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To optimize productivity growth in batch processes, it's imperative to 
effectively manage nonlinearities and dynamically shifting process 
parameters. A cutting-edge approach to tackle this challenge involves 
integrating an auto-tuning-neuron-based proportional-integral-
derivative (ANPID) system with an indirect PID-type iterative learning 
control (ILC) method, resulting in an innovative two dimension 
proportional-integral-derivative (2D-PID) adaptive recipe. This 
intensified two-dimensional (2D) control strategy offers a robust 
solution for addressing the complexities inherent in batch processes, 
ultimately fostering enhanced efficiency and performance. This method 
targets industrial processes characterized by nonlinearities and time 
variations across multiple batches. The ANPID addresses intra-batch 
nonlinearities and time variations autonomously. Additionally, an 
adjustable set-point-related PID-type ILC improves local tracking 
capability between batches. Historical batch data iteratively informs 
productivity improvements. Initial PID and ILC parameters are 
optimized via Particle Swarm Optimization (PSO) procedure. A 
fermenting reactor simulation illustrates the proposed concept's 
potential application. The performance metric "Average Absolute 
Tracking Errors" (ATE) is frequently used in batch processes to evaluate 
the efficacy of tracking control. Comparing the enhanced 2D-PID to the 
conventional 2D-PID, which has an ETA of 0.0223, the latter has the 
lowest ETA, and the conventional 2D-PID demonstrates superior 
tracking and control effects by 0.0389. The finding indicates that 
enhanced 2D-PID adaptive controller adapts more effectively to the 
dynamic conditions of the process, a property that could be further 
exploited to optimize batch cycle times and throughput 
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1. Introduction 
Through the inherent characteristics of batch processing, the multi-batch industrial procedure can 
systematically replicate the production of a defined number of product batches within a specified timeframe. 
This approach sees extensive utilization in high-value manufacturing sectors, including bio-fermentation 
processing, plastics production, the food-medical and pharmaceutical industries, fine chemical polymerization, 
integrated circuit design, and various other industrial domains [1]. The effectiveness and excellence of 
production in the process industry hinge on the precision of process control. Nevertheless, the batch operation's 
non-stationary features result in a pronounced nonlinearity and dynamically changing nature. Additionally, the 
challenges arise due to the difficulty in timely modeling to derive an accurate mechanism model, posing 
formidable complexities and obstacles to process control [2], [3]. 

Given the finite duration of batch processes and their recurring operational patterns, a thorough 
understanding necessitates incorporating both time and batch dimensions. This integrated approach optimizes 
process control [4], [5]. Control strategies for intermittent processes primarily focus on intra-batch online 
control and inter-batch learning control. Intra-batch control dynamically adjusts controller parameters or 
prediction models to adapt to evolving production targets, mitigating challenges like nonlinearity and 
uncertainty within the batch [6]. Conversely, inter-batch control aims to improve local or overall control 
performance across batches by leveraging repetitive features. It employs learning algorithms to adjust control 
parameters continuously, enhancing control performance throughout the batch sequence [7]. 

On-line control within a batch of batch processes aims at solving the problems of process nonlinearity, 
parameter time-variation and uncertain disturbances, and even mismatch of mechanistic models that exist in a 
process within a batch [6], [7]. From simple PID strategies to complex control methods, advanced control 
technologies are emerging day by day. Scholars have made a lot of research and attempts, on the one hand, 
model-based control methods represented by Neural Network Control [8] (NNC) and Model Predictive Control 
[9] (MPC) have been developed; furthermore, mechanism models have been established by data-based neural 
network or nonlinear prediction methods, and real-time data have been used to update the models online. To 
update the model online using real-time data to cope with the non-stationary state caused by the change of 
product formulation, to realize the adaptive control of the process [10]. On the other hand, they have developed 
different forms of adaptive PID control techniques [11] and Model Free Adaptive Control [12] (MFAC) methods, 
such as neural network-based adaptive PID and data-driven MFAC, by investigating the basic structure and the 
essential connotation of PID; the resulting adaptive methods are usually based on the information of historical 
time periods such as tracking deviation, input deviation and output deviation of the process, continuously and 
automatically adjusting the controller parameters for the next time period, overcoming the uncertainty 
disturbances such as nonlinearity and time-varying nature of the process, and enabling the process to be 
automatically controlled online [13]. 

