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In this research, an approach is presented for the optimal scheduling of 
a smart energy Hub system with multiple objectives in the day ahead. 
The objectives include minimizing emission pollution and operation 
costs on the generation side, reducing the loss of energy supply 
probability on the demand side, and minimizing the deviation of 
electrical and thermal loads from their optimal profiles in the day 
ahead. To achieve the third objective of flattening the electrical and 
thermal demand profiles, a Demand response strategy is proposed, 
which involves the optimal shifting of electrical and thermal shiftable 
loads. Additionally, stochastic modelling of renewable energy sources 
and energy loads using the Monte Carlo technique is conducted. The 
proposed approach utilizes the ε-constraint method to obtain non-
dominated Pareto solutions for the objectives. Finally, several case 
studies are performed to validate the proposed approach. 
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1. Introduction 

1.1 Aims and Motivations 
Over the past few years, the incorporation of multi-carrier energy systems in residential structures has been a 
response to the growing energy requirements and the necessity to lower greenhouse gas emissions [1]. These 
systems involve the utilization of various energy carriers like electricity, heat, and gas in a synchronized and 
effective way [2]. A significant factor contributing to the increase in sustainable energy production is the spike in 
energy usage.As the global population continues to grow, so does the demand for energy to power homes, 
businesses, and industries [3]. This increased energy consumption has strained traditional fossil fuel-based 
energy sources, leading to a search for alternative and sustainable energy solutions [4]. The incorporation of 
multi-carrier energies has become crucial to meet this growing demand for energy while minimizing the 
environmental impact. Residential buildings, in particular, have been targeted for the implementation of these 
systems because of their significant energy consumption and potential for energy efficiency improvements [4]. 
The benefits of incorporating multi-carrier energies into residential buildings are numerous. Firstly, it allows for 
a more diversified and resilient energy supply, reducing the risk of energy shortages or disruptions. Secondly, it 
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promotes energy efficiency by utilizing energy carriers as efficiently and cost-effectively as possible [5]. This can 
lead to significant energy savings and reduced energy bills for homeowners. By adopting these methodologies, it 
is possible to attain an improvement in the reliability and effectiveness of energy systems [6]. Moreover, multi-
carries energy systems 

Nomenclature 
Indices and sets  

b, B Index/set of Boiler 
d, D Index/set of DG 
ess, ESS Index/set of ESS 
EG Index/set of Electrical grid 
m, M Index/set of CHP units 
NGG Index/set of Natural gas grid 
pv, PV Index/set of Photovoltaic (PV) 
t, T  Index/set of time period 
TG Index/set of Thermal grid 
tss, TSS Index/set of TSS 
s, S Scenario indices 
w, W Index/set of Wind turbine (WT) 
Parameters  
a, b, c Cost factors of DGUs, which by other fuels are supplied 
d, e, f Emission factors of DGUs, which by other fuels are supplied 
cw Scale index of WT 
CO2,SO2,NOx The greenhouse gases consisting of carbon dioxide (CO2), sulfur dioxide  

(SO2) and nitrogen oxides (NOx) 
DE(s, t) Electrical demand in scenario s and at time t (MW) 
DT(s, t) Thermal demand in scenario s and at time t (MW) 
DG(s, t) Natural gas demand in scenario s and at time t (m3) 

 Electrical demand of non-responsive customers and responsive customers in scenario s and at 
time t (MW) 

 Electrical demand of non-responsive customers and responsive customers in scenario s and at 
time t (MW) 

 Optimal level of electrical and thermal demands (MW) 

 Operating cost of ESS and TSS systems 
PN, WT Total rated power of WT (MW) 
SPV Total area of PV (m2) 
VR, VCi, VCo Rated speed, cut-in speed, cut-off speed of WT, m/s) 

 Beta distribution function of PV 

 Participation level of RCs in electrical and thermal SLs shifting, % 

 Efficiency of PV, % 

 Electrical price in EG, $/MW 

 Thermal price in TG ($/MW) 

 Natural gas price in NGG ($/m3) 

 Efficiency of ESS in discharge and charge state (%) 

 Efficiency of TSS in discharge and charge state (%) 

