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In Malaysia, the button mushroom is recognized as a vegetable with 
high nutritional value and is easy to cultivate. Monitoring mushroom 
growth requires farmers to regularly inspect their crops, which is time-
consuming and inefficient. Hence, an automated detection and 
measurement system for button mushrooms has been developed using 
image processing techniques based on convolutional neural network 
(CNN) algorithm model known as YOLOv4. The algorithm was utilized 
to train the system using button mushroom images to create training 
models. The performance of the YOLOv4 models was evaluated across 
various iterations ranging from 1000 to 6000 iterations. The model 
with 2000 iterations demonstrated the most effective performance 
based on Recall, Precision, F1-score, Time and Mean Average Precision 
metrics. The model was used in a small-scale experimental setup to 
evaluate the button mushroom detection and measurement system’s 
performance. Based on the results obtained from the experiments, the 
detection and measurement system demonstrated high accuracy in 
locating the position of each button mushroom with only a 5% 
deviation error in predicting the size of each button mushroom. 
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1. Introduction 
Since the 19th century, the global issue of overpopulation has intensified, leading to various challenges such as 
climate change and severe food shortages. The increasing population has eliminated large amounts of 
anthropogenic greenhouse gases, contributing to the extreme weather [1]. The greenhouse effect will affect 
agriculture, leading to a decrease in the production of essential foods such as cereals, vegetables and fruits. This 
effect will exacerbate the problem of food shortages, making it more critical. Among vegetables, mushrooms are 
recognized for their high nutritional value, and white button mushrooms are known as the fastest-growing 
mushrooms, especially in Malaysia. Mushrooms are highly beneficial for human health due to their low-fat content, 
low-fiber content and cholesterol-free [2]. However, climate change also affects mushroom production as it is 
highly dependent on specific temperature and humidity conditions. Since mushrooms are sensitive to the 
environment, most of the mushrooms are grown traditionally in greenhouses.  

A greenhouse is an enclosed space equipped with various equipment and sensors which create a fully 
functional system capable of controlling its interior conditions and environment. For a mushroom greenhouse, 
monitoring and controlling the humidity and temperature are essential for maintaining the optimal growth 
conditions of mushrooms [3]. Traditionally, button mushroom farmers had to manually check their crops’ growth 
in greenhouses, a labor-intensive and time-consuming process. Thankfully, advancements in modern technology 
offer the potential for automation in monitoring and maintaining mushrooms’ growth and harvesting. However, 
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to achieve this, necessary technical infrastructure is needed, such as automated growth measurement systems 
and robotic harvesting mechanisms.  

Artificial Intelligence (AI) has been the most popular technology in recent years due to its ability to accomplish 
impressive tasks and jobs. AI has been utilized in various fields such as medicine, industries and agriculture. One 
of the most popular areas of AI is computer vision, as it enables automated processes for various tasks such as 
image recognition, image analysis and speech recognition demonstrating outstanding performance. Deep 
learning, a method in AI, has been extensively developed in the field of computer vision. In deep learning, an 
algorithm called Convolutional Neural Networks (CNN/ConvNets) can differentiate between various objects in an 
image automatically [4]. 

The origins of CNN algorithms can be traced back to 1990 with the introduction of LeNet-5, the first multi-
layer artificial neural network specifically designed for handwritten digit recognition [5]. This breakthrough 
paved the way for a new era of computer vision. Since then, researchers have developed numerous fast and 
accurate CNN architectures, including Fast R-CNN for object detection and segmentation in 2013 [6]; You-Only-
Look-Once (YOLO), known for its real-time processing speed in 2013 [7]; GoogLeNet and AlexNet in 2014, which 
incorporated innovative inception module [8]; ResNet and Faster R-CNN in 2015, known for addressing vanishing 
gradient problems [9, 10]; Mask R-CNN and YOLOv2 in 2017, enabling instance segmentation with bounding 
boxes and masks [11, 12]; YOLOv3 in 2018, offering good balance between speed and accuracy [13, 14]; YOLOv4 
in 2020, further refining the model for various applications [15]; YOLOv5 in 2020, that gains popularity for its 
open-source nature and ease of use [16]; and more recently, YOLOv6, YOLOv7 released in 2022 [17, 18]; and 
YOLOv8 in 2023 [19], showcasing the continuous evolution of the YOLO family. These advancements have 
continuously improved efficiency and recognition rates in image recognition tasks. Among these CNN 
architectures, the YOLO family has seen significant growth due to several factors. Firstly, it focuses speed, making 
it suitable for real-time applications in various fields such as autonomous vehicles and robotics. Secondly, it 
maintains a focus on accuracy that ensures reliable object detection performance. Thirdly, the open-source nature 
of several YOLO versions, particularly YOLOv4 and later, fosters a collaborative development environment where 
researchers and developers can contribute and customize models for specific needs. Within the YOLO family, 
YOLOv4 is considered one of the most stable versions due to its wider adoption and testing history. 

