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This review paper examines the role of physiological monitoring 
techniques in the manufacturing industry, particularly through the use 
of Heart Rate Variability (HRV) and Electroencephalography (EEG), 
aligning with the human-centric approach of Industry 5.0. Delving into 
the current applications and potential of these biometric tools, the 
paper highlights their significance in enhancing worker well-being, 
safety, cognitive workload management, and the optimisation of 
human-machine interactions. A systematic literature search employing 
the PRISMA framework was conducted, revealing a marked preference 
for HRV over EEG in current research, although both have been shown 
to offer substantial benefits. The review underscores the precision of 
ECG-based HRV measurements as pivotal for assessing autonomic 
nervous system activity, with implications for employee health 
outcomes. The analysis of EEG studies reflects its utility in mapping 
psychological states and fostering advanced Brain-Computer Interface 
technologies, contributing to safer and more efficient manufacturing 
processes. As the review concludes, the integration of HRV and EEG 
monitoring is poised to become a standard practice within the industry, 
signalling a shift towards manufacturing operations that prioritize the 
health and satisfaction of the workforce while maintaining operational 
excellence. The findings advocate for the adoption of these monitoring 
techniques as part of a larger strategy to ensure a responsive, adaptive, 
and worker-centric manufacturing environment. This paper paves the 
way for future research to explore the full spectrum of possibilities that 
HRV and EEG monitoring hold for the evolution of the manufacturing 
sector. 
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1. Introduction 
The term 'Industry 4.0', first introduced in 2011 as part of the German government's high-tech strategy, quickly 
became a significant topic of discussion, especially after its debut at that year's at Hannover Fair [1]. This concept 
marked a paradigm shift in manufacturing methodologies, representing a move towards the full automation of the 
industry by integrating cutting-edge technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), 
and Cyber-Physical Systems (CPS). The implementation of interconnected sensors and devices via the internet led 
to the creation of fully autonomous self-monitoring systems, capable of real-time analysis and problem-solving, 
thereby significantly reducing the need for human intervention [2], [3]. 

However, the move towards Industry 4.0, which raised concerns about social fairness and long-term 
sustainability due to its strong focus on automation and technological efficiency, led to the introduction of Industry 
5.0 in 2021 [4]. This shift refocused attention to include the human element in the manufacturing landscape, 
emphasising a human-centric approach [5]. This evolution seeks not only to maintain efficiency but also aiming 
to improve the quality of human life and experience in the industrial context [6], [7], [8]. 

Building on the transformative narrative from Industry 4.0 to Industry 5.0, this paper delves into the potential 
integration of physiological monitoring tools, specifically HRV and EEG, within the realm of manufacturing. These 
tools are pivotal in gauging worker well-being and cognitive load, aligning seamlessly with the human-centric 
vision of Industry 5.0. This investigation seeks to explore how current studies of HRV and EEG have been applied 
in the manufacturing sector and their application in enhancing worker well-being and operational efficiency. 

Guided by the imperative to explore how HRV and EEG monitoring can be integrated within Industry 5.0 
manufacturing settings, this paper assesses its current and future applications. By systematically reviewing the 
use of these technologies, the study contributes novel insights into their role in promoting a human-centric 
manufacturing model. It underscores the significance of HRV and EEG technologies in enhancing both operational 
efficiency and worker well-being, thus offering a framework for future research aimed at leveraging physiological 
data to advance manufacturing practices towards a more adaptive, responsive, and inclusive model. 

2. Methodology 
The systematic search for relevant literature in this review was conducted using Google Scholar and SCOPUS, 
which are comprehensive repositories of academic publications. Keywords played a crucial role in this process, 
steering the research towards relevant studies. As depicted in Figure 1, the search strategy utilised the keywords 
"Heart Rate Variability" or "HRV" and "Electroencephalogram" or "EEG," combined with the term 
"Manufacturing." 
 

 
Fig. 1 Keyword search strategy 

 
The review used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow 

diagram, as illustrated in Figure 2, to systematically guide the selection and evaluation of studies. This diagram 
outlines a structured approach for selecting and evaluating research literature, starting from the initial 
identification of records through screening, eligibility assessment, and ultimately, the inclusion of studies in the 
review. 

 

 
Fig. 2 PRISMA flow diagram 
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As outlined in Figure 2, the initial search in SCOPUS yielded 302 records. After the removal of duplicates, 244 
records remained and were subsequently screened. This screening process led to the exclusion of 183 records for 
various reasons. Following this, 61 records were thoroughly evaluated for their relevance and eligibility. During 
this phase, 20 full-text analyses were excluded because they did not relate to HRV (13 studies) or EEG (7 studies). 
After this rigorous selection process, 41 studies were deemed suitable for inclusion in the final review. To ensure 
comprehensive coverage and access to the full texts of these studies, Google Scholar was utilised as a 
supplementary tool for retrieving each of the research papers. This approach not only facilitated access to the 
papers but also ensured that the review encompassed a broad spectrum of relevant literature.  

The review then categorized these 41 papers based on their specific focus which are HRV, EEG, or a 
combination of both HRV and EEG methodologies. Figure 3 illustrates the distribution of these studies across 
different publication years, offering valuable insights into the evolving research trends within these scientific 
domains. 

 

 
Fig. 3 Distribution of reviewed studies across publication years 

Further examination of Figure 3, along with the data presented in Table 1, reveals that 21 studies focused on 
HRV, 18 on EEG, and 2 on both HRV and EEG. This distribution mirrors the current trends and focal areas in 
physiological monitoring within the manufacturing sector. 