( , ), ( , )NRC RC
E ED s t D s t

( , ), ( , )NRC RC
T TD s t D s t

,OP OP
E TD D

,OP OP
ESS TSSC C

,α β

,E Tξ ξ

PVη
EG
pπ
TG
pπ
gas
pπ

,ESS ESS
dis chη η

,TSS TSS
dis chη η



343 Int. Journal of Integrated Engineering Vol. 16 No. 5 (2024) p. 341-358 

 

 

 Standard deviation and mean for the demand values 
Decision variables 
CB Operation cost of boiler, $ 
Cm Operation cost of CHP, $ 
CDG Operation cost of DG, $ 
CESS Operation cost of ESS, $ 
CTSS Operation cost of TSS, $ 
CEG Operation cost of EG, $ 
CTG Operation cost of TG, $ 
CNGG The cost of purchased natural gas, $ 

 Demand shifted of electrical SLs by RC at time t to t’ in scenario s, MW 
 Demand shifted of thermal SLs by RC at time t to t’ in scenario s, MW 

EB Emission pollution of boiler, kg 
Em Emission pollution of CHP, kg 
EDG Emission pollution of DG, kg 
EEG Emission pollution of EG, kg 
ETG Emission pollution of TG, kg 
EESS, ETSS Energy of ESS and TSS, MW/h 
Tb Thermal generated by boiler, MW 
Tm Thermal generated by CHP, MW 
TTG Thermal generated by TG, MW 

 Electrical generated by ESS, MW 
 Electrical generated by ESS, MW 

PPV Electrical generated by PV, MW 
PWT Electrical generated by WT, MW 
Pd Electrical generated by DG, MW 
Pm Electrical generated by CHP, kW 
PEG Electrical generated by EG, kW 
GNGG Purchased natural gas by SEHS, m3 

 Probability of PV, WT and demand in Scenario s 
 ps Probability of  Scenario s 

 Binary variable of ESS in discharge and charge state 

 Binary variable of TSS systems in discharge and charge state 

 Binary variable of electrical and thermal shortage 

the capability to integrate with smart grid technology to presenting opportunities like demand side energy 
optimization and energy storage via the implementation of energy management approaches in smart homes [6]. 
Smart multi-carries energy systems can be named the integration of multi-carrier energies in smart grids. 
However, the operation and performance of energy hub system are anticipated to face numerous challenges, 
specifically uncertainties related to various energies and interactions among the demand and generation sides [7]. 
These uncertainties may be effective, underscoring the importance of taking proactive measures to tackle them. 
However, it is imperative to examine the impacts of uncertainties to attain a dependable degree in the decision-
making procedure for attaining optimal energy operation. Among the most widespread uncertainties is 
uncertainty in energy prices which emerges in real-time prices fluctuations of fossil fuels in global markets [8][9]. 
Hence, the implementation of strategies like demand-side engagement for efficient energy usage and energy 
storage systems can serve as effective remedies for covering uncertainties in energy prices. Through demand-side 
engagement, consumers can effectively regulate their energy consumption during peak periods by making optimal 
adjustments to their energy usage [9][10]. Also, energy storage systems play a crucial role in meeting the energy 

,d dσ µ

( , , )RC
ED s t t ′

( , , )RC
TD s t t ′

,dis ch
ESS ESSP P

,dis ch
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, ,PV WT L
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demand at peak times. Various types of energy storage systems are available each designed to cater to specific 
applications and performance requirements [11]. These include chemical energy storage, mechanical energy 
storage, thermal energy storage, and more [12].  
The loads in energy systems are usually random variables, but they can be regulated by offering economic 
incentives, it considerably affects the stability of energy systems [13] [14]. Therefore, in order to maximize the 
benefits of load on energy systems, demand response mechanisms must be developed, which some strategies are 
shown in Figure 1 [15]. The main challenge faced by these resources is the uncertainty in their power output 
because natural parameters are naturally random [16]. Predicting the output values of these resources can 
become inaccurate if the ambiguity around energy management is ignored. Consequently, scholars have put forth 
a range of techniques, encompassing both deterministic and non-deterministic methodologies [17]. Power system 
management now faces additional difficulties as a result of the grid's integration of energy storage systems. Having 
efficient ways to enhance grid management is crucial, particularly when there are a lot of renewable energy 
sources available [18]. The inclination of earlier techniques to converge towards local spots and the lack of a 
strong global search engine in these algorithms are two of their drawbacks [19]. 
 

