TiO2 layer on Ti which is highly beneficial for the 

biological performance of the implant [22]. Anodic 

oxidation of Ti allows the controlled production of 

protective oxide surface layer much thicker than those 

formed naturally. These coatings may be dense or porous, 

amorphous or crystalline, depending on the conditions, 

such as electrolyte type, solution concentration, and 

applied potential [23-25]. The electrolytes most 

commonly used to anodise Ti are sulphuric acid H2SO4 

and phosphoric acid H3PO4 [26]. The aqueous electrolytic 

bath which contains modifying elements in the form of 

dissolved salts (phosphorous (P) and/or sulfate (S)) need 

to be incorporated into the resulting TiO2 coating [27,28]. 

Further improvement of biocompatibility of Ti for 

orthopaedic and dental applications is endeavoured 

through the development of bone-like apatite 

(hydroxyapatite (HA)) coating on TiO2 interface [29]. It 

was found that physico-chemical bonding between the 

metallic implant and living bones could be achieved by 

the formation of HA in the body environment [30]. HA 

has frequently been used as coating material on Ti 

implants to improve the cell response and 

osteoconductivity due to its chemical and crystallographic 
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similarity to the organic component of the bone [31,32]. 

Several modifying techniques have been proposed to 

deposit HA on Ti such as plasma spraying [33], sol-gel 

method [34] and electrochemical deposition [35]. 

However, the bioactivity of materials can be predicted 

from the apatite formation in simulated body fluid (SBF), 

where the existence of phosphorous, calcium, and/or 

oxygen on anodised sample indicates that HA has grown 

on that material [23]. 

TiO2 coating layer formed using anodic oxidation 

method has proved to induce HA under SBF [19,36]. This 

work evaluates the formation of HA on TiO2 formed by 

anodic oxidation. The impact of anodic oxidation 

parameters on the formation of HA on TiO2 using SBF 

will also be studied. 

 

2. Materials and Methods 

Commercially-pure Ti (Cp-Ti) foils of dimensions 25 

mm  10 mm  0.5 mm were wet hand-polished using 

1200 grit (~1 μm) abrasive paper, followed by immersion 

in ultrasonic bath with acetone, rinsed with distilled 

water, and dried in air. 

Anodic oxidation was performed in electrochemical 

cell containing ~0.4 L of diluted mixed aqueous 

solutions; H3PO4 (Bendosen, 85 wt %) and H2SO4 (Q-rec, 

98 wt %). The anode and the cathode were both Ti and 

the anodising process was performed using a 

programmable power supply (Gen 750W/1500W, TDK-

Lambda). The anodized foils were cleaned using 

autoclave and stored in distilled water. The associated 

experimental parameters are shown in Table 1. 

 

Table 1 Parameters used for anodic oxidation in H2SO4 

and H3PO4 solutions. 

 

Parameters Value 

Room temperature (°C) 25 

 

 

Electrolyte 

concentration (M) 

 

0.1 M H2SO4 

2.0 M H2SO4 

0.1 M H3PO4 

2.0 M H3PO4 

0.1 M H2SO4 + 0.1 M H3PO4 

0.1 M H2SO4 + 2.0 M H3PO4 

2.0 M H2SO4 + 0.1 M H3PO4 

DC Voltage (V) 150 

Current Density 

(mA.cm
-2

) 

100 

Duration (min) 10 

 

After anodic oxidation process, TiO2 coated samples 

were subjected to in-vitro test where they were immersed 

in simulation body fluid (SBF) (1.5 M) at 36.5 °C in 

incubator (Incucell MMM Group) for 12 days. SBF were 

prepared according to Kokubo method [37]. The apatite 

formation was then evaluated using SEM, XRD, EDX 

and FT-IR. 

The mineralogical phases of the coatings were 

determined using: (1) X-ray diffraction (XRD, 

PANalytical X’Pert
3
 Powder), (2) the surface morphology 

were examined using scanning electron microscope 

(SEM, Hitachi SUI510) at accelerating voltage of 15 kV, 

(3) Elemental analyses were done using attached Energy 

dispersive spectrometer (EDX) (Horiba Emax X-act ®), 

(4) The hydrophilicity of the TiO2 surface were tested 

with water contact angle (WCA, Ramé-Hart instrument 

Co) and (5) the chemical absorption of the apatite 

precipitation was tested using Fourier transform infrared 

spectroscopy (FT-IR, Perkin-Elmer Spectrum 100). 

 

3. Results 

Phase mineralogical analysis of TiO2 coatings 

produced by individual and mixed acid solutions are 

shown in Fig. 1 and Fig. 2. Anatase (TiO2, JCPDS card 

#00-021-1272) and rutile (TiO2, JCPDS card #01-072-

7374) crystalline were obtained on TiO2 coatings. TiO2 

crystalline phases (anatase and rutile) can be observed on 

TiO2 formed under H2SO4 solution and mixture solution 

with higher H2SO4 concentration (Fig. 1), while TiO2 

coatings formed under H3PO4 solution and mixture 

solution with higher H3PO4 concentration have shown 

amorphous structure (Fig. 2). 