CNN has been successfully applied in agriculture for various computer vision applications. Sladojevic et al. 
introduced a plant disease recognition model using CNN which can recognize 13 types of plant diseases based on 
the analysis of healthy leaves condition [20]. CNN was performed using Caffe framework and produced 96.3% on 
the final overall accuracy of the trained model. Another research by Sa et al. utilized Faster R-CNN, a fruit detection 
system on seven fruits: rock melon, strawberry, apple, avocado, mango, orange, and sweet pepper [21]. The 
system produced detection performance up to a 0.83 F1-score based on a field farm dataset with fast detection 
rate. Then, Bargoti et al. proposed a deep fruit detecting system using also Faster R-CNN framework to detect, 
identify, and differentiate different orchard types, apples, mangoes and almonds [22]. The study achieved a 
detection performance of more than 0.9 F1-score for apples and mangoes. Tu et al. proposed a passion fruits 
detection and identifying system utilizing Faster R-CNN using RGB-D images with a SVM classifier for the 
identification of fruit maturity in various phases [23]. The proposed method achieved an accuracy of 92.7% for 
detection and 91.5% for maturity classification. Wang et al. proposed a remote apple growth monitoring system 
in an orchard called fused convolution feature network based on ResNet-50 and a fusion of convolutional features 
[24]. The system achieved in measuring the mean average absolute error of 0.90 mm for an apples’ horizontal 
diameter. Liu et al. developed a tomato detection system using YOLOv3 [15]. The system is based on two 
approaches, a dense architecture for feature extraction, and replacing the traditional R-Bbox with a proposed C-
Bbox for greater precision of tomato shape identification. Experimental results under slight occlusion conditions 
showed 94.58% correct identification rate. Based on the above, much research has implemented two-stage object 
detector or feed forward network such as Fast R-CNN that utilizes regions to localize the object within an image. 
The detector identifies high probabilities portions of the image which contains the object. However, YOLO models 
are faster by directly forecasting the bounding boxes and their corresponding classes using a single-stage object 
detector. Furthermore, there are very few studies on mushroom detection and measurement using CNN. 

This paper presents the development of a detection and measurement system for button mushrooms using 
CNN algorithm called YOLOv4. YOLOv4 is chosen due to its superior performance and accuracy compared to its 
predecessor, YOLOv3 and Faster R-CNN, as evidenced by previous research, and being one of the most stable 
versions in the YOLO family [14]. Hence, the CNN algorithm that is used to construct the proposed button 
mushroom detection and measurement system in this work is YOLOv4. The proposed system aims to automate 
the monitoring and measurement of button mushrooms that can reduce the needs for manual checks and 
optimizing resource utilization. The remainder of this paper is organized as follows. Section 2 presents an in-depth 
overview of the detection method. Section 3 describes the experimental results based on the proposed method, 
and conclusions of this paper are reported in section 4. 
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2. Methodology 
The proposed mushroom detection and measurement system was developed using the object detection CNN 
algorithm, specifically YOLOv4. The YOLOv4 algorithm was utilized to train the system involving feeding the 
algorithm a large dataset of button mushroom images. Each image within the dataset is manually labeled with 
bounding boxes surrounding the mushrooms using dedicated software. These bounding boxes indicate the 
location and size of each button mushroom in the image. During training, the YOLOv4 model learns to identify the 
distinctive visual features of button mushrooms within the images. This allows the model to differentiate button 
mushrooms from other objects in the image and accurately predict their location and size.  