 
Fig. 1 Demand response strategies 

1.2 Related Research and Contributions 
This section encompasses previous research conducted on energy systems in different contexts. In [20], the 
authors delve into the modeling energy hub within an integrated energy system for infrastructures. The study 
focuses on solving efficiency using an engineering equation solver. The aim is to achieve cost-efficient and 
decarbonized performance on the generation side. The lexicographic technique is employed in [21] to address the 
energy optimizing strategy of multi-energy systems, focusing on economic and environmental indicators. This 
approach aims to enhance the overall satisfaction of consumers by incorporating demand management 
implementation. In [22], the objective of minimizing operational costs is achieved by utilizing peer-to-peer power 
flow and ensuring with electric vehicles (EVs) in the face of uncertain electricity prices and varying driving 
patterns of EVs. On the other hand, the authors in [23] concentrated on an approach that employs fuzzy logic to 
effectively address the optimal energy operation. In [24], the objective is to reduce operation cost and emission 
by implementing solar-powered compressed air energy storage by Quasi-optimization. This optimization is 
carried out while considering the uncertainty associated with solar irradiance, and energy demand. On the other 
hand, authors in [25] introduce the utilization of the non-dominant genetic algorithm II (NSGA-II) for energy 
operation without load management. This approach aims to enhance the performance of appliances in terms of 
energy consumption via reducing bills and improving efficiency. In [26], the energy hub is operated via 
compressed air storage and EVs to address the uncertainty of electricity prices in robust optimization. Meanwhile, 
authors in [27] introduce a meta-heuristic and robust optimization approaches to modeling uncertainties in 
energy prices and demand for minimizing energy costs. In [28] a bi-level energy operation is expressed for optimal 
performance of the cascaded demand of thermal, power and cold in energy planning. Moreover, there are several 
research gaps which can be addressed by following items: 
(1) The objective of many research endeavors is to address the energy system requirements at the lowest 

operation cost often overlooking demand-side management strategies. The models put forth in these studies 
are typically designed to adhere to the technical limitations of the system. Consequently, these investigations 
lack suitable models aimed at enhancing the system's adaptability to uncertainty of gas and electrical prices. 

(2) The demand-side management strategies are modeled in the literature based on energy prices in the energy 
markets. However, in our study, demand-side management strategies are modeled based on the optimal 
consumption and bidding prices in the day-ahead.   
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In this paper, an approach is presented for the optimal scheduling of a smart energy Hub system with multiple 
objectives in the day ahead. The objectives include minimizing emission pollution and operation costs on the 
generation side, reducing the loss of energy supply probability on the demand side, and minimizing the deviation 
of electrical and thermal loads from their optimal profiles in the day ahead. To achieve the third objective of 
flattening the electrical and thermal demand profiles, a Demand response strategy is proposed, which involves 
the optimal shifting of electrical and thermal shiftable loads. Additionally, stochastic modelling of renewable 
energy sources and energy loads using the Monte Carlo technique is conducted. The proposed approach utilizes 
the ε-constraint method to obtain non-dominated Pareto solutions for the objectives. 

2. Energy Hub System Modeling 
In this section, the energy hub is outlined to describe the proposed scheduling problem. The SEHS comprises 
various key components such as natural gas grid (NGG), thermal grid (TG), electrical grid (EG), distributed 
generation units (DGUs), and the customers [29]. All these elements are interconnected through a bilateral 
communication link with the system operator to ensure coordination between sides during operation. For 
instance, the operator can notify the customers about pricing in the energy markets to prompt appropriate 
responses from the customers based on the current status [30]. The prices of energy purchased from markets may 
vary during operation, and operators have the ability to coordinate the demand side for optimal energy 
consumption [31]. In this study, the focus is on two distinct categories of customers on the demand side: 1) non-
responsive customers, who do not alter their behavior in response to the system 2) responsive customers (RCs), 
who adjust their consumption based on the system's status [32]. The paper utilizes load shifting strategies from 
demand response to schedule demand. DGUs are photovoltaics (PV) systems, thermal storage systems (TSSs), 
boilers, diesel generator (DG), combined heat and power (CHP), wind turbines (WT) and electrical storage 
systems (ESSs). Figure 2 illustrates an energy hub system [33]. 

