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1. Introduction 

The classical computational fluid dynamics are based 

on the estimate of fluxes on the faces of the finite volume 

using the truncated series, which have been the source of 
spurious numerical oscillations. Despite the control of the 

oscillations using the flux limiters, computational 

stability is not generally possible. In flood wave 

simulation, the sudden changes in the water depth and the 

velocity across the shock waves and at the advancing and 

recessing fronts between the wet-and-dry interface has 

led to spurious numerical oscillations, negative water 

depth and consequent collapse of the numerical 

computation.  

One method to avoid the estimate of the flux is to 

calculate the mass and momentum transfers using the 

Lagrangian method. Chu and Altai [1,2] used blocks of 
fluid and Lagrangian advection of the blocks to conduct 

turbulence simulations in a stream-function and vorticity 

formulation. Tan and Chu [3,4,5] extended the 

Lagrangian blocks advection (LBA) method for one-

dimensional (1D) simulation of the waves in shallow 

waters using the primitive variable formulation. The 

present LBA method uses the real fluids as the 

computational elements. This is to be distinguished with 

other Lagrangian method such as the particle-in-cell 

(PIC) methods of Harlow [6] and the smoothed particle 

hydrodynamics (SPH) methods of Monaghan [7]. The 
PIC and SPH methods use the artificial particles while the 

blocks are real fluid elements. Therefore, the kernel 

function used to calculate the interaction force between 

the artificial particles is not required. The extension of the 

1D formulation of Tan and Chu to two-dimensional (2D) 

and application of the 2D method to flood wave 

simulation are the subjects of this paper. 

 

 

2. Lagrangian Block Advection 

The Lagrangian blocks are arrays of contiguous fluid 

elements. The transfer of mass and the momentum in the 

fluid are carry out in the computation by staggered 
system of blocks as can be seen in Fig. 1 below.  
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Fig. 1 (a) The staggered depth and velocity node on the 

Eulerian grid, (b) the volume block, (c)-(d) the x- and y-

momentum blocks at the beginning and the end of a 

Lagrangian advection time step. 

 

Fig. 1(a) shows the staggered grid and the relative 

locations of the volume block (hxy), and the x- and    

y-momentum   blocks   [(uhx), (vhy)]   on  the   grid.  
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The x- and the y-components of the velocity are defined 

at a distance of ½ x to the west and ½ y to the south of 
the depth node, respectively. Fig. 1(b) shows the 

advection of the volume block and Fig. 1(c) and Fig. 1(d) 

show the advection of the momentum blocks. A block of 

water for Lagrangian advection is defined by its water 

depth hL
i and the block widths xL

i+1  xL
i = xL and yL

i+1  

yL
i = yL. At the beginning of the Lagrangian advection, 

at time t, the blocks fit the Eulerian mesh, that is xL
i = xi 

and yL
i = yi. At the end of the advection step, at time t + 

t, xLyLhL
i = xiyihi for volume conservation. In the 

present simulation for the shallow water waves, the forces 

on the blocks are calculated by assuming hydrostatic 

pressure variation over the depth. The edge positions of 

the blocks xL
i and yL

i at time t + t are calculated by 
Lagrangian integration of the momentum equations 
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where uL
i = x-component velocity, vL

i = y-component 
velocity, So = bottom elevation, and Sf = cf ui |ui|/(2gh) = 

friction slope. In the Lagrangian reference frame, the 

position xL
i(t) and the velocities uL

i(t) and vL
i(t) are 

functions of time only. To prevent entanglement of 

Lagrangian paths between adjacent blocks, the mass and 

the momentum in the blocks are re-casted onto the 

Eulerian mesh at each computational time step. A 

numerical solution is possible when the Courant number 

Co = max[ut/x, vt/y] is less than unity. The 
computational stability of the Lagrangian block advection 

will be demonstrated by some of the 2D simulations to be 

presented in this paper. An extensive series of grid 

refinement studies have been carried out previously by 
Tan and Chu [3,4] to show the convergent of the block 

advection simulations toward many exact solutions for 

the dam-break flood waves by Ritter [8], Stoker [9], 

Hogg [10], Ancey et al. [11], and for the runup and 

overtopping of collapsing bores by Shen and Meyer [12] 

and Peregrine and Williams [13]. 