The key to batch process inter-batch learning control is to take advantage of the repetitive nature of batch 
production to regulate local controllers within a batch by developing a batch-to-batch learning strategy, in order 
to achieve the expectation that the process under control continuously improves the tracking performance along 
the direction of the batch, and, ultimately, to realize a batch-by-batch convergence of the control effect [14], [15]. 
Iterative learning control (ILC) is an effective mainstream coping tool for batch production processes with 
repetitive operation characteristics [16]. It is a control attempt to solve the repetitive trajectory problem 
proposed by Zhang et al, through an iterative learning process that utilizes previous operation information 
(including trajectory error and input information, etc.) to make corrections to the current operation input. Thus, 
the goal of ILC is to achieve a production trajectory in which the entire batch is able to perfectly approximate the 
desired target during the production cycle in which it is located [17], [18]. 

Although the simple PID-type ILC has the advantages of simple structure, less required information and easy 
realization, however, the adaptive ability of its control mechanism is relatively weak because the learning gain 
cannot be changed dynamically [19]. It should be noted that in the ILC, the introduction of other mechanism 
algorithms or control methods, so that they are organically combined to produce a new control strategy [20], 
[21], [22]. In recent years, the algorithm development and application research of iterative learning control have 
been increasing day by day, and researchers have proposed most of adaptive ILC [23], [24], [25], [26], [27], ILC 
for two-dimensional systems [28], [29], [30], [31], [32], and mixed-strategy ILC in response to the current 
situation [33], [34], [35], [36], [37]. Among them, the hybrid control strategy includes the combination of 
methods such as internal mode control (IMC) [38], [39], PID control [40], [41], NNC [42], [43], MPC [44], [45], 
and data-driven control with ILC [46], [47], and a class of control strategies combining ILC, and feedback control 
is proposed. 

In order to overcome the problem posed by the non-stationary characteristics of the intermittent process 
and the dependence of the corresponding mechanism model, this study proposes an improved two-dimensional 
(2D) control strategy that combines auto-tuning-neuron-based proportional-integral-derivative (ANPID) and 
set-point-adjusted ILC. First, the adaptive control of the process is realized by employing ANPID within the batch 
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of the intermittent process; further, a learning algorithm is designed to continuously modify the local ANPID 
control set-point along the batch direction, focusing on the batch repetitive characteristics of the intermittent 
process, in combination with the set-point-dependent indirect PID-type iterative learning control. In addition, it 
is worth stating that the initial parameters of ANPID and ILC can be easily optimized and obtained by PSO alone 
[48]. 

Recent advancements in two dimension proportional-integral-derivative (2D-PID) control strategies have 
shown promise in addressing complex process dynamics. However, existing literature highlights significant gaps 
and shortcomings, such as limited adaptability to varying operating conditions and inadequate performance in 
non-linear systems. Therefore, this study seeks to bridge these gaps by proposing a comprehensive solution that 
leverages adaptive control mechanisms, setting a benchmark for future developments in batch process control. 

2. Problem Formulation and Preliminaries 
Examining batch processes characterized by single-input and single-output (SISO) dynamics, wherein 
uncertainties evolve over time and across batches, as outlined in the following discrete-time formulation [46], 
[47]. 

))(),...,1(),(),(),...,1(),(),(),...,1(),(()1( 3211111 ntvtvtvntututuntytytyfty kkkkkkkkkn-lk −−−−−−=+ ++++  (1) 

 
in which, kNk ∈ and tZt∈  respectively represents the inter-batch cycle number and the time intra-batch 

instant of batch processes, here, k,...,3,2,1 TNk = , f,...,3,2,1 TZt = . In addition, Rtyk ∈)(  denotes the variable of 
the process output and Rtuk ∈)(  expresses the variable of the process input. And the third variable have to be 
defined is )(tvk , shows as the vector of the external disturbance in the batch process. Among them, a series of 
real numbers is referred as R ; 1n , 2n , 3n  are all positive integers to indicate the forward time instant; (...)n-lf is 
inferred as the unknown function with dissimilar nonlinearities. 