 

Fig. 2 Energy hub system 

3. Uncertainty Model 
This study utilizes a Monte Carlo technique to conduct scenario-based probabilistic modeling for forecasting WT 
and PV output and demands. The Probability Density Function (PDF) is employed to determine the probability in 
each state [34]. 
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3.1 PV and WT Model 
The PV and WT energy output is determined by measuring the solar irradiance and wind speed, and a model of 
solar irradiance and wind speed using Beta PDF and Weibull PDF is utilized, as shown in equations (1) and (2), 
respectively [35] [36]. 

1 1( ) (1 ) 0 1, 0, 0
( ) ( )( )

0
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The equations (3) and (4) are power of PV and WT, respectively. 

3.2 Load Model 
The uncertainty of loads can be articulated through the Gaussian PDF by (5) and multiplying Probability of 
system is modeled by (6) [37]: 
 

( )2
22

2

1( )
2

d

d

d

d

L d e
µ

σ

πσ

−
−

=
                                                                    (5) 

 
PV WT L

s s s sρ ρ ρ ρ= × ×                                                                             (6) 

4. Objective Functions 
The primary goals within the field of energy hub are categorized as objectives and articulated as follows: 

4.1 Operation Cost 
The reduction of cost and environmental pollution from power generation is the primary focus of the model, 
outlined as follows: 
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1 1 1

min ( , , ) ( , , ) ( , , ) ( , ) ( , )

( , ) ( , , ) ( , , )

( , ) ( , ) ( , ) ( ) ( )

S T D B M

s DG B M EG TG
s t d b m

ESS TSS

NGG ESS TSS
ess tss

D B M

DG B M EG TG
d b m

f C s t d C s t b C s t m C s t C s t

C s t C s t ess C s t tss

E t d E t b E t m E t E t

ρ
= = = = =

= =

= = =


= + + + + +




+ + +



+ + + +



∑ ∑ ∑ ∑ ∑

∑ ∑

∑ ∑ ∑
1

T

t =





∑
 (7) 

 
Where: 

{ } { }2( , , ) ( , , ) ( , , ) ( , , )gas
DG d d p dC s t d aP s t d bP s t d c P s t dπ= + + + ×

           (8) 
 

{ } { }2( , , ) ( , , ) ( , , ) ( , , )gas
B b b p BC s t b aT s t b bT s t b c T s t bπ= + + + ×

            (9) 
 

{ }( , , ) ( ( , , ) ( , , ))gas
m p m mC s t m T s t m P s t mπ= × +

            (10) 
 

( , ) ( , )EG
EG p EGC s t P s tπ= ×

                             (11) 
( , ) ( , )TG

TG p TGC s t T s tπ= ×
                               (12) 

 
( , ) ( , )gas

NGG p NGGC s t G s tπ= ×
                                   (13) 

 

{ } { }( , , ) ( , , ) ( , , )OP dis OP ch
ESS ESS ESS ESS ESSC s t ess C P s t ess C P s t ess= × + ×

          (14) 
 

{ } { }( , , ) ( , , ) ( , , )OP dis OP ch
TSS TSS TSS TSS TSSC s t tss C T s t tss C T s t tss= × + ×

        (15) 
 

         { } ( ){ }2
2 2( , ) ( , ) ( , ) ( , )d d d

DG d d X dE t d dP t d eP t d f CO SO NO P t d= + + + + + ×
               (16) 

                        

{ } ( ){ }2
2 2( , ) ( , ) ( , ) ( , )b b b

B B B X bE t b dT t b eT t b f CO SO NO T t b= + + + + + ×
         (17) 

 

( ){ }2 2( , ) ( , )m m m
m X mE t m CO SO NO P t m= + + ×

                   (18) 
 

( ){ }2 2( ) ( )EG EG EG
EG X EGE t CO SO NO P t= + + ×

                       (19) 
 

( ){ }2 2( ) ( )TG TG TG
TG X TGE t CO SO NO T t= + + ×

                         (20) 

4.2 Loss of Energy Supply Probability 
In the second objective, the minimization of loss of energy supply probability is the focus. and it is represented 
through a model: 
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( , ) ( , )
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s T T
s

E T
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        = + 
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∑

∑ ∑
                                      (21) 

4.3 Demand Shifting Model 
The optimization of the demand profile through minimizing deviations from the optimal level is demonstrated by 
the third objective. This objective allows for the adjustment of electrical and thermal demand by RCs. 