 

3. Comparison with Exact Solution 

Fig. 2 shows a block advection simulation of the 

wetting-and-drying by water on the surface of a parabolic 

bowl using a system of relatively coarse blocks. Initiated 

by a parabolic mound, the water moves up and down in 

the bowl under the influence of gravity. The wetting and 

drying on the surface of the bowl is a challenging 
numerical problem. The numerical oscillations can 

produce negative water depth in advancing and recessing 

water layer, and subsequently lead to computation 

breakdown. Fig. 3 is the computation result of the same 

problem obtained using a fine block size and the 

comparison of the results with the exact solution of 

Thacker [14].  

A - A section

A A

plan view

h
zo

 
 

Fig. 2  The wetting and drying of water on the surface of 

a parabolic bowl by block advection. The blocks are x = 

y = 3.2 m in a bowl of 40 m radius. The crest of the 
initial mound of water is ho = 0.02 m. 
 

The most remarkable advantage of the Lagrangian 

block advection method over other computation methods 

is the computational stability. The block advection has 

been able to simulate infinite cycles of advances and 

recesses of the water on the surface of the parabolic bowl. 

The convergence of the block-advection simulation 

towards the exact solution is first order with an exponent 

p  1.0 when the order of convergence is determined by 
the method of Celik et al. [15]. 

 

4. Flood Waves Laboratory Experiments 

and Computation 

A series of 2D flood routings in urban settings is 

presented as application example taking advantage of the 

computational stability of the block advection method. 

The experiments of flood waves through idealised city 

have been carried out by Soares-Frazão and Zech [16,17]. 

Two idealised city layouts are considered as shown in 

Fig. 4. The idealised city is represented by group of 5  5 
buildings with the streets in between. Buildings are 

represented by 0.3 m  0.3 m square blocks and the 
streets are 0.1 m wide. The initial upstream and 

downstream water depths are ho = 0.4 m and hd = 0.11 m, 

respectively. Water depth h and velocity u are measured 

along section B-B for square city and section C-C for 
oblique city as shown in Fig. 4. Fig. 5 shows the water 

depth h and the vorticity  contours of the flood waves 
around the idealised oblique city. The agreements 

between the computation results and the observation data 

are very good given the effect of the surface tension in 

the laboratory experiment.  
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Fig. 3  Water depth h and velocity u in the parabolic bowl of an initial 2 km radius as 

computed by the block advection using x = y = 5 m are shown at time interval of one-
six cycle. The computed profiles (solid line) on the plane of symmetry y = 0 are compared 

with the exact solution of Thacker [14] (circles). 
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Fig. 4  Channel dimensions for experiment of flood waves through the idealized city of 

two layouts: (a) buildings oriented in a direction normal to the flood waves, and (b) 

buildings in an oblique direction to the flood waves. 

 

Fig. 5  Water depth h and vorticity  contours of the flood waves impinges against an 
oblique group of buildings in an idealized city at time t = 4 s, 5 s, 6 s and 8 s. The block 

advection computations are carried out using block size of x = y = 0.01 m. 

 



L.W. Tan, Int. J. Of Integrated Engineering Vol. 6 No. 1 (2014) p. 8-12 

 

 

12 

 

5. Conclusions 

The Lagrangian block advection has been able to 

track the flood wave front where water meets the dry land 

and to capture the sudden jumps in water depth and 

velocity with absolute computational stability. The 

problem of the spurious numerical oscillations has been 

eliminated when the block advection is used to transfer 

mass and momentum of the flood waves in shallow 

waters. Beside the usual Courant stability condition, 
absolute computational stability is attained as a 

consequence. The wet-and-dry interface of the water 

waves on the surface of a parabolic bowl has been 

determined directly by the Lagrangian block advection 

without using any frontal tracking procedure. The sudden 

jumps in depth and velocity across the hydraulic jumps 

are reproduced by the Lagrangian block advection 

without using any flux or slope limiter, since the control 

of the numerical oscillation is no longer required in 

absence of the numerical oscillations. A total of six series 

of flood wave simulations have been conducted without 

ever encountering any computational instability. The 
computation of the waves in the parabolic bowl 

approaches the exact solution. The flood wave simulation 

results reproduced closely the experimental data.  

The laboratory model and the numerical simulations 

have been carried out for the idealized floods. 

Nevertheless, the results presented in this paper have 

demonstrated clearly the capability of the Lagrangian 

block advection method to tackle the real flood wave 

simulation problems with absolute computational 

stability.  
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