Table 1 Categorization of studies based on focus area 
Category Number of studies References 

HRV 21 [9]-[29] 
EEG 18 [30]-[47] 

HRV and EEG 2 [48][49] 
 

The analysis indicates a slight predominance of HRV-related studies compared to those focusing on EEG. 
However, both fields are well-represented in the literature. The inclusion of studies that integrate HRV and EEG 
is occasional but significant, highlighting a growing interest in these methodologies within the manufacturing 
sector for various applications. This review emphasizes the diverse applications of HRV and EEG in enhancing 
safety, productivity, efficiency, and worker well-being in manufacturing environments. 

3. Research Utilising HRV Approaches in Manufacturing 

3.1 HRV Research Focus Areas and Trends 
The intersection of HRV research and manufacturing has garnered attention for its potential to enhance worker 
wellbeing and efficiency. An overview of current literature reveals diverse applications of HRV within this context, 
as depicted in Figure 4. 
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Fig. 4 Distribution of HRV studies in manufacturing by focus area 

The pie chart in Figure 4 elucidates the distribution of research foci within the realm of HRV studies in 
manufacturing. It is evident from the chart that the majority of studies, 16 in total, are concentrated on 
psychological states. This indicates a robust interest in understanding how the psychological well-being of 
manufacturing workers is influenced by their work and environment. Psychological states, such as stress, fatigue, 
and cognitive load, can be discerned from HRV measurements, which provide objective data to gauge worker well-
being. 

Conversely, a smaller fraction of the studies, represented by 5 in the chart, focuses on environmental factors. 
These studies delve into how various elements of the manufacturing environment, such as noise, temperature, 
and air quality, might affect the HRV and, consequently, the health and performance of the workers. The findings 
suggest that while environmental factors are acknowledged, there is a predominant emphasis on the psychological 
aspects of worker health in manufacturing settings. 

3.2 Recent Approach of HRV Applications in Manufacturing 
The application of HRV in the manufacturing sector serves as a pivotal gauge for workers' health across various 
domains, namely stress, fatigue, mental workload, and environmental impacts. 

The assessment of stress utilising HRV has been central to numerous studies. In 2023, research employing the 
PRISMA methodology critically reviewed stress indicators within intelligent manufacturing systems. This study 
illuminated HRV's crucial role in gauging stress, marking a significant step forward compatible with the principle 
of Industry 4.0 and 5.0 developments [9], [10]. A study conducted in 2022 explored the effects of forest therapy 
on reducing work-related stress among manufacturing employees, with HRV serving as a crucial biomarker for 
quantifying stress levels [11]. This study involved employees from a manufacturing plant who were experiencing 
high levels of occupational stress. Participants were divided into two groups that are one participated in a 
structured forest therapy program, while the control group continued their regular routines. The findings 
revealed that participants in the forest therapy group exhibited significant improvements in HRV metrics, 
indicative of reduced stress levels, and reported enhanced mood states and quality of life. Moreover, studies from 
2020 have showcased the effectiveness of HRV biofeedback monitoring to evaluate the impact of stress 
management interventions on assembly line workers' cognitive workload and productivity [12]. This multifaceted 
approach aimed to correlate subjective stress levels with objective physiological measures, providing a 
comprehensive overview of the workers' stress and cognitive states. The study's outcomes suggested that 
incorporating EEG monitoring into daily operations can significantly contribute to optimising human-machine 
interactions and elevating manufacturing efficiency. Earlier research from 2012, 2010, and 2002 further explored 
the relationship between job stress and HRV [13], [14], [15], [16]. 

Fatigue detection and analysis via HRV have also been a significant area of focus. A 2022 study applied 
machine learning and sensor technology to explore demographic factors affecting fatigue detection [17]. In a 2020 
study, an advanced collaboration model between humans and machines was tested on an injection moulding line, 
utilising machine learning to adapt task sharing based on real-time monitoring of workers' fatigue through 
wearable devices (Polar H10 chest strap & Huawei Watch 2) [18]. This approach dynamically adjusted tasks 
between employees and collaborative robots (cobots), aiming to optimize workload and enhance productivity. 
Results demonstrated significant improvements in worker well-being and operational efficiency, exemplifying a 
successful integration of technology into manufacturing to create a more responsive and human-centred 
production environment. Next, a 2017 study further explored HRV's role during assembly tasks, demonstrating 
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its effectiveness in detecting and managing fatigue among a wide range of worker demographics. This research 
highlights how HRV analysis can be a powerful tool for enhancing both the health and productivity of the 
workforce, contributing to a more supportive and efficient manufacturing environment [19]. 

The mental workload has been another key area studied through HRV. The 2022 study investigates human 
mental workload in collaborative environments with robots by capturing and analysing HRV physiological signals 
through wearable sensors (NeXus-4 and Smartwatch DTA-S50). Utilising a machine learning approach, 
particularly a random forest algorithm, this research classified mental workload levels with a high degree of 
accuracy (94%). The study highlights the potential for these methodologies to improve human-robot interaction 
by tailoring tasks to human operators' current mental states, thus supporting the development of more human-
centric manufacturing systems in line with Industry 5.0 principles [20]. A 2021 study highlighted how task 
complexity and informational assistance systems (using devices like iPad Air 2 and Vuzix M300 for AR) impact 
mental workload, suggesting that optimized assistance systems can significantly reduce mental strain [21]. 
Furthermore, a 2020 study employed HRV and the NASA-TLX test to assess cognitive workload, supporting the 
development of tasks that align with operators' cognitive capacities, enhancing both performance and safety in 
smart manufacturing settings [22]. 

HRV has also been used to examine the health impact of environmental factors. A 2022 study examined the 
physiological effects of noise exposure, using HRV as an indicator of autonomic response to environmental 
stressors [23]. The 2015 study assessed cardiovascular impacts of shift work in South Korea's automobile 
factories through 24-hour ambulatory ECG recordings, showing reduced HRV variability in night-shift workers, 
which indicates impaired autonomic response to circadian disruptions, posing potential cardiovascular risks [24]. 
Moreover, studies from 2016, examining the cardiovascular effects of titanium dioxide particle exposure [25], and 
from 1999, investigating the effects of working hours on cardiovascular functions [26], [27], have contributed to 
understanding environmental influences on worker health through HRV analysis. 

