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1. Introduction 

Microelectromechanical systems (MEMS) based 

positioning stages have been vastly applied in numerous 

applications, including scanning tunneling microscopy, 

atomic force microscopy, optical cross connects, and 

parallel-probe-based data-storage systems [1]. Various 

MEMS-based positioning stages that use different 

actuation principles and mechanical structures have been 

reported. Such actuation principles include electrostatic 

actuators, electromagnetic actuators, electrothermal 

actuators, shape-memory-alloy actuators, and 

piezoelectric actuators (PEAs) [2]. Among these actuation 

principles, PEAs have been widely utilized in such stages 

due to their special characteristics such as high resolution 

in the nanometer range, large bandwidth, fast response, 

and high stiffness [3]. A piezoelectric stack actuator is 

built by assembling piezoelectric wafers and electrodes so 

that the piezoelectric wafers are connected mechanically 

in series while being connected electrically in parallel, as 

illustrated in Fig. 1. The actuator elongates or contracts 

when applying a positive or a negative voltage on its 

electrodes. This movement is caused by the realignment 

of the crystalline polarization of the piezoelectric ceramic 

material [4].  

PEAs main shortcomings are the nonlinearity caused 

by creep phenomenon, high-frequency vibrations, and 

hysteresis [5, 6]. Creep is a slow drift in the position that 

occurs after the desired motion when a constant input is 

applied to the PEA. This phenomenon is often 

represented by a nonlinear logarithmic model of time and 

input voltage [7], or by a linear dynamic model [8]. On 
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Fig. 1 Construction of a piezoelectric stack actuator. 



M. Nafea et al., Int. J. Of Integrated Engineering – Special Issue on Electrical Electronic Engineering Vol. 9 No. 4 (2017) p. 93-102 

 

 

 94 

the other hand, unwanted vibrations occur when a PEA is 

operated at frequencies close to its first resonant 

frequency. This limits the operating frequencies of the 

PEA to less than 1% to 10% of the first resonant 

frequency [8]. These vibrations are generally modelled 

and compensated based on the known dynamics of the 

PEA [9]. While the hysteresis causes serious non-linear 

effects on the motion of PEAs, the non-linear effects of 

creep and near-resonant vibrations are relatively small. 

The nonlinear effect between the applied voltage and 

generated displacement causes difficulties in controlling 

the displacement of the actuator. In order to address these 

difficulties, an accurate modeling of hysteresis behavior 

should be implemented before designing a controller for 

hysteresis compensation. Many models have been 

developed to this end. These models can be classified into 

physical models and mathematical models. Physical 

models are derived based on the mechanism of PEA 

hysteresis, and they are often complicated; whereas 

mathematical models can be classified into static models 

and dynamic models. Preisach model, Prandtl-Ishlinskii 

model, and the polynomial model are considered as static 

hysteresis models, while Bouc-Wen model, Duhem 

model, and Maxwell slip model are considered as 

dynamic hysteresis models [10]. Dynamic hysteresis 

models are reported to be more accurately represent the 

nonlinear hysteresis behavior of PEAs, and Bouc-Wen 

hysteresis model is considered as a simple model with 

least number of parameters. Furthermore, it is reported to 

provide a great ability to handle any functional 

nonlinearity and has a high ability to model non-

symmetrical hysteresis loops [11]. Despite the existence 

of such models, the tracking performance of PEAs still 

suffers from the effects of hysteresis. 

Feedforward control can potentially enhance the 

output tracking performance in piezo-actuated systems. 