Following the training process, the performance of multiple trained YOLOv4 models is evaluated. This 
evaluation involves assessing metrics such as Recall, Precision, F1-score, Time and Mean Average Precision (mAP) 
in detecting button mushrooms. The model demonstrating the most optimal performance based on these 
evaluation metrics will be chosen as the final model for the button mushroom detection and measurement system. 
Fig. 1 illustrates the flowchart for developing the button mushroom detection and measurement system’s model. 
A detailed explanation of each step within the flowchart is provided in the subsequent subsections.  
 

 

Fig. 1 Flowchart to train button mushroom detection and measurement system 

2.1 Obtaining Images and Data Augmentation 
Based on Fig. 1, first, dataset images for object detection models were obtained from internet sources such as 
Google and Bing. In this work, a total of 27 original images obtained from the internet are used to generate 540 
new images through the data argumentation technique. Data augmentation techniques are often used to generate 
more images or data to enhance computer vision systems’ performance. Data augmentation has several 
techniques, but only the geometric transformations technique is used in this project. This technique involves 
randomly flipping, cropping and rotating the original image to create new images. The parameters used for data 
augmentation in this work are listed in Table 1.  

Table 1 Parameter of data augmentation 

Parameter Status 
Rotation range 40 ° 

Width shift 20 % 
Height shift 20 % 
Shear range 20 % 
Zoom range 20 % 

Horizontal flip True 
Fill mode Reflect 

As shown in Table 1, in data augmentation, the rotation range randomly rotates the image, with the maximum 
rotation not exceeding 40°. The width and height shift randomly move the image, not exceeding 20% from the 
original dimensions. Shear and zoom enable cutting and either zooming in or out of the image, also limited to a 
maximum of 20%. Horizontal flip is set to true, allowing the image to undergo mirror reflection. Fill mode is used 
to address the blank spaces that occur after rotation, shift, shear or zoom. For example, if the image is shifted 20% 
to the left, it may create a blank space without any pixels. By applying the fill mode with reflection function, a 
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reflection of the image will fill into the blank space. Fig. 2 shows a section of the Python script for data 
augmentation, where the parameter values can be manually set. 

 

Fig. 2 Flowchart to train button mushroom detection and measurement system 

2.2 Labelling and Annotation of Images with Annotation Tool 
Labelling and annotation of images are important steps before converting them into datasets for training 
purposes. To create labels and annotations for button mushroom images, LabelImg was used. It is a graphical 
image annotation tool written in Python, and it supports multiple formats including YOLO format. In LabelImg, 
the input images are shown in the interface, and users can label the object in that image with its class names. Fig. 
3 shows a screen capture of LabelImg with an image containing button mushrooms. As seen in the figure, all button 
mushrooms are labelled with green bounding boxes. The labelled mushrooms are named as class ‘Mushroom’. 
These labelling processes are done manually. After labelling, the annotations of each image are saved to a folder 
as .txt files in YOLO format. A file named ‘classes.txt’ will also be saved into that folder, which defines the class 
name ‘Mushroom’ that YOLO label refers to. A total of 540 images are labelled and formed as training datasets. 
 

 

Fig. 3 After data augmentation, LabelImg is used on button mushroom images for labelling the target objects. 

2.3 Button Mushroom Detector Based on YOLOv4 
Fig. 4 shows the architecture of the button mushroom detector based on YOLOv4. As shown in the figure, the 
YOLOv4 detector comprises of three (3) parts: backbone, neck, and heads [14]. 

After augmenting and labeling the images, they are fed into the YOLOv4 backbone known as CSPDarknet53. 
CSPDarknet53 functions as the backbone network of YOLOv4, extracting image features for training. The YOLOv4 
neck consists of two layers: Spatial Pyramid Pooling (SSP) and Path Aggregation Network (PANet). These layers 
gather feature maps from various levels and are comprised of several bottom-up paths and top-down paths. The 
SPP network enhances the receptive field and help separates contextual features, while the PANet shortens the 
path connecting low-level and high-level information via bottom-up and top-down paths, then, concatenating or 
fusing the information at different levels before being fed to the head. YOLOv3 head is implemented as the head 
for YOLOv4 which is used to predict the classes and bounding boxes of the objects at three different scales. To 



266 Int. Journal of Integrated Engineering Vol. 16 No. 1 (2024) p. 262-271 

 

 

develop the button mushroom detector based on YOLOv4, pre-trained weights for the convolutional layers of the 
YOLOv4 network were used during training. These pre-trained weights contribute to a more accurate system and 
speed up the training process. The YOLOv4 network is configured with the parameters shown in Table 2. 