This compilation of HRV research underscores the method's value in assessing and improving worker health 
across diverse facets of the manufacturing environment. The systematic categorisation of research into distinct 
areas such as stress, fatigue, mental workload, and environmental factors enables a targeted approach to tackling 
the challenges faced by the manufacturing workforce. The inclusion of specific case studies and recent findings 
not only showcases HRV's practical applications but also aligns with the evolving focus on human-centric 
manufacturing practices, reinforcing HRV's significance as a pivotal tool in promoting workplace well-being in line 
with Industry 5.0 ideals. 

3.3 HRV Measurement Devices 
The assessment of HRV within the manufacturing context relies heavily on the accuracy and reliability of the 
hardware used to capture physiological data. The selection of HRV devices is crucial as it directly impacts the 
quality of the measurements and the subsequent analyses derived from them. In recent studies, a variety of HRV 
device brands have been employed to gather data necessary for evaluating worker health and stress levels. These 
devices, as summarized in Table 2, vary in terms of brand and sensor type, indicating a range of methodologies 
and preferences in the measurement of HRV across different research contexts. 

Table 2 HRV device brands and sensor types utilised in recent research 
Reference HRV Device Brand Sensor Type 

[12], [13], [28] emWave Pro PPG 
[11] T-REX® (Monitor and Care Taewoong Medical) ECG 

[20] Smartwatch DTA-S50 ECG 
[21] Faros eMotion 180° Holter ECG ECG 
[22] BITalino®Plugged Kit BLE ECG 

[15], [16], [26], 
[27] 

LRR-03 (GMS Co. Ltd., Japan) ECG 

[19] Polar Heart Rate Monitor ECG 
[24] Marquette Medical Systems ECG 
[14] I-330 C2 (J & J Engineering) ECG 

 
The emWave Pro, utilising photoplethysmography (PPG) technology, has been used in studies [12], [13], [28]. 

PPG sensors operate by detecting blood volume changes in the microvascular bed of tissue, offering a non-invasive 
measure of HRV. This method is particularly user-friendly and is often praised for its convenience and comfort, 
making it suitable for workplace settings where ease of use is a priority. 
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Several other studies have opted for devices equipped with electrocardiography (ECG) sensors, such as the T-
REX® used in study [11], the Smartwatch DTA-S50 referenced in study [20], and the Faros eMotion 180° Holter 
ECG from study [21]. These devices, including the BITalino Plugged Kit BLE [22], LRR-03 [15], [16], [26], [27], 
Polar Heart Rate Monitor [19], Marquette Medical Systems [24], and I-330 C2 [14], all harness the ECG method for 
HRV data collection. ECG sensors, recognised for their clinical accuracy, measure the electrical activity of the heart 
to provide precise readings of HRV. They are commonly used in research due to their high level of sensitivity and 
accuracy. 

Analysing the distribution of sensor types used in HRV research, as depicted in Figure 5, there is a clear 
preference for ECG sensors over PPG in the current literature. This preference is likely due to the precision offered 
by ECG measurements, which is critical when assessing the subtle changes in HRV associated with stress, fatigue, 
and other psychological states. 

 
Fig. 5 Proportion of HRV studies using ECG and PPG sensors 

In detail, Figure 5 showcases a bar graph comparing the usage frequency of ECG and PPG sensors in HRV 
studies. It is evident that the ECG method significantly outweighs PPG in its application. The graph indicates that 
ECG, being the more traditional approach, is favoured for its robustness and detailed data acquisition capabilities, 
essential for capturing the nuanced aspects of HRV. 

In summary, the selection of HRV devices in recent studies primarily reflects a reliance on ECG technology 
due to its accuracy and detailed data provision. While PPG sensors offer a non-invasive and user-friendly 
alternative, they are less frequently employed, possibly due to the higher precision required for HRV analysis in 
the context of occupational health research. The preference for ECG devices indicates a research trend towards 
methodologies that ensure high fidelity in HRV data, which is paramount for the effective assessment of autonomic 
nervous system activity and related health outcomes in the manufacturing workforce. The careful consideration 
of hardware in HRV studies underlines the importance of measurement precision in the pursuit of reliable and 
actionable health insights within the industrial environment. 

3.4 HRV Parameters and Key Findings 
In the realm of manufacturing, HRV has been a focal point to gauge various health-related concerns. The measured 
parameters and their correlated findings provide critical insights into employees' well-being. Table 3 below 
summarises the parameters measured, and its key findings related to influence of HRV with various research 
focus. 

Table 3 HRV research summarised findings 
References Research Focus Parameter Measured Key Findings 

[22] Cognitive 
Workload 

Heart Rate (HR), 
RMSSD 

Higher HR and lower RMSSD indicate increased 
cognitive load. 

[25] Exposure to 
Particles 

HRV Titanium dioxide particles may affect HRV, especially 
parasympathetic activity. 
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[17], [18], 
[19] 

Fatigue Mean RR, SDNN, 
RMSSD, LF, HF, LF/HF 
Ratio 

An initial increase then decrease in LF/HF ratio 
suggests rising fatigue. 

[28] Life 
Satisfaction  

HRV Coherence Resonant breathing improves HRV coherence, 
enhancing life satisfaction. 

[20], [21] Mental 
Workload 

HR, rrHRV, RMSSD Lower HRV parameters signal reduced stress 

[23] Noise Exposure HRV, HR HR is impacted by peak noise levels and rises over 
time during exposure. 

