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This paper evaluates a RISC-V microcontroller system on an FPGA 
platform using the NEORV32 core. This research aims to identify 
performance gaps in the NEORV32 system on an FPGA. The evaluation 
was carried out using the CoreMark benchmark programs. The 
hardware utilisation of the NEORV32 core is examined using Quartus 
Prime software with a particular focus on slice look-up tables (LUTs), 
total registers, memory bits, RAM blocks, and DSP blocks. In this work, 
two NEORV32 implementations are evaluated, which are RV32I and 
RV32I with M and Zfinx extension (RV32I_MC_zfinx). The effect of 
dedicated hardware and special operations on the performance of the 
processors is also evaluated on an FPGA board. The experiment results 
show that RV32I_MC_zfinx consumes 55% and 65% more LUT and 
registers resources, respectively, compared to the RV32I. 
Implementing hardware accelerators to RV32I_MC_zfinx results in a 
48% increase in CoreMark score. Compared with other existing RISC-V 
cores, NEORV32 is a good option for embedded system development 
since it balances performance and resource efficiency for low-power 
applications. 
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1. Introduction 
The Instruction Set Architecture (ISA) is the foundation of computer architecture that defines the interface 
between hardware and software and governing tasks that the CPU can execute [1]. At the processor level, there 
are many implementations of ISA. Each standard adheres to its parent ISA while offering some customisation [2]. 
RISC-V is one of the popular choices among emerging ISAs, where it is based on Reduced Instruction Set 
Computing (RISC) that prioritizes processor efficiency over instruction length. 

RISC-V was introduced at the University of California, Berkeley, in 2010. It is an open-source ISA compared to 
other closed-source ISAs such as ARM and x86 [3]. Because of RISC-V openness, it has gained widespread adoption 
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and support, encouraging collaborative work by various communities such as research, education, and industry 
players [4]. Because of its adaptability and support, RISC-V has emerged as a good choice for various applications, 
particularly in the Internet of Things (IoT) domain [3]. 

This paper aims to evaluate a RISC-V microcontroller system based on the NEORV32 core [11]. Based on the 
RV32I instruction set, the NEORV32 core provides a flexible and customisable RISC-V processor system-on-chip 
(SoC). It implements two-stage pipeline architecture for faster instruction processing and higher clock frequencies 
[5]. It uses an integrated memory system that includes programmable instruction and data caches to improve data 
throughput. Furthermore, NEORV32 includes diverse peripheral modules and interfaces, such as UART, SPI, GPIO, 
timers and counters, I2C, and PWM. This allows seamless integration with external devices and expands the 
system's capabilities [5]. In this work, several NEORV32 systems are implemented on an FPGA platform, and their 
performance and hardware utilisation are analysed.  

The rest of the paper is organised as follows. Sections 2 discuss the existing work on RISC-V and NEORV32. 
The experimental methodology is discussed in section 3, while section 4 highlights our experimental result. 
Finally, section 5 concludes the paper. 

2. Literature Review 
Various literatures have studied different aspects of RISC-V cores and their performance. This section discusses 
the relevant literature, highlighting significant discoveries from prior research. Holler et al. [5] analysed FPGA-
compatible open-source 32-bit CPU IP cores that support the RISC-V instruction set architecture. They compared 
RISC-V cores based on clock frequency, area, power consumption, and performance characteristics. This study 
offers valuable insights into the performance of various RISC-V cores, especially for those who need to select 
suitable cores for specific applications. In [6], Dörflinger et al. conducted a similar comparative survey of RISC-V 
cores. They performed performance benchmarking on both FPGA and ASIC platforms. The differences between 
RISC-V core implementations and their potential suitability for different application domains were examined in 
this literature. Heinz et al. [7] compared various open-source RISC-V softcore processors using. Embedded 
processor benchmarks such as Dhrystone, Embench, and CoreMark were used to evaluate these processors for 
various hardware platforms. This assessment compares various aspects of processor performance, such as integer 
arithmetic, memory access, and control flow. 

Low-power applications are another focus of RISC-V core research. Bora and Paily [8] discussed a RISC-V-
based microarchitecture optimised for low-power applications. Their research introduced branch prediction, out-
of-order execution, and an advanced pipeline to improve performance and reduce power consumption. From the 
experimental result, the Dhrystone and CoreMark benchmarks show their proposed method outperforms the 
traditional RISC-V cores architecture, making it ideal for power-efficient applications. 