The dataset used in this study consists of two parts: the training dataset and validation dataset. The training 
dataset is used for training purposes, while the validation dataset serves to thoroughly test the button mushroom 
detection and measurement system after training. The validation dataset size typically ranges from 20% to 30% 
of the training dataset size. In this case, the training dataset contains 420 button mushroom images, and the 
validation dataset comprises 120 button mushroom images. 
 

 

Fig. 4 Architecture of the mushroom detector based on YOLOv4 

Table 2 Parameter of data augmentation 

Parameter Status 
Input size 416 × 416 

Batch 64 
Learning rate 0.001 

Classes 1 
Iterations 6000 

2.4 Size Measuring Methods 
The proposed button mushroom detection and measurement system will begin by capturing an image before 
proceeding with the detection and measurement algorithm. The original image will be saved into a designated file. 
During the process, each mushroom in the image will be detected and localized. Every mushroom detected by the 
YOLOv4 detector will be labeled in the original image and saved into the same designated file. After obtaining the 
necessary details, the system will estimate the size of each detected mushroom using the size measuring method. 

The size measuring method starts by calculating the unit area of a button mushroom using the size of its 
bounding box. The bounding box’s width, W and height, H are multiplied to form the unit area for a button 
mushroom size S (pixels), as shown in Equation 1. 
 

𝑆𝑆 = 𝑊𝑊 × 𝐻𝐻 (1) 
 

Before calculating the actual size of the mushrooms, the scale between the bounding box area and the actual 
button mushroom area size needs to be determined. The scale ratio, R (cm2/pixel) and the actual size of the 
mushrooms, S ̅ (cm2) are denoted as in Equation 2. 
 

𝑆𝑆̅ = 𝑆𝑆 × 𝑅𝑅 (2) 

Backbone 

Neck 

Head 
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After predicting the size of each mushroom, the data will be saved into an excel file where the tile is named 
automatically using a specified format (Year-month-day (Hour' Minute' Second)), for the user to easily manage 
the file. Fig. 5 shows the flowchart of size measuring method. 
 

 
 

Fig. 5 Flowchart of size measuring method 

The estimated size (measured size) for each button mushroom will be compared with the actual size to obtain 
the percentage error. The percentage error is calculated using the equation in Equation 3. 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
|𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (3) 

3. Methodology 

3.1 Evaluation of the YOLOv4 Model Performance with Different Iteration 
The evaluation of the performance for YOLOv4 model’s performance at different iteration has been carried 

out to identify the most effective and appropriate model to serve as the core of the detection and measurement 
system. This evaluation is carried out by comparing the score of Recall, Precision, F1-score, Time and Mean 
Average Precision (mAP [0.50]) [13]. Table 3 shows the result of Recall, Precision, F1-score and Time for each 
iteration. Fig. 6 shows the graph depicting the mAP trend with increasing iterations. 

Table 3 Results of recall, precision, F1-score and time for each iteration 

Iteration Recall Precision F1 Time (s) 

1000 0.98 0.76 0.86 3 
2000 0.96 0.84 0.90 2 
3000 0.96 0.84 0.90 2 
4000 0.96 0.84 0.90 2 
5000 0.96 0.85 0.90 3 
6000 0.95 0.85 0.90 3 

 

 

Fig. 6 Result of mAP with different iterations 

By referring Table 3 and Fig. 6, the model with the 2000 iterations exhibits the shortest detecting time, the 
highest F1-score, and the second highest recall and precision values, differing only by 0.02 and 0.01, respectively, 
compared to the 5000-iteration result. Fig. 6 shows that the iteration with the highest mAP was 2000, and the 
occurrence of overfitting phenomena is observed when the iterations exceed 4000. Overfitting phenomena causes 
the mAP to decrease with increasing iterations. Hence, based on the analysis results, the model with 2000 
iterations is the most suitable model for the button mushroom detection and measurement system. 
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3.2 Small-scale Field Experiment 
Fig. 7 shows the small-scale experimental setup of the button mushroom detection and measurement system. The 
implementation of the system was carried out on actual hardware to further demonstrate its performance. As 
shown in Fig. 7, the setup consists of a webcam connected to an MSI laptop that runs the detection and 
measurement system. The webcam is positioned above a small-scale button mushroom field contained in a black 
tray. The webcam captures images of the small-scale button mushroom field, and feeds these images to the laptop 
for detecting, counting and measurement of the size of button mushrooms within each captured image. 
 