[24] Shift Work Mean RR, SDNN, 
RMSSD, pNN50, TP, 
LF, HF, LF/HF Ratio 

Night-shift workers show less variation in HRV 
metrics, possibly increasing cardiovascular disease 
risk due to disrupted circadian rhythms 

[9], [10], 
[11], [12], 
[13], [14], 
[15], [16], 

[29] 

Stress HR, SDNN, RMSSD, 
TP, LF, HF, HRV 
Coherence 

- Forest therapy boosts HRV and reduces stress. 
- Multimodal stress management improves HRV and 
lessens negative emotions. 
- Workers under high stress show lower HRV 
coherence. 
- Higher low-frequency HRV activity is linked to 
reduced depression, anxiety, and stress. 
- Short-term employees under high strain exhibit 
higher LF HRV. 

[26], [27] Working Hours HF and LF Power, 
LF/HF Ratio, Urinary 
Noradrenaline (NA) 

Longer working hours are associated with reduced 
sympathetic activity, indicated by lower urinary 
noradrenaline and a lower LF/HF ratio in HRV. 

 
Recent studies have delved into different aspects of occupational health by measuring various HRV 

parameters. Study [22] focused on cognitive workload, measuring heart rate and RMSSD—a measure of heart rate 
variability. It found that a higher heart rate coupled with a lower RMSSD could indicate increased mental demand 
on workers. The influence of environmental factors was examined in study [25], which investigated the effects of 
titanium dioxide particles on HRV. The study suggested these particles might impact the heart's variability, 
particularly affecting the parasympathetic (rest-and-digest) activities of the nervous system. 

Fatigue has been another significant research area, with studies [17], [18], [19] investigating various HRV 
metrics such as the mean RR intervals, SDNN, RMSSD, and the LF/HF ratio. These studies generally found that an 
increase followed by a decrease in the LF/HF ratio could be indicative of rising fatigue levels. The impact of life 
satisfaction on HRV was explored in study [28]. It was found that resonant breathing could improve HRV 
coherence, which may contribute to an increase in life satisfaction among individuals. Studies [20], [21] addressed 
mental workload by measuring heart rate and various HRV parameters. The key takeaway was that lower 
variability in these HRV parameters could be associated with reduced stress levels. 

The effects of noise exposure on heart health were explored in study [23]. The research concluded that heart 
rate tends to rise over time when exposed to peak noise levels, indicating stress response. Shift work, a common 
practice in manufacturing, was examined in study [24]. The findings indicated that night-shift workers might have 
less variation in HRV metrics, which could increase the risk of cardiovascular disease due to disrupted sleep 
patterns and circadian rhythms. 

A broad range of studies [9], [10], [11], [12], [13], [14], [15], [16], [29] investigated stress and its physiological 
markers. Some of these studies highlighted the benefits of forest therapy and multimodal stress management on 
HRV, suggesting that such interventions can enhance HRV and reduce stress. They also found that workers under 
high stress often show lower HRV coherence, and higher low-frequency HRV activity can be linked to reduced 
depression, anxiety, and stress. Interestingly, short-term employees experiencing high stress might exhibit higher 
low-frequency HRV, which could be an adaptive response to acute stressors. Lastly, studies [26], [27] focused on 
the association between working hours and HRV. Long working hours were associated with reduced sympathetic 
activity, as evidenced by lower urinary noradrenaline levels and a lower LF/HF ratio, suggesting that overwork 
could dampen the body's stress response over time. 

In synthesizing these findings, it's clear that HRV parameters serve as a mirror reflecting various states of 
worker health and well-being. Elevated heart rates and changes in HRV metrics like RMSSD, LF, HF, and the LF/HF 
ratio provide a quantifiable picture of the effects of cognitive demands, environmental factors, fatigue, life 
satisfaction, mental workload, noise exposure, shift work, stress, and long working hours on employees. This body 
of evidence underscores the importance of monitoring HRV as a practical tool for identifying health risks and the 
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efficacy of well-being interventions in the manufacturing industry. As research continues to expand, HRV could 
become a standard metric for safeguarding worker health and enhancing productivity. 

3.5 HRV Contributions to Manufacturing 
In the quest to enhance the manufacturing environment, HRV research has proven to be a vital tool. It has shed 
light on various facets of the workplace, revealing how the well-being, safety, efficiency, and productivity of 
workers are interconnected. HRV research contributions, as chronicled in Table 4, have led to significant 
improvements in several core areas within manufacturing settings. 

Table 4 HRV research contributions to manufacturing 
References HRV Research Contribution to Manufacturing 

[11], [12], [13], [14], 
[20], [28]  

Worker Well-being  

[18], [24], [25] Safety 
[15], [22] Efficiency 

[12], [16], [17], [21], 
[26], [27], [29] Productivity 

 
Studies that focus on worker well-being, such as [11], [12], [13], [14], [20], [28] have underscored the 

importance of monitoring physiological indicators to ensure that workers are not only physically fit but also 
mentally poised. For instance, by adopting stress reduction techniques that influence HRV positively, workers 
have shown improved well-being and lower stress levels. In terms of safety, the insights from HRV research, 
particularly from studies [18], [24], [25], have been instrumental. These studies have helped identify workplace 
conditions that may pose health risks, allowing for interventions that create safer working environments. For 
instance, by understanding the HRV changes due to night shifts, manufacturers can better assess the potential 
health risks and adapt work schedules accordingly. 

Efficiency in manufacturing is another area that has benefited from HRV research. Studies such as [15], [22] 
have utilised HRV metrics to assess the workload and its impact on workers. This line of inquiry has led to more 
informed decisions about task assignments and work pacing, ensuring that employees are working at optimal 
levels without undue stress, thereby maintaining efficiency. Productivity, a key objective in manufacturing, has 
also been closely examined through the lens of HRV. The collective findings from studies [12], [16], [17], [21], [26], 
[27], [29] indicate that factors affecting HRV, such as stress levels and working hours, can influence how effectively 
employee’s work. These insights have prompted changes in workplace practices to better align with the health 
and capabilities of workers, ultimately driving productivity. 