This can be done by utilizing feedforward inverse 

compensation, which inverts the mathematical model of 

the hysteresis to determine the hysteresis compensating 

input. Hysteresis inversion is suitable in low-frequency 

operations since creep in the actuator can be corrected 

using feedback control, and vibrations are negligible at 

low frequencies [8]. To overcome the complexity and 

inaccuracy that occur when applying the hysteresis 

inversion, especially when the system has asymmetric 

hysteresis loops behavior, a hysteresis observer is utilized 

to estimate the hysteresis effect [5]. However, modeling 

uncertainties and external disturbance usually exist in the 

system. Thus, a feedback controller is needed to enhance 

the robustness of the systems and to improve the tracking 

performance [12]. The use of integral controllers gives 

the advantage of providing high gain feedback at low 

frequencies, which overcomes creep and hysteresis 

effects in actuation. This makes traditional Proportional-

Integral-Derivative (PID) feedback controllers suitable to 

control piezo-actuated stages [13]. Recently, research has 

gone into the automated tuning of the parameters of PID 

controllers, such as Particle Swarm Optimization (PSO), 

which finds the optimal solution for PID gains using a 

population of particles based on a designed fitness 

function [14]. PSO is a derivation-free method that does 

not use too many parameters, which makes it easy to be 

implemented to solve various optimization problems. In 

addition, this method produces robust solutions that are 

highly sensitive towards the parameters and objective 

functions, while being less dependent on the initial 

values. Furthermore, due to the single-directional 

information of particles, where each particle remembers 

its past position, it has a good global searching ability and 

very quick convergence [15]. 

Two-degree-of-freedom (2DOF) control methods 

that combine feedforward and feedback control can 

improve the tracking performance and reduce errors 

caused by nonlinearities, which makes this method 

sufficient when controlling PEAs in high-precision 

positioning applications. Such methods include the use of 

a Proportional-Integral (PI) feedback control associated 

with a feedforward compensating based on the hysteresis 

observer [5], a combination of a model-based 

feedforward controller and a PID feedback controller 

[16], and a 2DOF derivative/repetitive control [17]. 

Although these methods show promising results, the 

tracking error is still considerably large, especially when 

precise positioning system is required. 

In this paper, a 2DOF control approach is designed 

and presented for precise positioning of piezo-actuated 

stages. This approach combines a feedforward controller 

based on Luenberger observer and a PSO-based PID 

feedback controller. Bouc-Wen hysteresis model is used 

to describe the hysteresis behavior of the PEA. A 

Luenberger observer is utilized to estimate the hysteresis 

nonlinearity, since this observer has an easy structure, and 

it is easy to implement. The parameters of the PID 

feedback controller are tuned based on a proposed PSO 

fitness function to achieve satisfactory time response 

specifications. The performance of the controller is 

evaluated in terms of time response specifications, error 

as compared to the desired response and capability in 

reducing the hysteresis effect. 

 

2. Methodology 

2.1 Modeling The Piezo-Actuated Stage  

The model of the piezo-actuated stage presented in 

this section is shown in Fig. 2. The model is a moving 

stage driven by a piezoelectric stack actuator, where one 

end is fixed and the other is sliding horizontally. By 

 
 

Fig. 2 Schematic diagram of the piezo-actuated stage. 
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assuming a high generated force by the piezoelectric 

stack actuator compared to the frictional force, the 

piezoelectric stack actuator is regarded as a force 

generator. The Bouc-Wen hysteresis model is utilized to 

model the hysteresis behavior of the piezoelectric stack 

actuator.  
Using Newton Laws and considering the PEA as a 

mass-spring-damper system, Bouc-Wen hysteresis model 

of the piezo-actuated stage can be stated as follows: 

   ̈    ̇         (    )       (1) 

  ̇     ̇     ̇     ̇    (2) 

where   is the displacement of the PEA,   is the 

hysteresis nonlinear term, and   ̇   ̈  and  ̇  are the 

derivatives of   and  , respectively.     and   are the 

mass, damper coefficient and stiffness factor of the whole 

positioning mechanism combined together, respectively. 

  is the applied voltage,    is the exciting force that 

generated by the piezoelectric ceramic,   is the 

piezoelectric material constant,      is the external force 

applied by the load, while     and   are parameters that 

control the shape and the amplitude of the hysteresis loop, 

where 0 <   < 1 [18]. The differential equations of the 

system can be represented in state-space form as: 
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where the states represent          ̇   ̇  and 

    ; the input represent      and     ̇ . 