It is important to emphasize that selecting batch processes as the focal point of research implies that 
nonlinear processes (1) replicate identical operations, maintaining a consistent time interval between 
successive batches. In this context, the assumption is made that the manipulation of the input variable )(tuk  can 
effectively govern the output variable )(tyk  in a rational manner. To attain peak production efficiency and 
adhere to the ultimate quality standards, a basic PID control framework with a single output is employed to 
characterize the complete process within a batch, as depicted in Fig. 1. 

 

PID
Controller Batch Plant

)(set tyk +

-
)()()( set tytyte kkk −= )(tyk)(tuk

Intra-batch Loop

 
Fig. 1 The straightforward PID framework design of the intra-batch process with a single-input and single-output 

configuration 

If k =1 is considered, the batch process PID block diagram depicted in Fig. 1 illustrates the intra-batch 
control loop for the batch process. In the below, the control regulation of the PID controller within the intra-
batch process is presented, showcasing the feedback relationship between input variables and output deviations 
[49], [50]. 
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where, )(set tyk  represents the target for tracking in the th-k batch of the batch process at the th-t  moment, 
while )(tek  signifies the tracking error during the same period. The control constants, denoted as pK , iT  and 

dT , refer to the proportional, integral, and differential gain coefficients, respectively. 
In the case of existing a sampling time represented by st , the expression for the PID control law can be 

articulated as follows: 

)]2()1(2)([)()]1()([)1()( dip −+−−++−−+−= teteteKteKteteKtutu kkkkkkkk  (4) 

In this context, there exists an expression for iT  and dT , which can be extended as an equation with respect 
to pK  and st , so that 1

ispi
−= TtKK  intends to the integral gain, while 1

sdpd
−= tTKK  means to the differential 

gain. 

3. Intra-batch Adaptive Mechanism 
Within this framework, a technique termed auto-tuning neuron PID is employed to the adaptive control of the 
intra-batch process. Neurons, constituting the most basic structure in a neural network, are characterized by 
input I , threshold θ , and internal activation states net , in which the expression of the net  is given as [50]: 
 

θ−= Inet  (5) 
 
Upon the confirmation of a neuron's valid activation state, the description of the neuron's output can be 

articulated as: 

)]exp(1[
)]exp(1[)(

netb
netbanetgO

−+
−−

==  (6) 

 
where, the hyperbolic tangent function, denoted as (...)g , generates the nonlinear output O  of the neuron, 

with a  and b  serving as the saturation and slope coefficients in the neuron's nonlinear function. The combined 
effect of these coefficients shapes the geometric configuration of the neuron function. As a result, the adaptive 
mechanism of the self-adjusting neuron PID relies on harnessing the nonlinear capability of the neuron function 

(...)g . This allows for continual online adjustment of control parameters ( pK , iT and dT ) based on tracking 
error information from the controlled process, facilitating adaptive control of the system. 

The indices 1, 2, and 3 associated with the neuron output O  correspond to the three dimensions of control 
parameters, namely the proportional coefficient pK , integral coefficient iT , and differential coefficient dT . 
Throughout the period of a batch cycle, varying control parameters pK , iT and dT  at different time points are 
analogous to the time-dependent neuron outputs )(1 tOk , )(2 tOk , and )(3 tOk . By combining equations (5) and (6), 
one can deduce that the neuron's output is ultimately updated through θ , a  and b  to facilitate its adaptive 
regulation process. 
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In which, the variable .3,2,1=c  denotes the dimension associated with the three PID control parameters. 

To streamline, the term " c
tO " is utilized to represent )(tOc

k  in the intra-batch dimension of batch processes. " c
tη " 

denotes the learning rate of neurons, signifying a minute positive value. The determination of the value for 

tt uy ∂∂ /  is outlined as follows: 
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The ANPID control framework in the intra-batch process is shown in Fig. 2. According to literature review, 
the corresponding adaptive control law and details of the other parameters involved are known [50]. 
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[O           O            O]  
.              .              .
.              .              .
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[O            O            O] 
)(tuk

)(tyk

 
Fig. 2 The block diagram of auto tuning PID scheme in the intra-batch process 

4. Enhanced 2D-PID of Inter-batch Processes 
The central focus of this study is the exploration of the control objective, specifically addressing batch processes 
characterized by nonlinearities. The aim is to achieve precise tracking of the process's output value up to a 
specified target, even when encountering disturbances like uncertainty and time-varying parameters. 