The integration of HRV research in the manufacturing sector has been transformative. It has provided a 
deeper understanding of how worker health impacts overall workplace dynamics. By acknowledging and 
addressing the various stressors that employees face, manufacturing environments can be tailored to support not 
only the health and safety of workers but also the overall productivity and efficiency of operations. As this body 
of research continues to grow, it is likely that HRV will become an even more integral part of the continuous 
improvement strategies within the manufacturing industry, ensuring that the human aspect of industrial 
operations is not only preserved but optimised. 

4. Research Utilising EEG Approaches in Manufacturing 

4.1 EEG Research Focus Areas and Trends 
EEG as a research tool in manufacturing environments has garnered significant interest due to its potential to 
enhance understanding of cognitive dynamics and human-machine interaction. In examining the deployment of 
EEG in this sector, the focus areas predominantly revolve around two critical applications, as depicted in Figure 
6. 
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Fig. 6 Distribution of EEG studies in manufacturing by focus area 

The predominant area of EEG application within the manufacturing context, as shown in Figure 6, is the 
monitoring of employees' psychological states. The majority of studies in this category aim to investigate mental 
workload, stress, cognitive strain, mental fatigue, and attentional focus. The driving force behind such research is 
to enhance the interplay between worker well-being and operational efficiency, ultimately contributing to 
heightened safety and productivity in the manufacturing environment. 

In contrast, a smaller yet significant portion of research, highlighted by a distinct segment in Figure 6, is 
dedicated to the application of Brain-Computer Interface (BCI) technologies. These cutting-edge studies strive to 
create direct communication channels between the human brain and robotic systems. The adoption of BCI within 
the manufacturing sector has the potential to radically alter the way humans interact with machines, offering a 
more intuitive and natural engagement with complex machinery and robotic systems. 

4.2 Recent Approach of EEG Applications in Manufacturing 
The recent introduction of EEG into the manufacturing field signifies a transition toward a deeper understanding 
and improvement of cognitive and operational aspects of industrial labour. This shift has given rise to two 
principal areas of research that are the analysis of psychological states and the advancement of BCI technology. 

EEG has been instrumental in psychological state research for quantifying mental workload, stress, fatigue, 
and other cognitive processes critical to ensuring safety and enhancing worker productivity. Notably, in 2023, a 
researcher developed a novel method to measure visual mental workload in assembly tasks without relying on 
specific task types [30]. By using a gel-based wireless EEG device, they gathered data on different levels of mental 
workload while operators followed visual instructions. This approach marks a significant step toward creating a 
universal tool for assessing mental workload in various manufacturing scenarios. Another 2023 study introduced 
a neuroergonomic assessment to evaluate mental workload in industrial human-robot interaction assembly tasks 
[31]. Employing the SMARTING wireless EEG system, this research demonstrated significant reductions in mental 
workload when incorporating robots, suggesting avenues for cognitive load optimisation in manufacturing 
settings. 

Similarly, [32] has employed literature review methodologies to elucidate the role of neuroergonomics in 
addressing psychosocial risks and enhancing safety. This insight underscores the pivotal role of EEG in fostering 
ergonomic innovations within the manufacturing. Meanwhile, a 2022 study has explored the detection of mental 
fatigue through AI-augmented EEG analysis employing non-invasive EEG technology [33]. The research proposed 
a prototype interface to signal fatigue onset, thereby mitigating accident risks and enhancing operational safety 
in safeguarding worker health. 

Subsequent EEG research in manufacturing has delved into cognitive assessment, focusing on assessing 
cognitive states such as problem-solving, attention, and memory. For example, studies in 2020 and 2019 analysed 
Lean Shopfloor Management in Industry 4.0 using EEG sensors and deep learning, focusing on problem-solving 
behaviours and the management system's impacts on process owners and leaders [34], [37]. The 2020 research 
achieved a 96.5% accuracy in classifying behaviours through neurological activity patterns under different 
management systems, while the 2019 study highlighted the prefrontal cortex's role in different problem-solving 
strategies. This combined approach showcases the potential of EEG data in enhancing manufacturing by aligning 
operations with the cognitive styles of management personnel. 
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In 2019, a researcher has aimed to identify EEG features capable of predicting cognitive overload, particularly 
in memory tasks among assembly workers [35]. They utilised the Biosemi ActiveTwo system to monitor EEG data, 
focusing on the correlation between alpha power activity and cognitive load levels during tasks of varying 
complexity. Another noteworthy study related to EEG and cognitive assessment in the workplace was conducted 
in 2019, focusing on worker attention [36]. This study aimed to develop cognition-aware computing within 
industrial environments, utilising wearable EEG and Kinect motion sensors to monitor and analyse the interaction 
between brain dynamics and physical movement among workers performing repetitive tasks. 

Furthermore, in 2020, a study investigated how different standard times for assembling a product with Legos 
affected participants' brainwave behaviours, utilising the Emotiv Epoc wireless device for EEG monitoring [38]. 
This research aimed to explore the impact of mental workload variations induced by changing assembly speeds 
(100%, 80%, and 70% standard times). Findings revealed significant differences in brainwave intensity across 
various standard times, suggesting that adjusting task pacing can influence cognitive strain. Next in a 2017 study, 
researchers used the SMARTING system and Kinect sensors to record EEG and movement data from workers 
performing repetitive tasks, aiming to detect changes in attention and engagement [39]. The study demonstrated 
a decline in cognitive alertness over time, evidenced by decreases in P300 amplitude and Engagement Index, along 
with increases in unrelated movements. Similarly, in a 2014 study, researchers utilised the SMARTING wireless 
EEG system to monitor operators' vigilance levels in real work environments, focusing on reducing errors and 
improving safety [40]. The study aimed to measure and maintain vigilance through psychophysiological metrics, 
using EEG signals and ERPs like P300 to track cognitive processing and attention. This approach demonstrates 
the potential for real-time monitoring systems to enhance workplace safety by providing operators with alerts on 
their alertness levels, aiming to minimize accidents and boost efficiency in industrial settings. 