Equations (3) and (4) can be represented in matrix form 

as: 

  ̇                      (5) 

      (6) 

 

2.2 Controller Design 

2.2.1 Luenberger Observer-Based 

Feedforward Controller Design 

Designing the feedforward controller for the piezo-

actuated system requires an observer to estimate the 

hysteresis state. Furthermore, the problem of the velocity 

measurement can also be solved using the hysteresis 

observer to estimate the velocity of the positioning 

system. This will offer the opportunity to omit the 

velocity sensors, and thus reduce the cost and eliminate 

measurement noise [5]. A Luenberger observer [19] is 

utilized to observe the hysteresis of the piezo-actuated 

system since this observer has an easy structure and it is 

easy to implement. A block diagram of the Luenberger 

observer-based feedforward controller for the piezo-

actuated system is shown in Fig. 3(a).  
The Luenberger observer representation for this 

system is as follows: 

  ̇̂    ̂           ̂       ̂   (   ̂) (7) 

  ̂    ̂ (8) 

where  ̂ is the estimated state vector,  ̂ is the estimated 

output, and the observer gain,   should be chosen such 

that        is stable [19]. The output of the Luenberger 

observer is then combined with the original reference 

signal,   , to form a feedforward controller to compensate 

the hysteresis nonlinearity. 

 

2.2.2 2DOF Controller Design 

The 2DOF controller is designed by combining the 

feedforward controller with the feedback controller as 

shown in Fig. 3(b). In order to design the PID controller, 

the proportional gain,   , the integral gain,   , and the 

derivative gain,   , are tuned to eliminate the overshoot 

and to minimize the rise time, settling time and steady-

state error. 

As the PEA is highly nonlinear, in this work, PID 

gains are tuned using the PSO algorithm [15], which finds 

the optimal solution using a population of particles. Each 

position in a  -dimensional search space is a possible 

solution of the problem, and every particle is considered 

as a point in the search space, where   and   denote the 

position and the corresponding velocity of that particle, 

respectively. Thus, the  -th particle is represented as    = 

 
 

Fig. 3 A block diagram of the proposed structure: (a) 

Luenberger observer-based feedforward controller (b); 

The 2DOF controller structure. 
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(    ,     , …,     ), and the velocity of the particle   is 

represented as    = (    ,     , …,     ). The best previous 

position that gives the best fitness value of the  -th 

particle is recorded and expressed as        = (        , 

        , …,         ), while the index of the best 

particle of all particles in the population is donated by 

      . Then, the particles are manipulated according to 

the following equations [20]:  

    (   )        ( )        (        ( )  

    ( ))        (      ( )      ( ))  (9) 

     (   )      ( )      (   ) (10) 

where 

  1, 2, …, n 

  1, 2, …, m 

  index of iterations (generations); 

  number of particles in a group; 

  number of members in a particle (dimension of 

the problem); 

    ( ) velocity of a particle   at iteration  , and 

   
           

   ; 

  intertie weight factor; 

      acceleration factor; 

      random numbers in the range of [0, 1]; 

    ( ) position of a particle   at iteration  , and  

   
           

   ; 

             of particle  ; 
            of the group. 

 

In the definitions above, the minimum and maximum 

values of velocity are restricted between two constraints, 

  
    and   

   , respectively. The parameter   
    

specifies the resolution of search in the regions between 

the current position and the target position. Too high 

values of   
    might lead the particles to pass good 

solution. On the other hand, too small values of   
    

might limit exploring new good solutions beyond locally 

good regions, or even trapped in local optima [21]. Thus, 

the value of   
    is often set to be 50% of the dynamic 

range of the variable on each dimension [20]. The 

parameters   
    and   

    are the minimum and 

maximum boundaries of the position of particles on each 

dimension. These parameters are set to be in the feasible 

range of solution of on each dimension. The constants    

and    are the cognitive acceleration factor and the social 

acceleration factor, respectively. These constants scale 

the influence of       and       on the solution. Low 

values allow particles to explore new regions far from the 

target before being pulled back, while high values lead 

particles to move suddenly toward target regions. Thus, 

these constants are often set to be 2.0 to balance between 

local and global search, since its average makes the 

weights for cognitive and social parts equal to 1.0 [21]. 

Furthermore, to balance the trade-off between local and 

global exploration for different problems, the inertia 

weight w is usually decreased linearly from 0.9 to 0.4 

during the run as follows [22]: 

   
         

       
      (11) 

where      and      are the maximum and the minimum 

values of the inertia weight, respectively,         is the 

maximum number of iterations, and      is the current 

number of iteration [20]. 