In order to enhance the tracking performance of the local controller in the intra-batch of the batch process, 
the objective of the strategy design is to devise an inter-batch set-point control that facilitates batch-by-batch 
tracking of target set points. To achieve this, through the integration of PID-type iterative learning control with 
set value adjustment in the outer loop, the ANPID is expanded into a control method within a two-dimensional 
framework, alternatively referred to as an enhanced 2D-PID adaptive approach. It is evident from Fig. 3 that the 
framework of the enhanced 2D-PID adaptive control strategy for intermittent processes is illustrated. 

 

ANPID
Controller Batch Plant
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Fig. 3 The schematic diagram of enhanced 2D-PID strategy both in the inter- and intra-batch process 

At the beginning of the study, the exploited ANPID is a method capable of automatically adjusting the 
parameters according to the process time-variation. Through the integration of equations (4) and (7-9), the 
inner-loop control ANPID in the intra-batch of the batch process can be expressed as: 

 
)]2()1(2)([)()()()]1()([)()1()( 321 −+−−⋅+⋅+−−⋅+−= tetetetOtetOtetetOtutu kkkkkkkkkkk  (11) 
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For the PID-type iterative learning control with set-point tuning, the initial step involves specifying a 

reference virtual set-point )(, ty kr . This set-point serves as the adaptable target for the th-k  batch at the th-t  
moment. Furthermore, the definitions for the other variables are outlined as follows: 

 
)()()( ,, tytyte kkrkr −=  (12) 

)()1()( , tetIetIe krkk +−=  (13) 
 
Here, )(, te kr  distinguishes itself from )(tek  as it denotes the tracking offset between the reference set-point 

and the actual output. The artificial set-point varies in tandem with batch changes. 
Furthermore, formulating the outer loop control design for the intervals between batches in the intermittent 

process can be articulated as: 
 

)]()([)()]()([)()( 1,,31211,1, teteKteKtIetIeKtyty krkrkkkkrkr −−−+ −⋅+⋅+−⋅+=  (14) 
 
wherein, the coefficients 1K , 2K , and 3K  represent the learning gains in the PID-type ILC. 
Ultimately, a performance index kJ , denoted as "order", is formulated for the proposed enhanced 2D-PID 

adaptive control method: 
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To derive high-quality learning law coefficients ( 1K , 2K , and 3K  in Eq. (14)) through optimization 
employing particle swarm algorithms [48], consider the utilization of an optimization metric as outlined below: 

 
kk JJ <+1  (16) 

5. Case Study and Simulation Results 
The research case [51] delves into the iconic fermentation process, a staple of batch processes aligned with the 
growth cycle of bacterial cultures, the fermentation process unfolds in distinct phases, including the stagnant 
adaptation period, logarithmic growth period, and stationary stable period. Each stage features specific control 
objectives, dominant variables, and unique process characteristics. During the growth stage of the fermentation 
process, effective control of the final bacterial concentration ( X ) can be attained by judiciously adjusting a 
crucial process variable—the fermentation dilution rate ( D ). Taking this into account, intermittent simulation 
of the fermentation process is conducted using a mathematical model based on the subsequent differential 
equations [52], [53], [54]. 
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where, the symbol " µ " signifies the growth rate of a specific bacterium, and it has the potential to 

experience inhibition from both substrate and product. Simultaneously, its calculation can be performed using 
the following formula: 
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Additionally, SXY /  denotes the mass yield of bacterial cells, mµ represents the maximum growth rate of the 
specific bacterial cell, where α  and β  serve as mechanism parameters with kinetic characteristics. The dilution 
rate ( D ) and the concentration of the feed substrate ( fS ) act as process inputs in the fermentation tank. The 
study conducted by Henson and Seborg [51], [52] facilitates the acquisition of comprehensive nominal 
parameters and operational conditions for the process. 

Regulating the primary goal is to achieve maximum productivity in the fermenting reactor. Typically, the 
dilution rate ( D ) is chosen as the manipulated variable, and the cell concentration of substrate effluents ( X ), 
the concentration of the substrate ( S ), and the concentration of the product ( P ) are identified as state 
variables of the fermentation process. Opting for cell concentration ( X ) as the control output is a sensible 
choice. 