According to surface morphology (Fig. 3), generally, 

the TiO2 surface porosity increased with increased 

concentration of individual and mixture acids, where the 

pores have increased in size and number when the molar 

increased from 0.1 M to 2.0 M at individual and mixed 

acids. However, the surface morphology and pores size 

between the coatings are not the same in the case of 

higher concentration for individual and mixed solutions. 

In the case of 2.0 M H2SO4 (Fig. 3(c)) the TiO2 showed 

flat circular pores with an average diameter of 261.32 nm. 

Some pores have a circular wall with the donut-like 

shape. When 0.1 M H3PO4 is mixed with 2.0 M H2SO4 

(Fig. 3(d)) the surface obtained homogenous sponge-like 

structure due to the interlacing of pores which lead to 

increased pore size with an average diameter of 391.84 

nm. In the case of 2.0 M H3PO4 (Fig. 3(f)) the surface 

morphology is uneven with a different pore size (from 84 

nm to 781 nm in diameter) and is flat shaped. However, 

the pore size became homogeneous with smaller volcano-

shaped pores having an average diameter of 9.995 nm 

when 2.0 M H3PO4 is mixed with 0.1 M H2SO4 (Fig. 

3(g)). According to in-vitro results under SBF as shown 

in Fig. 4, the apatite precipitation was appeared on TiO2. 

It was found that apatite covered all over the floor at low 

molar solutions for individual and also at mixed 

solutions, and at mixed solutions with higher H2SO4 

concentration (0.1 H3PO4 + 2.0 H3PO4) (Fig. 4 (a), (b), 

(d) and (e)). TiO2 anodised at (0.1 H3PO4 + 2.0 H3PO4) 

has the most condensed apatite after 12 days in SBF. 

Hydrophilicity testing is taken after 24 hours of 

immersion of TiO2 in distilled water, after cleaned using 

autoclave (Fig. 5). It can be noticed from the results that 

TiO2 anodised at mixed solutions obtained lower surface 

contact angle than the coatings anodised in individual 

solutions, hence higher hydrophilicity. TiO2 coating 

anodised in 2.0 M H3PO4 + 0.1 M H2SO4 has produced 

the highest hydrophilicity among the other coatings. 



S. S Saleh et al., Int. J. Of Integrated Engineering Vol. 10 No. 3 (2018) p. 102-108 

 

 

 104 

Phase mineralogical analysis spectra as shown in Fig. 

6 and Fig. 7 have confirmed the formation of crystalline 

apatite (HA) on all TiO2 coatings surface and agree with

  
 

Fig. 1 Phase mineralogical analysis of TiO2 in 0.1 M 

H2SO4, 2.0 M H2SO4, 0.1 M H2SO4 + 0.1 M H3PO4 and 

2.0 M H2SO4 + 0.1 M H3PO4 at current density 100 

mA.cm
-2

. 

 

 
 

Fig. 2 Phase mineralogical analysis of TiO2 anodised in 

0.1 M H3PO4, 2.0 M H3PO4, 0.1 M H3PO4 + 0.1 M H2SO4 

and 2.0 M H3PO4 + 0.1 M H2SO4 at current density 100 

mA.cm
-2

. 

 

the results from elemental analysis. All precipitations 

have obtained HA (HA, JCPDS card #00-055-0592), with 

exception for TiO2 anodized in 2.0 M H2SO4 + 0.1 M 

H3PO4 which have obtained HA identified under (HA, 

JCPDS card #01-073-6113). It is noticed that low 

crystalline HA obtained according to peaks with 

orientations (002) and (211) on TiO2 anodised in higher 

molar individual solutions (2 M H2SO4 and 2 M H3PO4). 

While coatings anodised on 0.1 M H2SO4 and 0.1 M 

H2SO4 + H3PO4 obtained the highest crystallinity 

according to the same peaks. 
From absorption spectra for TiO2 as shown in Fig. 8 

and Fig. 9 there is a presence of sulfone (S=O) at band 

1300-1350 cm
-1

 on TiO2 anodised in H2SO4 solution and 

phosphine (P-H) at band 950-1200 cm
-1

 obtained on TiO2 

anodised in H3PO4. Both sulfone and phosphine were 

obtained on TiO2 anodised in mixed solutions. Hydroxyl 

groups (OH) stretching region 3100-3400 cm
-1

 except for 

TiO2 anodised in 2.0 M H3PO4 and Ti-OH at band 3635, 

3645, 3680, 3750 and 3840 cm
-1

 was also obtained on all 

the coatings. Water (H2O) at band 1860 cm
-1 

was also 

obtained on all the coatings especially in coatings 

anodised in higher H2SO4 concentration and in mixed 

solution with higher H2SO4, which obtained stronger 

water absorption band. This is due to the water trapped 

inside the grooves on their complicated porous structure 

(Fig. 3). 