By applying the PSO equations on the PID tuning 

problem, the position of the particles represents the gains 

of the PID controller, which means that   = 3 and   = 

[  ,   ,   ]. The solution of the PSO is based on the 

performance index, which is a quantitative measure to 

determine the performance of the designed PID 

controller. In this paper, a new fitness function is 

proposed to evaluate the performance of the PID 

controller in the time domain, including overshoot (  ), 

steady-state error (   ), rise time (  ) and settling time 

(  ). Thus, the fitness function, F is defined as follows: 

       (      )    
   (     ) (12) 

where   is the weighting factor. The fitness function can 

be adjusted to meet the designer requirements using the 

value of  . Increasing the value of   has a positive effect 

on the overshoot and steady-state error while decreasing 

it has a positive effect on the rise time and settling time. 

Selecting the suitable value of   is based on the previous 

knowledge of the dynamic performance of the system. 

The proposed fitness function provides a tunable trade-off 

between the performance criteria in the time domain. The 

search steps of the proposed PSO-based PID controller 

are as follows: 

Step 1: Specify the lower and upper boundaries of the 

controller parameters, and initialize the 

particles with random positions, velocities, 

       and      . 
Step 2: Calculate the fitness function value of each 

particle in the population using Equation (12). 

Step 3: Compare fitness function value of each particle 

with its      . If the current value is smaller 

than      , then set       value to be equal to 

the current value, and the       location to be 

equal to the current position in the d-

dimensional search space. 

Step 4: Compare fitness function value with the 

overall previous best. If the current value is 

smaller than      , then set       to the 

current value and position. 

Step 5: Modify the velocity ( ) of each particle ( ) 
according to Equation (9), where   is 

calculated according to Equation (12). 

Step 6: If     (   )    
   , then     (   )  

  
   ; If     (   )    

   , then     (  

 )    
   . 

Step 7: Modify the position ( ) of each particle ( ) 
according to Equation (10). 

Step 8: If     (   )    
   , then     (   )    

   ; 

If     (   )    
   , then     (   )  

  
   . 
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Step 9: If the number of iterations reaches the 

maximum then, go to Step 10. Otherwise, go to 

Step 2. 

Step 10: The particle that generates the latest       is 

the optimal controller parameter. 

 

3. Results and Discussion 

3.1 Dynamic Behavior and Feedforward 

Control 

Studying the displacement of the piezo-actuated 

stage requires analyzing the dynamic behavior of the 

whole system under study. This is done by utilizing the 

Bouc-Wen hysteresis model that relates the displacement 

of the piezo-actuated system to the applied voltage using 

Equations (3) and (4). In this study, the values of the 

parameters of the system are taken from a previous work 

[23], as given in Table 1. 

A triangular input voltage with an amplitude of 80 V 

and a frequency of 1 Hz is used to test the performance of 

the open-loop system. The input voltage is multiplied by 

the piezoelectric material constant,  , to give the value of 

the corresponding reference displacement signal. A 

feedforward controller is then utilized to enhance the 

output tracking performance of the piezo-actuated system. 

Thus, a Luenberger observer-based feedforward 

controller structure, shown in Fig. 3(a), is utilized to track 

the reference trajectory applied in the open-loop system. 

Fig. 4(a) shows the open-loop and the feedforward 

control trajectory responses of the system as compared to 

the reference signal. It can be seen that open-loop the 

displacement evinces a distortion on both rising and 

falling slopes, which indicates a hysteretic nonlinear 

relationship between the input voltage and the 

displacement of the PEA [4]. In addition, Fig. 4(b) 

demonstrates the resultant error between the reference 

signal and both of the open-loop displacement and the 

feedforward control trajectory tracking responses. The 

results show that the error of the open-loop response 

varies in the range of -7.43 to 7.50 μm, where the 

negative sign refers to the direction of movement. 