To assess the efficacy of the enhanced 2D-PID adaptive iterative learning control approach in batch 
processes, the anticipated objective ]5.4,5.5,5.6,5.5[)(set ∈tyk  for the fermentation process is employed as the 
trajectory for monitoring substrate cell concentration. In this context, the batch duration is defined as 80 hours, 
with sub-target intervals set at every 20 hours, and a sampling frequency of 0.5 hours. 

The control parameters for the improved 2D-PID method in the batch fermentation process are optimized 
through simulated instances using the PSO algorithm. This optimization involves the adjustment of local control 
parameters within batches and iterative learning parameters between batches. Initially, appropriate adjustable 
parameters (θ , a  and b  with 01.0=η ) are carefully chosen for the ANPID controller within the batch. 
Subsequently, the optimization process for the batch of intermittent processes includes determining the 
corresponding initial control parameters—specifically, p0K , i0K  and d0K . These determinations are based on 
factors such as the cumulative sum of tracking errors within the batch and the indicator kJ , as detailed in Table 
1. 

Table 1 The control parameters of the ANPID controller using PSO algorithm 

Parameter Value Parameter Value 

θ  [0.9070; 0.9374; 0.0576] p0K  -0.1955 
a  [0.9556; 0.7115; 0.2055] i0K  -0.0221 
b  [0.4603; 0.6379; 0.0387] d0K  0.0422 

 
Additionally, to ensure kk JJ <+1  for the performance indicator representing the cumulative sum of tracking 

errors between batches, optimization was performed on the PID-type iterative learning control parameters. This 
optimization is centered around adjusting set values between batch processes, and the optimized parameters 
are presented in Table 2. 

Table 2 The learning coefficients of the set-point-tuning ILC through the PSO algorithm 

Parameter Value 

1K  -0.0007 
2K  0.0093 
3K  0.1451 

 
In conventional practice, batch processes commonly employ the performance metric "Average Absolute 

Tracking Errors" (ATE) to assess the effectiveness of tracking control. 
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By considering the performance indexes in Table 3, it becomes apparent that the enhanced 2D-PID exhibits 

superior tracking and control effects. During the batch simulation, the study implemented the proposed 
enhanced 2D-PID adaptive control on the fermentation process, and its outcomes are depicted in Figs. 4-6. 
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Tab. 3 A compared illustration of ATE indices across PID, ANPID, 2D-PID, and Enhanced 2D-PID methodology 

Method Sources ATE 

PID Ref. [51] 0.0855 
ANPID Ref. [11] 0.0588 

2D-PID Method Ref. [36] 0.0389 

Enhanced 2D-PID This Study Proposed 0.0223 

 
From the simulations, Fig. 4 illustrates the control impact of the enhanced 2D-PID across multiple batches in 

comparison to the 2D-PID method introduced in literature [36], the single-batch ANPID, and the conventional 
PID. Furthermore, analyzing the trajectory from the 1st to the 30th batch reveals a progressively improved 
control effect with each subsequent batch. In batch processes, where the dynamics can change significantly over 
time due to varying operating conditions or material properties, PID tuning parameters may become ineffective. 
PID controllers are inherently linear, which may not adequately handle nonlinearities common in batch 
processes [55], [56]. Meanwhile ANPID requires a priori knowledge of the process dynamics to design and train 
the neuro-fuzzy model, which may not always be available or accurate [57]. Computationally, ANPID is intensive 
due to the need for neural network training and fuzzy logic inference. Tuning two sets of PID parameters in 
conventional 2D-PID can be challenging and time-consuming due to its limitation to systems with two-
dimensional dynamics, which may not fully capture the complexity of batch processes [58]. Hence, enhanced 2D-
PID adaptive strategy integrates adaptability by dynamically adjusting PID parameters according to process 
variations. By employing 2D control surfaces, it effectively captures the intricate dynamics, surpassing the 
capabilities of conventional PID. This approach demonstrates potential for enhancing performance and 
robustness in batch processes characterized by time-varying dynamics or nonlinearities. 
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Fig. 4 The output tracking capability of the developed enhanced 2D-PID and other similar strategies for batch 

processes 
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Fig. 5 The ATE behavior index of approximate methods between enhanced 2D-PID and 2D-PID for batch processes 
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Fig. 6 The input controlling display of the addressed enhanced 2D-PID for batch processes 