Other than hardware, software support for RISC-V has been extensively researched. Mezger et al. [9] provided 
an overview of the current software support for RISC-V instruction set architectures. These authors covered 
various RISC-V software development tools, operating systems, and libraries. Developers can write code in high-
level languages, debug applications, and simulate RISC-V implementations using extensive software support. 
These include GCC, LLVM/Clang compilers, GDB, OpenOCD debuggers, and various simulators. 

While the existing work compares various RISC-V implementations, this paper investigates the performance 
and hardware utilisation of the NEORV32 core on an FPGA platform. This work aims to determine NEORV32's 
suitability for embedded system development. NEORV32 is a customisable RISC-V processor for system-on-chip 
(SoC) designed to meet the wide range of embedded system development requirements [11]. The NEORV32 core, 
based on the RISC-V RV32I base instruction set with a 2-stage pipeline design that balances between efficient 
instruction processing and higher clock frequencies. This results in improved overall performance. 

The NEORV32 unified memory system is a key feature of the NEORV32 system, which includes instruction 
and data caches. These caches are easily customisable in size, allowing developers to tailor the system to specific 
application requirements. The NEORV32 architecture is enhanced by various peripheral modules and interfaces 
such as UART, SPI, GPIO, timers/counters, I2C, and PWM. With a wide range of interfaces, the NEORV32-based 
system's capabilities can be expanded through seamless integration with external devices. Cache sizes, peripheral 
modules, and memory mapping can be customised to meet specific application's need. In general, the NEORV32 
architecture provides many features and customisation options, making it an appealing choice for a wide range of 
embedded system applications. Figure 1 shows the NEORV32 SoC architecture, highlighting its components and 
interconnections. Figure 2 depicts the pipelined multi-cycle architecture in detail. 

3. Methodology 
Several customised versions of the NEORV32 core were evaluated in this study. Each version was optimised for 
specific criteria to evaluate the impact of different configurations on performance and hardware utilisation. Table 
1 shows the full list of tested NEORV32 core versions and their features. 
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Figure 3 shows the FPGA implementation process flow perform in this work. The first step in the process is 
to prepare the application programme for execution on the NEORV32 processor. To accomplish this, a toolchain 
is used to compile the source code and generate executable, processor-compatible files. The RISC-V GCC toolchains 
designed for Linux operating systems were chosen as the toolchain for this project. These toolchains provide RISC-
V architecture support for compiling and debugging an application code. 

Once the application program is ready, the NEORV32 processor is implemented on the FPGA using the Quartus 
Prime 181 Lite software. Then, the application program is uploaded from the host computer into the processor 
using UART communication. To monitor and analyse the output of programme execution by NEORV32 processor, 
GTKTerm, a serial terminal application, is used. This real-time monitoring of program execution aids in verifying 
the application's correctness. For optimal performance, the serial terminal settings are configured according to 
the following parameters: baud Rate (19200), data bits (8), stop bit (1), parity bits (None), and transmission/flow 
control protocol (none). 

 

 

Fig. 1 Overview of the NEORV32 SoC 

 

 

Fig. 2 NEORV32 pipelined multi-cycle architecture 
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Fig. 3 Implementation of FPGA process flow 

4. Result and Discussion 
The evaluation results of the NEORV32 core versions and their corresponding optimisations are presented in this 
section. Hardware utilisation metrics, CoreMark benchmark scores, and a comparison of NEORV32 hardware 
utilisation on various FPGA platforms are discussed. 

The hardware utilisation results of various NEORV32 core configurations on the DE1-SoC FPGA platform are 
shown in Table 2. Adding the Zfinx extension to the RV32I configuration significantly increased slice look-up tables 
(LUTs) and total registers by about 55% and 65%, respectively. This increase can be attributed to the additional 
integer register file required for floating-point data operations in the Zfinx extension feature. When the area was 
optimised by disabling the C-extension, LUTs decreased by 12.5% while total registers increased by 3.3%. 
Memory usage was also assessed using internal instruction memory (IMEM) and internal data memory (DMEM). 
As expected, all configurations had high memory bit usage due to using a significant portion of the IMEM (32kB) 
and DMEM (16kB). RV32IMC zfinx +Perf and RV32IMC zfinx +Perf +Area configurations have additional 
instruction caches, which increase total memory bits. 

Table 3 shows the results of the total RAM and DSP blocks required for each configuration. The total blocks 
for both RAM and DSP increased as more features were enabled in specific configurations since these features 
required more dedicated hardware resources. 