Furthermore, it can be seen that the tracking error has 

been reduced to be in the range of -3.49 and 3.50 μm, 

when using the feedforward controller, indicating a 

reduction in the error by 53.31% as compared to the 

open-loop error. The resultant error in both cases is 

caused by hysteresis that occurs between the input 

voltage and the displacement. This phenomenon is 

demonstrated in Fig. 4(c), which shows the nonlinear 

hysteresis relationships between the input voltage and the 

displacement of both of the open-loop system and 

feedforward-controlled system. The hysteresis is caused 

by the crystalline polarization effect and molecular 

friction. The displacement generated by the piezoelectric 

actuator depends on the applied electric field and the 

piezoelectric material constant, which is related to the 

remnant polarization that is affected by the electric field 

applied on the piezoelectric material. The current value of 

the hysteresis curve depends on the previous value of the 

input voltage since the piezoelectric materials remain 

Table 1 Values of the system parameters 
 

Parameter Value Parameter Value 

m 2.17 kg α 0.38 

b 4378.67 Ns/m β 0.0335 

k 3×10
5
 N/m γ 0.0295 

d 9.013×10
-7

 m/V Fext 0 N 

 

 

Fig. 4 Open-loop and feedforward control results: (a) 

Trajectory responses compared with the reference signal; 

(b) Trajectory tracking errors; (c) Hysteresis 

relationships. 
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magnetized after the external magnetic field is removed. 

As indicated in Fig. 4(c), the initial ascending 

displacement curves start from the origin, but they do not 

return to the origin even if the applied voltage is back to 

zero. This is caused by the polarization and elongation 

that occurs in the piezoelectric material under positive 

voltages, which cannot be completely retrieved even if 

the input voltage returns to zero [4]. The figure 

demonstrates that the hysteresis value at 50% of the 

voltage swing (40 V) has decreased from 13.43 to 6.00 

μm, indicating a reduction in the hysteresis by 51.73% 

when using the feedforward controller. However, this 

response lacks the robustness and it is sensitive to the 

parameters uncertainties and modeling errors. These 

drawbacks can be eliminated using feedback control 

combined with feedforward to form a 2DOF control 

structure since pure feedback control is not suitable for 

high-speed tracking control [16, 24]. 

 

3.2 2DOF Tracking Control 

In order to achieve a highly precise positioning while 

actuating the piezo-actuated stage, a 2DOF control 

structure that can improve the tracking performance and 

reduce errors caused by nonlinearities is utilized. The 

2DOF control structure consists of the Luenberger 

observer-based feedforward controller and a PSO-based 

PID feedback controller, as illustrated in Fig. 3(b). 

The fitness function in Equation (12) is used to tune 

the gains of the PSO-based PID feedback controller while 

it is integrated with the Luenberger-observer-based 

feedforward controller. The minimum and maximum 

boundaries of the three parameters of the PID controller 

are selected to be in the feasible range of the solution, 

where    ,    and    are set in the ranges of 0 – 300, 0 – 

80, and 0 – 2, respectively. The PSO parameters that are 

used to tune the PID controller are set to be as discussed 

in Section 3.2, where the number of generations is 300 

(the members of each particle are   ,    and   ) and the 

limit of change in velocity of each particle is as follows: 

   
      

      (13) 

The performance of the 2DOF controller is 

implemented in MATLAB/Simulink using a 4th-order 

Runge-Kutta method with the fixed step size of 0.0001 s. 

A step input with an amplitude of 80 V is used to test the 

time domain performance criteria (rise time, settling time, 

overshoot and steady-state error), while six simulation 

examples are carried out to evaluate the performance of 

the 2DOF controller based on those criteria. Each two 

examples are set to have the same value of the weighting 

factor   while having different population sizes ( ). In 

the first two examples,   is set to be 1 to neutralize 

between the overshoot and steady-state error on one side, 

and the rise time and settling time on the other, as 

described earlier in Equation (12). Then, the value of   is 

increased to observe its effect on the tuning process. The 

population size is set to be 20 or 30 in the simulation 

examples to observe its effect on the accuracy and speed 

of the searching process. The values of the population 

size are selected based on previous experience. 

Additionally, 20 trials of each simulation example are 

performed with different random numbers to study the 

variation of their evaluation values. The simulation 

results of these examples are summarized in Table 2. 