 

Fig. 5 presents a comparison of the convergence index ATE between the enhanced 2D-PID and analogous 
methods, demonstrating the enhanced control and convergence capabilities of the proposed approach. The 
graph presents a clear visual comparison between conventional 2D-PID and enhanced 2D-PID control strategies, 
where the latter shows a marked improvement in maintaining the process parameters within a tighter control 
range. The ETA value of enhanced 2D-PID is lower compared with conventional 2D-PID with below 0.03 for 
batch 1 to batch 30. However, the ETA of conventional 2D-PID is higher than 0.04 which proves that enhanced 
2D-PID is significant to be applied. The combined analysis of Fig. 4 and Fig. 5 underscores that the process 
output of the 30th batch closely aligns with the desired target trajectory, indicating the batch-by-batch 
convergence effectiveness of the proposed enhanced 2D-PID adaptive control. Fig. 6 displays the actual process 
inputs, specifically the dilution rate (D), for various batches in the intermittent fermentation process, providing 
evidence for the rationality of controlling cell concentration through the adjustment of the dilution rate. 
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Fig. 7 The maximum cell-growth rate mµ  of specific bacteria in the batch fermentation process 

 
It has been observed that two crucial parameters in the bio-reaction process, namely the maximum growth 

rate ( mµ ) of the bacterial body and the bacteria's substrate inhibition coefficient ( SXY / ), play a significant role. 
Typically, their acceptable ranges are approximately mµ = [0.48,0.65] and SXY / = [0.3, 0.55]. Consequently, the 
control aspect of the proposed modified 2D-PID adaptive scheme for the intermittent fermentation process, 
considering the variability in parameters mµ  and SXY / , is explored and illustrated in Figs. 7 Specifically, Fig. 7 
and Fig. 8 represent the dynamic evolution of process parameters mµ  and SXY / , respectively. 
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Fig. 8 The inhibition factor SXY /  of concrete cell-mass in the batch fermentation process 

 
In the context of fluctuating model parameters as illustrated in Fig. 7 and Fig. 8, the proposed enhanced 2D-

PID method maintains robust control performance and a capability for batch-by-batch convergence, evident in 
the tracking curves of diverse batches as shown in inset Fig. 9. The output tracking performance for several 
batch operations with time-varying features is also shown in Fig. 9. The control variable 'x(t)' is plotted against 
time in the graph, providing a comparison of setpoint adherence for the first, tenth, and thirty batches. 
Interestingly, the first batch shows a slow convergence to the setpoint that was predefined, suggesting that there 
is a first stabilization phase before the control system reaches its objective. On the other hand, the 10th batch 
shows a significantly better alignment with the setpoint, suggesting that the control system is responding 
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adaptively to minimize short-term deviations over time. The 30th batch, which shows even more fidelity to the 
setpoint from the start of the batch process, provides more proof of this adaptation.   

In contrast, Fig. 10 provides an analysis of the average absolute Tracking Error (ATE) performance indexes 
for the suggested improved 2D-PID adaptive control strategy in the batch fermentation process under the 
current conditions. Despite the inherent time-varying nature and uncertainties arising from variations in 
process parameters, the performance indexes indicating control quality exhibit a general decreasing trend with 
the prolonged operation of the process batch production. Furthermore, Fig. 11 details the variations in control 
inputs for the multi-batch intermittent process during the dynamic evolution of parameters. The control chart 
illustrates the stabilization effect of the enhanced 2D-PID control strategy across ten batches, maintaining 
parameter values within the predetermined control limits, indicating a consistent process control performance. 
Despite the inherent variability observed in batch processes, the application of the enhanced 2D-PID control 
strategy demonstrates a significant reduction in process deviation, as evidenced by the narrower control limits 
in comparison to the conventional 2D-PID control batches. Notably, the enhanced 2D-PID control strategy 
exhibits a quicker return to setpoint after disturbances, a characteristic that underscores its potential for 
minimizing the impact of variability in batch processing. 