 

4. Discussion 

It is apparent that the high apatite formation has 

obtained higher HA crystalline peaks. Higher apatite was 

obtained higher on the TiO2 coatings anodised in lower 

molar concentration for an individual solution and at 

mixed solutions with level and higher H2SO4 

concentration. The TiO2 anodised at lower molarity has 

obtained lower porosity, thus smoother surface, however, 

higher apatite was also formed on the higher porous 

surface (0.1 M H3PO4 + 2.0 M H2SO4). The higher 

wettability of the TiO2 coating anodised in mixed solution 

can be related the incorporation of S and P ions within the 

solution, however, this hypothesis needs further study. 

The hydrophilicity has obtained the highest on the TiO2 

coating anodised in 0.1 M H3PO4 + 2.0 M H2SO4. This is 

can be due to the hydroxylated surface [38] as obtained in 

the strong Ti-OH stretch around (around 1050 cm
-1

). The 

TiO2 coating anodised in 0.1 M, however, didn’t obtain 

hydrophilicity surface, although the increased apatite 

precipitation. The increased apatite formation can be 

attributed to the strong Ti-O
-
 stretch around 600 cm

-1
 at 

0.1 M H2SO4, 0.1 M H3PO4 and 0.1 M H3PO4 + 0.1 M 

H2SO4. The higher apatite formed on the TiO2 coating 0.1 

M H3PO4 + 2.0 M H2SO4 can be related to the Ti-OH 

(hydroxylated) groups, thus higher hydrophilicity, Ti-O 

functional groups, porous surface and strong anatase 

crystalline. It has been reported that osseointegration is 

better led by higher surface roughness, higher wettability 

and increased number and size of micro-pores [39,40]. It 

is also reported that the Ti-OH groups on TiO2 provide 

active sites for apatite nucleation when arranged in a 

specific structural unit based on the anatase structure, 

have been proposed to be responsible for the apatite 

formation [41]. It has also been reported that anatase 

present low contact angle [39]. 
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Fig. 3 Surface morphology of TiO2 film surfaces obtained as follows: (a) 0.1 M H2SO4, (b) 0.1 M H3PO4, (c) 2.0 M 

H2SO4, (d) 2.0 M H3PO4, (e) 0.1 M H2SO4 + 0.1 M H3PO4, (f) 2.0 M H2SO4 + 0.1 M H3PO4 (g) 2.0 M H3PO4 + 0.1 M 

H2SO4 at current density 100 mA.cm
-2

. 

 

 
 

Fig. 4 Surface morphology of TiO2 surfaces immersed for 12 days in SBF obtained as follows: (a) 0.1 M H2SO4, (b) 0.1 

M H3PO4, (c) 2.0 M H2SO4, (d) 2.0 M H3PO4, (e) 0.1 M H2SO4 + 0.1 M H3PO4, (f) 2.0 M H2SO4 + 0.1 M H3PO4 (g) 2.0 

M H3PO4 + 0.1 M H2SO4 at current density 100 mA.cm
-2

. 
 

 
 

Fig. 5 Surface energy analysis on TiO2 surface 

 

5. Conclusion 

Higher apatite precipitation and crystalline were 

obtained on the TiO2 coating with strong Ti-O
-
 functional 

groups for individual and mixed solutions. Higher apatite 

was obtained on hydroxylated TiO2 coating that has 

obtained strong Ti-OH functional groups, also highly 

porous surface and strong anatase crystalline. 
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Fig. 6 Phase mineralogical analysis of TiO2 surfaces 

immersed for 12 days in SBF anodized films obtained in 

0.1 M H2SO4, 2.0 M H2SO4, 0.1 M H2SO4 + 0.1 M H3PO4 

and 2.0 M H2SO4 + 0.1 M H3PO4. 

 

 
 

Fig. 7 Phase mineralogical analysis of TiO2 surfaces 

immersed for 12 days in SBF anodized films obtained in 

0.1 M H3PO4, 2.0 M H3PO4, 0.1 M H3PO4 + 0.1 M H2SO4 

and 2.0 M H3PO4 + 0.1 M H2SO4. 
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Fig. 8 Absorption analysis of TiO2 surfaces obtained in 

0.1 M H3PO4, 2.0 M H3PO4, 0.1 M H3PO4 + 0.1 M H2SO4 

and 2.0 M H3PO4 + 0.1 M H2SO4. 

 

 
 

Fig. 9 Absorption analysis of TiO2 surfaces obtained in 

0.1 M H3PO4, 2.0 M H3PO4, 0.1 M H3PO4 + 0.1 M H2SO4 

and 2.0 M H3PO4 + 0.1 M H2SO4. 
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