As indicated in Table 2, the fourth simulation 

example with a weighting factor   of 2, and a population 

size of 30 gives the fastest time response and the lowest 

overshoot and steady-state error, which make it the best 

solution. In addition, Table 3 presents a comparison 

between the evaluation values of each example and 

provides an observation of the variation between those 

evaluation values. It is clear that the fourth simulation 

example has the least difference between its minimum 

and maximum evaluation value, and has the lowest 

variation from its average (lowest standard deviation 

(  )). 

Further observations of the values of the PID gains in 

each generation (iteration) of the fourth example show 

Table 2 Comparison of the performance criteria in time domain 

 

δ P KP KI KD tr (ms) ts (ms) MP(%) ESS (µm) 

1 
20 181.5200 38.3183 0.0526 0.7640 0.9930 0.0122 0.0197 

30 188.4621 38.6425 0.0537 0.7480 0.9690 0.0195 0.0206 

2 
20 189.7459 46.4110 0.0542 0.7500 0.9740 0.0114 0.0179 

30 197.3215 47.8519 0.0560 0.7430 0.9680 0.0000 0.0182 

3 
20 196.9657 48.7367 0.0559 0.7430 0.9680 0.0047 0.0181 

30 197.3495 47.7607 0.0560 0.7430 0.9680 0.0000 0.0182 

 

Table 3 Comparison of the convergence characteristics 

 

δ P Min. (Best) Max. (Worst) ΔE (max-min) Average SD 

1 
20 2.2223×10

-5
 4.1558×10

-5
 1.9335×10

-5
 2.2696×10

-5
 5.4503×10

-6
 

30 2.2223×10
-5

 3.8815×10
-5

 1.6591×10
-5

 2.3352×10
-5

 3.5506×10
-6

 

2 
20 4.0380×10

-6
 8.8984×10

-6
 4.8604×10

-6
 4.3405×10

-6
 1.0525×10

-6
 

30 4.0380×10
-6

 4.1000×10
-6

 6.1992×10
-7

 4.2123×10
-6

 1.5614×10
-8

 

3 
20 1.8170×10

-5
 2.0809×10

-5
 2.6390×10

-6
 1.8393×10

-5
 5.9274×10

-7
 

30 1.8170×10
-5

 2.2361×10
-5

 4.1911×10
-6

 1.9848×10
-5

 9.1281×10
-7
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that those gains do not require many iterations to 

converge to their best solution, as shown in Fig. 5(a). 

Thus, the minimum possible evaluation value could 

be achieved as fast as those gains reach to their best 

solution. This can be seen clearly in Fig. 5(b), which 

shows convergence tendency of the fourth simulation 

example. Observing Fig. 5(a and b), indicates that 

evaluation value starts to converge to its minimum value 

at the fifth iteration, which is the same iteration that the 

gains of the PID controller start to converge to their final 

values as well. As stated in Table 3, the fourth simulation 

example has the lowest standard deviation from its 

evaluation value, which makes it fluctuate in a small 

range when repeating the simulation for 20 trials to 

observe the repeatability of the solution. Fig. 5(c) 

presents the fluctuation manner of the fourth example 

when repeating the simulation for 20 trials, where the 

difference between the best (lowest) and the worst 

(highest) evaluation values is around 6.1992 ×10-7. This 

indicates that this simulation example has the best 

repeatability characteristics among the other examples. 

Thus, the best value of the weighting factor for the piezo-

actuated system is 2, and the best gains for the PSO-based 

PID controller are those stated in the fourth example in 

Table 3. 

The performance of the 2DOF controller when using 

the proposed fitness function is compared with the 

performance of the controller when using Integral 

Absolute Error (   ) and Integral Time Squared Error 

(     ) as fitness functions. The results of such 

comparison are demonstrated in Fig. 6(a). It is clear that 

the proposed fitness function produces the best tracking 

control with a fast time response and zero overshoot. 

The proposed fitness function is utilized to track the 

same triangular input voltage with the amplitude of 80 V 

and a frequency of 1 Hz, as in 2DOF tracking control. 

The 2DOF trajectory tracking control response is 

illustrated in Fig. 6(b), which shows that the displacement 

is almost relatively to the reference signal, with a 

considerably small error. The tracking error signal of the 

2DOF controller is shown in Fig. 6(c). By comparing Fig. 