0 20 40 60 80
4

4.5

5

5.5

6

6.5

Time (h)

X
 (g

/l)

 

 

Setpoint
  1st batch
10th batch
30th batch

5 10 15

5

5.2

 

 

 
Fig. 9 The output tracking quality of the developed enhanced 2D-PID for batch processes with time-variant features 

 

0 5 10 15 20 25 30
0.025

0.026

0.027

0.028

0.029

0.03

0.031

0.032

Batch

Av
er

ag
e 

ab
so

lu
te

 T
ra

ck
in

g 
Er

ro
r

 

 

ATE

 

Fig. 10 The ATE performance index of enhanced 2D-PID for batch processes with time-variant features 
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The 2D-PID also can be compared with State-of-the-Art Control Approaches such as Model Predictive 
Control (MPC), sdaptive control strategy and machine learning based control where while MPC provides benefits 
in managing constraints and optimum the performance within a finite time horizon, its computational intensity 
and demand for precise process models can pose challenges, particularly in batch processes where obtaining 
accurate models may be difficult [59], [60]. Adaptive control methods, such as adaptive model-based control or 
adaptive sliding mode control, provide flexibility in adjusting to changing process conditions [61]. Despite their 
effectiveness, these approaches often necessitate significant modeling effort and computational resources. 
Machine learning-based control techniques, such as reinforcement learning or neural network control, have the 
capability to learn complex mappings between inputs and outputs without relying on explicit process models 
[62]. Nonetheless, these methods may encounter challenges concerning data availability, robustness, and 
interpretability. 

To sum up, this study introduces a dual-dimensional adaptive control approach that integrates intra-batch 
local adaptive control and inter-batch indirect iterative learning control. The efficacy and superiority of the 
proposed method are validated through intermittent simulations of a representative fermentation process, 
involving comparisons with various methods and simulations of time-varying processes. Ultimately, the 
proposed enhanced 2D-PID adaptive iterative learning control method emerges as a rational and effective 
approach for batch control in intermittent processes. It is imperative to consider the impact of scaling up the 
process, as the control strategy’s effectiveness demonstrated here on a smaller scale must be validated in a 
commercial setting where additional complexities may arise. The integration of the 2D-PID control strategy with 
real-time monitoring systems could pave the way for a more autonomous process control, potentially leading to 
a paradigm shift in batch processing industries. Recognizing the considerable practical relevance of data-driven 
control in batch processes, the investigation further explores this domain by integrating methodologies such as 
dynamic data reconciliation [63], data-driven control method and dynamic linearization techniques [64]. This 
comprehensive approach takes into consideration the control challenges that may arise in batch processes, 
especially under conditions involving desired targets, repetitive operations, and incomplete information [65], 
[66]. Generally, machinery comprises rotating components that encompass various elements like wheels, shafts, 
pulleys, and similar parts that will be issues with human error, time-consuming and inaccurate by human 
operating which using enhanced 2D-PID will optimize the operation of the manufacturer [67], [68].  

6. Conclusions 
An enhanced 2D-PID adaptive ILC is crafted specifically for batch processes, featuring dual control loops. Within 
the intra-batch phase, an ANPID serves as the feedback controller, followed by the application of an indirect ILC 
to adjust the required set-point for the intra-batch control loop. Upon comparing the performance of the 
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improved 2D-PID controller to that of the traditional 2D-PID, which boasts an ETA of 0.0389, it becomes evident 
that the traditional approach achieves the lowest ETA. However, the enhanced 2D-PID controller outperforms its 
traditional counterpart by reducing tracking errors by 0.02223. This finding underscores the enhanced 
adaptability of the 2D-PID adaptive controller to the dynamic conditions inherent in the batch process. This 
adaptability allows the enhanced controller to respond more effectively to fluctuations, resulting in superior 
tracking and control outcomes. Leveraging this property presents an opportunity to optimize batch cycle times 
and throughput, thereby enhancing overall process efficiency and productivity. The enhanced 2D-PID adaptive 
strategy offers a promising approach to address the challenges faced by traditional control methods in batch 
processes. Its adaptability and ability to capture complex dynamics make it competitive with other state-of-the-
art control approaches, providing a viable solution for improving control performance in batch processes.  
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