The NEORV32 core's maximum operating frequency (Fmax) was important in determining at which 
maximum frequency the processor can operate reliably. However, as the complexity of NEORV32 increased with 
the addition of new features, the critical path of the design was impacted, resulting in a decrease in Fmax. During 
the evaluation process, this trade-off between increasing performance and optimising areas was considered. 

The CoreMark benchmark results for each NEORV32 configuration are shown in Table 4. CoreMark scores 
represent the performance of various configurations. When the M and Zfinx extensions were activated, the 
average CPI (Cycles Per Instruction) increased because RV32IM zfinx necessitated more cycles for intricate 
multiplication operations. However, the CoreMark score rose, indicating an overall improvement in performance. 
Enabling performance options such as FAST MUL brought down the average CPI by utilising DSP slices for 
multiplication, resulting in a higher CoreMark score by 48%. When the area was optimised, the CoreMark score 
decreased, highlighting the trade-off between performance and area. Additionally, disabling the C-extension 
raised the CPI as it required more cycles for non-compressed instructions. 
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Table 5 compares the NEORV32 core to other existing RISC-V cores. NEORV32 utilised the highest number of 
LUTs among the tested cores while remaining within an acceptable range for low-power applications. Taiga 
achieved the highest CoreMark score, while NEORV32 demonstrated competitive performance, falling in the 
middle of the tested cores. This comparison showcases NEORV32 as a flexible and viable choice for embedded 
system development, offering an excellent balance of performance and resource efficiency. The subsequent 
sections will examine the implications of these findings and their relevance to the study's objectives. 

Table 1 Tested NEORV32 cores 
Tested Cores  Description 
RV32I 32-bit RISC-V core with the Base Integer extension support 
RV32IMC_zfinx Addition of M-extension and Zfinx-extension 
RV32IMC_zfinx + Perf Addition of mapping of complex CPU operations to dedicated hardware and using DSP 

slices for multiplication + 2kB caches 
RV32IM_zfinx + Perf + 
Area 

Disabling of C-extension and map CPU shift operation to shifter unit 

 Table 2 Hardware utilization results (LUTs, total registers, block memory bits) 
Configuration LUTs Total Registers Block Memory Bits 

RV32I 1,148 1363 428,032 
RV32IMC_zfinx 1,779 2245 428,032 

RV32IMC_zfinx + Perf 2,827 2770 465,352 
RV32IM +Perf +Area 2,476 2866 465,352 

Table 3 Hardware utilization results (DSP blocks, RAM blocks, Fmax) 
Configuration DSP Blocks RAM Blocks Fmax (MHz) 

RV32I 0 38 136.65 
RV32IMC_zfinx 1 54 130.79 

RV32IMC_zfinx + Perf 7 64 123.3 
RV32IM +Perf +Area 7 62 122.47 

Table 4 CoreMark results for each configuration 

Configuration CoreMark score CoreMark iterations/sec Average CPI 

RV32I 0.28 14 3 
RV32IMC_zfinx 0.52 26 4 

RV32IMC_zfinx+Perf 0.77 38 2 
RV32IM+Perf +Area 0.66 33 3 

Table 5 Comparison with other RISC-V cores 

RISC-V Core LUTs CoreMark score 
NEORV32 2,827 0.77 

Microblaze 1376 0.48 
PicoRV32 1542 0.4 

Taiga 1434 2.53 
VexRiscv 1418 1.2 

5. Conclusion 
This research aimed to analyse and evaluate a RISC-V microcontroller system, specifically the NEORV32 core 
implemented on an FPGA platform. The assessment focused on hardware utilisation and performance. The 
performance of the processors was compared using different NEORV32 core configurations and CoreMark 
benchmark tests. In this work, two NEORV32 implementations are evaluated, which are RV32I and RV32I with M 
and Zfinx extension (RV32I_MC_zfinx). The effect of dedicated hardware and special operations on the 
performance of the processors is also evaluated on an FPGA board. The experiment results show that 
RV32I_MC_zfinx consumes 55% and 65% more LUT and registers resources, respectively, compared to the RV32I. 
Implementing hardware accelerators to RV32I_MC_zfinx results in a 48% increase in CoreMark score. Compared 
with other existing RISC-V cores, NEORV32 is a good option for embedded system development since it balances 
performance and resource efficiency for low-power applications. 
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