6(c) and Fig. 4(b), it can be indicated that the error is 

significantly reduced to be in the range of -0.022 to 0.026 

μm (0.030% of the maximum displacement) when the 

2DOF controller was applied. This shows that the 

tracking performance is improved by 99.64%, as 

compared to the open-loop system. The hysteresis 

relationship between the input voltage and the 

displacement is demonstrated in Fig. 6(d), which shows 

that the relationship between the voltage and the 

displacement has become linear as the error is minimized. 

To further investigate the performance of the 

proposed controller, the frequency ( ) of the input signal 

is varied in the range of 1 – 50 Hz in several trials, while 

maintaining the same amplitude of 80 V.  The 

performance is measured in terms of the maximum error 

(     ) and the root-mean-square error (     ), as 

summarized in Table 4. It can be seen that      and 

     are increasing according to the driving frequency. 

However, the proposed controller was able to limit      
and      within 0.942 and 0.551 μm, respectively. 

Furthermore, the proposed controller shows better 

tracking performance when compared with previously 

reported control methods that use feedforward inverse 

hysteresis compensator along with different types of 

feedback controllers [3, 25-27]. 

Table 5 presents a comparison between these 

previously reported methods and the proposed controller 

in terms of the driving frequency, displacement range 

(  ), maximum error, and the percentage error (  ). The 

 
 

Fig. 5 PSO-based PID tuning results: (a) Convergence 

tendency of the optimal controller gains (δ = 2, 

population size = 30); (b) Convergence tendency of the of 

the evaluation value (δ = 2, population size = 30); (c) 

Fluctuation of the evaluation value (20 trials). 
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table shows that the proposed control method is superior 

to the previously reported methods in term of the 

maximum displacement error while achieving a higher 

displacement range. This results in a lower percentage 

error, even when the system under study is operated at 

higher frequencies compared to the other systems. This 

proves the effectiveness of the designed 2DOF controller, 

which makes the system suitable to be used in high-

precision positioning applications. 

 

4. CONCLUSION 

This paper has presented a novel design method for 

designing a 2DOF controller for precise positioning of a 

MEMS-based piezo-actuated stage. The piezo-actuated 

stage was modelled based on the Bouc-Wen hysteresis 

model. A 2DOF control approach of a piezo-actuated 

stage was designed for positioning control of the piezo-

actuated stage. A Luenberger observer-based feedforward 

controller was designed and then combined with a PSO-

based PID controller to form a 2DOF controller. Optimal 

PID gains were then obtained using a new fitness 

function proposed to reduce the displacement error and 

achieve a fast response time. The results showed that 

using the proposed 2DOF controller has reduced the 

hysteresis effect significantly, where the maximum error 

was minimized to 0.022 μm, which is about 0.030% of 

the maximum displacement (72.02 μm), while achieving 

a rise time and a settling time of 0.743 and 0.968 ms, 

 
 

Fig. 6 2DOF control results: (a) trajectory tracking (step input); (b) Trajectory tracking with close-up view (triangular 

input); (c) Tracking error; (d) Hysteresis relationship. 

Table 4 Tracking performance of the proposed controller 
with different frequencies 

 

f (Hz) emax (μm) RMSE (μm) 

1 0.022 0.020 

10 0.158 0.107 

20 0.340 0.216 

30 0.529 0.328 

40 0.718 0.439 

50 0.942 0.551 

 

Table 5 Tracking performance of the proposed controller 

compared with previously reported control methods 

 

Reference 

of method 
f (Hz) 

Δy 

(µm) 
emax (μm) ep (%) 

[25] 0.2 Hz 40 0.5 1.250 

[26] 0.2 Hz 40 0.11 0.275 

[3] 1 Hz 34 0.612 1.80 

[27] 1 – 5 Hz 30 0.05 0.167 

Proposed 

method 

1 – 50 

Hz 
72.02 

0.022 – 

0.942 

0.03 – 

1.31 
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respectively. Additionally, the performance of the 

proposed controller was investigated in a frequency range 

of 1 – 50 Hz. The proposed controller was able to 

maintain a lower percentage error compared to previously 

reported control methods. Further improvement of this 

work can be done in the future using other optimization 

methods to tune the PID controller, such as radial basis 

function method [28] or metamodeling technique [29]. 
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