The exploration of BCI systems for applications in a manufacturing context received a comprehensive review 
in a 2023 study, which focused on integrating EEG-based BCI systems in the Industrial Internet of Things (IIoT) 
for enhancing human-machine interaction and improving industrial processes [41]. The researchers analysed 
existing literature and performed lab-scale experiments using a single-channel EEG headset, comparing it with 
multi-channel EEG systems in various industrial scenarios. The finding suggests that single-channel EEG headsets 
can facilitate complex applications with reasonable accuracy. Further, in 2021, a study focused on BCI aimed to 
develop an innovative framework that leverages an individual's EEG signals to facilitate direct control over an 
industrial robot by the shop-floor operator [42]. This approach is designed to allow operators to command robots 
using their brain signals, thereby enhancing the interaction between humans and robots in manufacturing 
environments. Lastly, in 2007, a researcher critically reviewed the use of EEG-based BCI systems in 
manufacturing, aiming to show how EEG signals can control robots and enhance efficiency and interaction 
between humans and machines [43]. 

In conclusion, the investigation of EEG applications within manufacturing highlights a significant shift 
towards enhancing cognitive assessments and BCI technologies in industrial settings. However, the translation of 
these advancements from controlled laboratory studies to actual manufacturing environments has been limited. 
This gap is primarily attributed to the ergonomic challenges posed by current EEG systems, which are often 
impractical for daily use in manufacturing due to discomfort and the intrusive nature of continuous monitoring, 
alongside ethical concerns regarding worker privacy and consent. To realise the full potential of EEG technologies 
in improving manufacturing processes and worker well-being, future research must focus on the development of 
user-friendly, ergonomic EEG devices and the establishment of comprehensive ethical guidelines. 

4.3 EEG Measurement Devices 
In the field of BCI systems and psychological state evaluation, the choice of hardware is of paramount importance. 
The studies under review have utilised a wide range of EEG devices, along with various electrode channel 
configurations, to monitor brainwave activities for research objectives. Figures 7 and 8 provide an overview of 
the EEG devices and electrode channels that have been documented in studies pertinent to the application of EEG 
within the manufacturing sector. 
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Fig. 7 EEG device brands utilised 

Based on Figure 7, the SMARTING device by mBrainTrain emerges as the preferred EEG apparatus, having 
been selected for use in five distinct investigations [30], [31], [36], [39], [40]. The predilection for this device may 
be ascribed to its reputed dependability and the particular attributes that resonate with the research requisites. 
Alternately, the NeXus-10 and Spirit Ming recorder were employed in a couple of studies [44], [45], whereas 
NeuroSky's MindWave Mobile [46], Emotiv Epoc [38], Biosemi ActiveTwo [35], and the g.Nautilus EEG headset 
[42]were each featured once within the array of studies examined. 
 

 

Fig. 8 Variation in EEG electrode channels 

Moving on to the electrode channels, Figure 8 displays a clear preference for 24-channel configurations, which 
were utilised in five studies [30], [31], [36], [39], [40]. This preference may indicate a balance between spatial 
resolution and practical considerations such as setup complexity and data management. Three studies selected a 
16-channel setup [34], [38], [42], one study implemented a 14-channel system [37], and a single-channel EEG was 
employed in two instances [41], [44]. 

In particular, study [41] provides a persuasive argument for the utility of a single-channel EEG headset in 
applications related to manufacturing processes. The researchers conducted a comparative analysis, measuring 
the performance of their single-channel EEG data against that from multi-channel datasets, namely those with 64, 
32, and 25 channels, derived from various studies accessible online. The core finding of the study is the 
demonstrated viability of a streamlined, single-channel setup. Despite its simplicity, this configuration was shown 
to be adept at facilitating complex tasks, such as job inspection within manufacturing environments, achieving an 
impressive accuracy rate of 70%. This degree of accuracy, attained with a single-channel EEG, suggests that such 
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devices can provide an equilibrium between functionality and simplicity, proving to be appropriate for certain 
industrial applications where comprehensive EEG monitoring might be unwarranted or not feasible. 

In summary, the choice of hardware appears to be significantly influenced by the specific objectives and 
limitations inherent to each study. For example, a more extensive channel array may be required for a nuanced 
neural depiction crucial for intricate cognitive evaluations, whereas a single-channel EEG could be sufficient for 
concentrated studies or preliminary testing where extensive neural mapping is not essential. 

4.4 EEG Parameters and Key Findings 
EEG has emerged as a pivotal tool in understanding various psychological states in the manufacturing context. 
This section synthesizes key findings from studies [30], [31], [33], [35], [36], [38], [39], [40], [44], [45], [46], [47] 
that have utilised EEG to evaluate psychological states such as mental workload, mental fatigue, and cognitive 
processes. The Table 5 summarises the findings related to psychological states and their associated EEG 
parameters. 

Table 5 Correlation of EEG parameters with psychological states and findings 
References Psychological State Key EEG Parameters Key Findings 

[30], [31], 
[38], [44], 

[45] 

Mental Workload  - Theta (θ) wave 
- Alpha (α) wave 
- Beta (β) wave 
- Gamma (γ) waves 
- Sensory Motor 
Rhythm (SMR) wave 

Increases in mental workload lead to an increase 
in θ/α and β/α power ratios. There is also an 
increase in θ, β, γ, and SMR wave activities. 