3
1 1 1

min ( , ) ( , )
S T T

OP OP
s E E T T

s t t
f D s t D D s t Dρ

= = =

    
= − + −    

    
∑ ∑ ∑              (22)                                                  

Where: 

                                                            ( , ) ( , ) ( , )NRC RC
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T T TD s t D s t D s t= +                              (24) 
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5. Constraints 
Several considerations are taken into account when it comes to the constraints in an energy hub system. The 
energy balance constraint is expressed through equations (31) to (33) to ensure that the generation-side matches 
the demand-side for all energies in each scenario and time. 
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1 1 1

( , ) ( , , ) ( , , ) ( , , ) ( )
D M B

NGG d m b G
d m b

G s t P s t d P s t m T s t b D t
= = =
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The energy limitations of various components, DGUs are indicated by the constraints (34) to (41), encompassing 
both lower and upper bounds. 

                                              min max( , , )d d dP P s t d P≤ ≤                                                  (34) 
 

                                                     min max( , , )b b bT T s t b T≤ ≤                                                              (35) 
  

 min max( , , )m m mP P s t m P≤ ≤                                                   (36) 
 

                               
min max( , , )m m mT T s t m T≤ ≤                                                 (37) 

  

                                   
max( , , ) / ( , , )ESS

dis dis dis ESS disP s t ess P s t essη µ −≤ ×                             (38) 
 

                                  
max( , , ) ( , , )ESS

ch ch ch ESS chP s t ess P s t essη µ −× ≤ ×                           (39) 
 

                                   
max( , , ) / ( , , )TSS

dis dis dis TSS disT s t tss T s t tssη µ −≤ ×                            (40) 
 

                                  
max( , , ) ( , , )TSS

ch ch ch TSS chT s t tss T s t tssη µ −× ≤ ×                        (41) 

The discharge and charge state of storage systems can be determined using equations (38)–(41) respectively. It 
is important to note that storage systems cannot discharge and charge simultaneously, as indicated by constraints 
(42) and (43). 

                                                  ( , , ) ( , , ) 1ESS dis ESS chs t ess s t essµ µ− −+ ≤                            (42)                      
( , , ) ( , , ) 1TSS dis TSS chs t tss s t tssµ µ− −+ ≤                              (43) 

 
The constraints pertaining to the shortage of energy to meet the required demand can be outlined as follows: 
 

                                0 ( , ) ( , ) ( , )ST E PSTP s t D s t s tµ≤ ≤ ×                                 (44) 

                                0 ( , ) ( , ) ( , )ST E TSTT s t T s t s tµ≤ ≤ ×                                                            (45) 
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The technical limitations of storage systems, such as energy dynamic constraints, are articulated through 
equations (46) and (47): 
 
 

min max( , , )ESS ESS ESSE E s t ess E≤ ≤                                                 (46) 
 

                         
min max( , , )TSS TSS TSSE E s t tss E≤ ≤                                         (47) 

Where 

         
( , , ) ( , 1, ) ( , , ) / ( , , )dis ESS ch ESS

ESS ESS ESS dis ESS chE s t ess E s t ess P s t ess P s t essη η = − + − ×       (48) 
 

 
( , , ) ( , 1, ) ( , , ) / ( , , )dis TSS ch TSS

TSS TSS TSS dis TSS chE s t tss E s t tss T s t tss T s t tssη η = − + − ×      (49) 