[33], [46], 
[47] 

Mental Fatigue - Theta (θ) wave 
- Alpha (α) wave 
- Beta (β) wave 

An increase in mental fatigue is associated with an 
increase in θ power. 

[36], [39], 
[40], [47] 

Cognitive Process 
(Attention) 

- Theta (θ) wave 
- Alpha (α) wave 
- Beta (β) wave 
- P300 
- Sensory Motor 
Rhythm (SMR) wave 

A decrease in attention is associated with a 
decrease in P300 amplitude, and an increase in 
attention is linked with an increase in SMR wave 
activity. 

[35] Cognitive Process 
(Memory) 

- α (Alpha) wave An increase in cognitive load leads to a decrease 
in α wave power. 

 
Table 5 provides a comprehensive overview of the correlations between EEG parameters and various 

psychological states in the manufacturing context, as demonstrated by numerous studies. In the area of mental 
workload, a wide range of EEG parameters, including Theta (θ), Alpha (α), Beta (β), Gamma (γ), and Sensory Motor 
Rhythm (SMR) waves, have been shown to have significant correlations. It is noted that an increase in mental 
workload typically results in higher θ/α and β/α power ratios, along with increased activities in θ, β, γ, and SMR 
waves, as indicated in studies [30], [31], [38], [44], [45].  

Regarding mental fatigue, a crucial factor in manufacturing settings, a significant relationship has been found 
with changes in θ wave power. Specifically, an increase in mental fatigue is reflected by a rise in θ power, 
suggesting a reduction in cognitive efficiency, as pointed out in [33], [46], [47]. 

Furthermore, regarding cognitive processes, especially attention, which is essential for task performance, 
distinct EEG markers have been identified. A decrease in attention is linked with a reduction in P300 amplitude, 
while an increase in attention is associated with an increase in SMR wave activity. This relationship is key for 
detecting lapses in attention in real-time, as indicated in studies [36], [39], [40], [47]. 

Finally, memory processing, an important cognitive function in the manufacturing sector, is primarily 
associated with α (Alpha) wave activity. Notably, an increase in cognitive load tends to result in a decrease in α 
wave power, a finding uniquely reported in [35]. However, there are no significant findings related to correlation 
of EEG parameter and it finding for the cognitive process for problem solving and BCI studies.  

In conclusion, the analysis in Table 5 emphasizes the crucial role of key EEG parameters in mapping 
psychological states in the manufacturing sector. Theta (θ), Alpha (α), Beta (β), Gamma (γ), and Sensory Motor 
Rhythm (SMR) waves have been identified as significant indicators of mental workload, with increases in these 
parameters correlating with heightened mental demands. Mental fatigue is specifically associated with an increase 
in θ wave power, indicating a decline in cognitive performance. For cognitive processes like attention and memory, 
distinct EEG markers such as changes in P300 amplitude and α wave power provide valuable insights. This 
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understanding of the relationship between EEG parameters and psychological states can inform strategies to 
enhance cognitive well-being and productivity in manufacturing environments. 

4.5 EEG Contributions to Manufacturing 
From the studies, the use of EEG within the manufacturing sector has contributed to various aspects of the work 
environment, aiming to improve both human factors and operational outcomes. Table 6 summarizes the EEG 
studies that contributions to the manufacturing sector across four different aspects that are worker well-being, 
safety, efficiency, and productivity. Each aspect is frequently emphasized in the manufacturing sector to minimize 
waste and increase profits. 

Table 6 EEG research contributions to manufacturing 
References EEG Research Contribution to Manufacturing 

[31], [32], [34], [40], 
[44] Worker Well-being 

[32], [33], [46] Safety 
[30], [31], [41], [42] Efficiency 

[34], [45] Productivity 
 

Table 6 showed the key areas where EEG research has impacted manufacturing, showcasing how EEG 
technology contributes to four main outcomes that are worker well-being, safety, efficiency, and productivity. 
Each of these outcomes is crucial for a successful manufacturing process. Focusing on worker well-being, studies 
demonstrate that EEG can help reduce mental workload. For instance, [31] details how robots can alleviate some 
of the strain on workers, while [32] discusses the benefits of neuroergonomics for a safer and healthier workplace. 
Additionally, [34] investigates how a deeper understanding of brain functions can enhance worker well-being, 
[40] emphasizes the development of systems for real-time issue alerting, and [44] explores the design of 
equipment tailored to our natural physiological processes. 

In terms of safety, EEG has been instrumental in detecting when workers are becoming mentally fatigued, a 
key factor in accident prevention, as outlined in [33], [46]. Furthermore, [32] illustrates how the application of 
neuroergonomic principles can bolster safety measures. Regarding efficiency, EEG contributes to optimizing job 
designs to align with how people work most effectively, as seen in [30]. [31] highlights how robots can assist 
workers, simplifying tasks and streamlining the manufacturing process. [41], [42] showcase the advantages of 
EEG-based BCIs for tasks such as job inspection and facilitating human-robot collaboration, enhancing operational 
smoothness. 

Lastly, productivity benefits from EEG research by offering insights into how brain function influences work 
performance, as discussed in [34]. [45] further demonstrates the potential of EEG-based BCIs to leverage people's 
skills and increase production capabilities. In summary, EEG research is proving to be an invaluable asset in 
manufacturing, enhancing worker satisfaction and performance, ensuring a safer work environment, improving 
process efficiency, and boosting production output. 

5. Research Utilising Integration HRV and EEG Approaches in Manufacturing 
In recent years, the application of Electroencephalography (EEG) and Heart Rate Variability (HRV) in the 
manufacturing industry has become increasingly prominent. This trend aligns with the principles of Industry 5.0, 
which emphasizes a human-centric approach in the workplace. Despite the growing interest, there remain 
relatively few studies that explore the integration of HRV and EEG within the manufacturing context. Two notable 
studies stand out in this field are a [48] study focusing on stress measurement in manufacturing environments, 
and a [49] study aimed at enhancing the safety of epileptic patients in industrial settings. 

The [48] study aimed to measure stress comprehensively by analysing physiological signals, including HRV 
and EEG, alongside performance indicators and workers' perceptions of stress. This approach sought to 
understand the impact of stress on both worker well-being and performance. The method involved a combination 
of performance evaluation, physiological monitoring, and stress perception questionnaires. The study used 
various devices to measure heart rate, electrodermal activity, brain activity, and muscle activity. The findings 
emphasized the need to consider a wide range of physiological and psychological parameters to accurately assess 
stress levels in a manufacturing context. 

Meanwhile, the [49] study was designed to improve the safety of epileptic workers. It focused on developing 
a system to predict epileptic seizures, reducing risks to both employees and machinery. This system, integrating 
with industrial IoT applications, monitored vital signs using EEG and other sensors. Notably, it employed 
accelerometers to analyse employee movements, helping to predict seizures and allow for timely intervention. 
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Both studies contribute valuable insights to the manufacturing sector. The [48] study lays the groundwork for 
interventions to enhance worker well-being and productivity, while the [49] research offers a novel solution for 
the safety of workers with specific medical needs. Although neither study directly links HRV and EEG, their 
combined use underscores their importance in managing worker health and safety. In conclusion, the integration 
of HRV and EEG in manufacturing represents a significant step forward in occupational health and safety. These 
technologies offer a pathway to more personalized and proactive health measures, greatly enhancing workplace 
safety and efficiency. 

6. Discussion 
In the context of integrating HRV and EEG technologies within the manufacturing industry, several challenges and 
opportunities emerge, particularly when considering the advancement towards Industry 5.0. The real-time 
application of HRV is increasingly recognised for its potential to enhance manufacturing efficiency and worker 
well-being. However, the application of EEG in a similar real-time context faces difficulty due to the complexity 
and cost of the equipment, as well as ethical concerns surrounding continuous monitoring of workers. Despite 
these challenges, the integration of these technologies offers a promising approach for creating a more responsive, 
adaptive, and human-centric manufacturing environment. In the event of establishing a correlation between HRV 
and EEG, it becomes possible to utilise wearable devices, such as smartwatches, to approximate EEG metrics. This 
advancement could significantly mitigate the challenges associated with the real-time implementation of 
physiological monitoring, thereby rendering such monitoring more practical in manufacturing environments. 

The contribution of HRV and EEG monitoring to the Industry 5.0 paradigm extends beyond technological 
integration, touching on the human-centric manufacturing. By facilitating a deeper understanding of worker 
physiological states, these technologies pave the way for policies and practices that prioritize worker safety, well-
being, and efficiency. Challenges such as the non-invasiveness of devices and noise interference in data collection 
require innovative solutions that balance technological feasibility with ethical considerations. As manufacturing 
environments evolve, the potential for these technologies to inform policymaking and leadership decisions grows, 
emphasising the need for a strategic approach that aligns technological advancements with the welfare of the 
workforce. 

Moreover, ethical considerations surrounding the monitoring of physiological data in the workplace highlight 
the needed to be clarify, participatory practices that respect worker privacy and autonomy. Establishing clear 
guidelines and gaining informed consent are crucial to promote trust and acceptance among workers. The 
discussion on integrating HRV and EEG monitoring into manufacturing practices brings to light the broader 
conversation about the role of technology in enhancing human work conditions. As society moves towards the 
increasing adoption of such integrations, it becomes crucial to address the complex technological and ethical 
challenges while maintaining a reliable commitment to enhancing both individual and collective well-being. 

7. Conclusion 
In conclusion, the review has systematically unpacked the integration of physiological monitoring in the 
manufacturing sector, underscoring its alignment with Industry 5.0's human centric paradigm. The exploration of 
HRV and EEG methodologies has illuminated their potential to enhance not only the well-being and safety of 
workers but also the overall productivity and efficiency of manufacturing processes. The research indicates a 
growing trend towards the adoption of such biometric monitoring tools, with an emphasis on their application for 
stress management, cognitive workload assessment, and the optimisation of human-machine interfaces. Building 
upon the insights gained from the integration of HRV and EEG in the manufacturing sector, this review further 
emphasizes the need for technological advancements to be ethically aligned with the principles of Industry 5.0. 
Recognising this, the paper proposes a forward-looking research agenda centred around the development of an 
ethical framework for the application of HRV and EEG technologies. This framework aims to balance operational 
efficiency with the privacy and autonomy of workers, recommending the use of non-invasive, wearable devices 
such as smartwatches that not only respect the individual’s comfort but also integrate seamlessly with existing 
IIoT systems. Such an approach is designed to provide immediate insights into the physiological states of workers, 
enabling adjustments that prioritize well-being and efficiency in real-time.  

The path forward includes conducting a pilot study in a real manufacturing environment to evaluate the 
practical impact of HRV and EEG monitoring on worker well-being, safety, and productivity. This critical step will 
involve closely examining workers' responses to these technologies, particularly their views on privacy and 
technology acceptance. By analysing the outcomes of this study, the research aims to shed light on the 
practicalities of implementing physiological monitoring technologies in the workplace, contributing valuable 
insights to the ongoing discussion about ethical technology use. Ultimately, this seeks to establish a set of 
guidelines and best practices that could inform future implementations across the manufacturing industry, 
ensuring that innovation in worker monitoring remains ethically grounded and human centric. This approach not 
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only aligns with the foundational values of Industry 5.0 but also ensures that technological progress enhances the 
manufacturing landscape in an ethical, inclusive, and productive manner. 
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