6. Solving Method 
The ε-constraint method involves formulating a mathematical model that represents the multi-criteria problem. 
This model includes the objective functions that need to be optimized and the constraints that need to be satisfied. 
This method introduces a set of small positive numbers called epsilon values. These epsilon values act as 
thresholds or constraints on the multi-criteria problem. The goal is to find solutions that minimize or maximize 
the objective functions while satisfying these ε-constraint methods. During the optimization process, the method 
generates a set of candidate solutions that satisfy the epsilon constraints. These solutions are evaluated based on 
their objective function values and feasibility concerning the constraints. The Pareto frontier denotes the 
collection of solutions that cannot be enhanced in one objective without considering the performance in another. 
These solutions are considered efficient and optimal since they embody the compromises between various 
objectives. Consequently, the ε-constraint method adheres to a sequence of steps to obtain solutions on the Pareto 
frontier. The -constraint method is implemented as follow [38][39]: 
 

min ( )jx X
f x

∈
                                                                          (50) 

Where: 

                                             

6.1 Decision-Making Model 
In the realm of optimization, the objectives are to simultaneously optimize the as multi-objective functions. During 
this process, the formation of Pareto frontier solutions occurs where the objectives conflict with each other. 
Consequently, the operator must ensure the highest compatibility among the objectives by employing a decision-
making approach. In the present study, decision-making method are employed to find the desired solution. To 
identify the optimal solution, the next course of action involves the following steps: 1) Normalize the Pareto 
frontier solutions obtained through step (51). 2) Utilize the value provided in step (52) to determine the minimum 
value among the normalized Pareto frontier solutions. This minimum value is regarded as the ideal point (PIdeal). 
In the last step (53), the optimal solution is identified by choosing the solution that has the least distance from the 
ideal point [40][41]. 

max

max min
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Fig. 3 Decision-making method 

 

7. Case Studies 
In this section, we conduct cases and simulations to validate the approach in the scheduling of the energy hub in 
24 ahead-hours. The analysis of case studies focusing on the presence of objectives in the energy hub has been 
considered as follow: 
Case I) Scheduling of energy hub without demand shifting. 
Case II) Scheduling of energy hub with demand shifting. 
Due to the uncertain mode of solar irradiance, demand and wind speed; Monte Carlo technique was utilized to 
generate 10 scenarios. However, an analysis has been conducted on the results associated with scenario 6, aiming 
to restrict the display of a significant quantity of tables and figures in overall scenarios. 1. Figure 4 illustrates the 
wind speed and solar irradiance, which can be found in Table 1 where the data of them is presented [42]. Figure 
5 illustrates the prices of energy [43]. Table 2 presents the data for energy storage systems [44]. The demand is 
depicted in Figure 6. In Table 3 data of DGUs are provided [45]. Table 5 presents the energy restrictions of units 
[46]. The engagement of RCs in modifying electrical and thermal shifting loads is established at 70% and 60%, 
respectively. 
 

 

Fig. 4 Solar irradiance and wind speed 

Table 1 PV and WT information 
                                            PV                                                     WT 
Parameters Value Parameters Value 
NPV 5 NWT 5 
SPV 45 m2 VCi , VCo 3 m/s, 20 m/s 
ηPV 25 % VR 15 m/s 
PN,PV 0.5 MW PN,WT 1.2 MW 
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Fig. 5 Energy prices 

 

Fig. 6 Demand of customers 

Table 2 Storage systems' data 
                                            ESS                                                     TSS 
Parameters Value Parameters Value 
NESS 1 NTSS 1 
Pmaxdis 1 MW Tmaxdis 0.5 MW 

Pmaxch 1 MW Tmaxch 0.5 MW 
EminESS 10 % EminTSS 10 % 
EmaxESS 100 % EmaxTSS 100 % 
ηESSch 90 % ηTSSch 90 % 
ηESSdis 95 % ηTSSdis 95 % 
COPESS 140 $ COPTSS 120 $ 

Table 3 DGUs data 

     
Parameters 
 
Units  

a, $/MW2 b, $/MW c, $ d, kg/MW2 e, kg/MW f, kg 

DG 1 25.5 140 102 21 154 108 
DG 2 25.5 141 102 21 154 108 
Boiler 1 20.5 95.7 100 21.5 90 105 
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Table 4 Emission data of DGUs 
 

 
 
 
 

 

 

 

Table 5 Energy bound of DGUs 
Parameters 
 
Units 

Pmin, MW Pmax, MW Tmin, MW Tmax, MW 

DG 1 0 0.7 - - 
DG 2 0 0.7 - - 
DG 3 0 0.53 - - 
Boiler 1 - - 0 0.65 
Boiler 2 - - 0 0.54 
CHP 1 0 0.55 0 0.51 
CHP 2 0 0.53 0 0.51 

 

7.1 Results Evaluation 
Within this section, the outcomes of numerical simulations for each individual case are deliberated, and a 
comparison is drawn between the various cases: 

In the first case, the primary goal is to minimize costs and emission pollution in the scheduling of the 
generation side, while the secondary objective is to minimize loss of energy supply probability. Figure 7(a) 
illustrates the solutions generated using the ε-constraint method. Through a decision-making process, the best 
solution is chosen. The first objective in the chosen solution holds a value of 286595.27, while the second objective 
is valued at 0.011 MW. The correlation between maximum cost and emission can be attributed to the procurement 
of gas, respectively. A notable impact of high natural gas demand is observed on cost. Conversely, the 
unpredictable nature of DGUs and demand results in energy shortages to meet the demand, particularly in power 
generation. Figure 7(b) and 7(c) illustrates the energy of system. The deficit in power during the time period from 
17 to 19:00 has been addressed, with a total shortage of 2.1 MW during these hours. Conversely, after 
incorporating DGUs to fulfill the electrical demand, energy market exhibits the highest contribution in comparison 
to DGUs. The power procured from electrical market amounts to 30.934 MW. The illustration in Figure 7(c) 
displays the thermal. It is evident from the figure that thermal grid plays a significant role in meeting the thermal 
demand, with a total generated thermal power of 79.101 MW. 

In the second case, the optimization of all objectives, including the scheduling of the generation side, and 
demand side simultaneously is considered. Figure 8(a) displays solutions generated using the ε-constraint 
method. The emission and cost and in this particular case study has amount to 67,124.98 kg and $140,510.75, 
respectively. The minimize loss of energy supply probability exclusively involves power production, with a total 
value of 0.005 MW. The deviation of the third objective, aimed at smoothing out the energy demand curve in the 
chosen solution, amounts to 312.11 MW. Furthermore, there has been a significant decrease in emission from the 
production in DGUs and energy markets. Specifically, the reduction percentages for these sources are 43.3% when 
compared to case I. 1. The graph in Fig. 8(b) illustrates the timetable of demand and power produced by 
Generation side. It is evident that the power demand exhibits a more stable curve compared to case I. Additionally, 
the total electrical power deficit is recorded at 0.95 MW, occurring solely at 19:00. The amount of l power 
purchased from market is 9.05% lower than in case I. In Figure 8(c), the allocation of demand and thermal 
generated is illustrated. The thermal generated by market in this case amounts to 14.1 MW, representing an 
82.17% decrease compared to case I.  

 

              Emission 
type 
 
Units 

CO2, kg/MW SO2, kg/MW NOx, kg/MW 

DG 3 475.5 3.42 1.94 
Boiler 2 490.3 3.54 1.26 
CHP 1 468.5 3.21 0.79 
CHP 2 469.2 3.15 0.15 
EG 970.5 7.25 2.75 
TG 951.4 7.31 1.69 
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(c) 

Fig. 7 (a) Solutions in Case; (b) power scheduling in Case I; and (c) Thermal scheduling in Case I 

 

 

 

 

 

 Non-dominated solutions  

Best solution 
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(a) 
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(c) 

Fig. 7 (a) Solutions in Case II; (b) power scheduling in Case II; and (c) Thermal scheduling in Case II 

8. Conclusion 
In this study, a method is introduced for the efficient modeling of a energy Hub system with multiple goals in the 
day ahead. These goals consist of minimizing emission and costs on the generation side, decreasing the likelihood 
of loss of energy supply probability, and reducing the deviation amount of energy demand in the day ahead. To 
address the third goal of smoothing out the electrical and thermal demand patterns, a Demand response strategy 
is suggested, which entails the optimal adjustment of shiftable loads. Furthermore, stochastic modeling of 
renewable energy sources and energy loads using the Monte Carlo technique is carried out. The proposed method 
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employs the ε-constraint approach to obtain non-dominated Pareto solutions for the goals. Finally, several case 
studies are conducted to validate the proposed method. The participation of the demand shifting leads to reduce 
emission, costs and loss of energy supply probability than non-participation. 
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