 
Fig. 7 Experimental setup 

The rack for the webcam is built by using slotted angle bar with the dimension of 65 cm of height, 100 cm of 
length and 50 cm of width. For the small-scale button mushroom field, it uses a black tray that has the dimension 
of 13 cm of height, 56 cm of length and 42 cm of width. The small-scale button mushroom field is filled up with 
organic soil to grow the white button mushrooms. Before running through the experiment, the system needs to 
undergo calibration to enable precise estimation of the detected button mushroom size. By referring Equation 2, 
the scale ratio (R) is obtained for the system able to estimate actual size of the detected button mushrooms (S ̅). 
Table 4 shows the multiplication results of width (W) and height (H) of the detected button mushroom to derive 
the unit area (S) and the actual size unit area of each button mushroom. From the data obtained by the system, 
the scale ratio (R) that is used to estimate the actual size of the detected button mushrooms (S ̅) was 0.005155954 
≈ 0.005156. 

Table 4 Results of the size (actual total area) of each button mushroom 

No Width (W) Height (H) Total area (S) 
Actual total area 

( ) (cm2) Ratio (R) 

1 43 46 1978 10.89 0.00549545 
2 40 54 2160 10.55 0.005018519 
3 41 50 2050 11.22 0.005258537 
4 40 55 2200 11.56 0.005259091 
5 40 46 1840 9.92 0.005190217 
6 42 53 2226 10.51 0.005130279 
7 45 51 2295 11.24 0.005102397 
8 45 50 2250 10.56 0.004702222 
9 37 55 2035 10.56 0.005194103 

10 42 52 2184 11.55 0.005100733 
11 39 51 1989 10.92 0.005263952 

Average 0.005155954 
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3.3 Experimental result of button mushroom detection system in a small-scaled field 
There were two (2) different setups for the small-scale button mushroom fields experiments that have been 
conducted, as shown in Fig. 8.  The scale ratio (R), 0.005156, was set for estimating the button mushroom size in 
the experiments. Figs. 8(a) and 8(b) show the images of the first and second setups, denoted as setup a and setup 
B, respectively. These images represent the state before detecting and measuring the size of the mushrooms. On 
the other hand, Fig. 9 depicts the same setups, but with the result obtained after running through the detection 
and measurement system. The figures show how the button mushrooms were detected and measured correctly, 
and each detected mushroom is enclosed in red bounding boxes and labeled with a corresponding number. 

Tables 5 and 6 show the results produced by the detection and measurement system for setup a and setup B, 
respectively, after the detection process. 
 

Fig. 8 Images of two different experimental setups before undergoing detection using the proposed system 

Fig. 9 Images of two different experimental setups after undergoing detection using the proposed system 

Table 5 Data of each detected and measured button mushroom size for experiment in setup A 

No. Name Width (cm) Height (cm) Measured Area 
(cm²) 

Actual Area 
(cm²) 

Percentage 
error (%) 

1 Mushroom 1 3.087615 3.30303 10.19848 10.56 3.42 
2 Mushroom 2 2.72859 3.949275 10.77595 10.55 2.14 
3 Mushroom 3 2.8722 3.518445 10.10568 10.56 4.30 
4 Mushroom 4 3.087615 3.662055 11.30702 11.24 0.60 
5 Mushroom 5 2.8722 4.02108 11.54935 11.56 0.09 
6 Mushroom 6 2.8722 3.73386 10.72439 10.51 2.04 
7 Mushroom 7 2.58498 3.949275 10.2088 10.56 3.33 
8 Mushroom 8 2.8722 3.374835 9.693201 9.92 2.29 
9 Mushroom 9 3.087615 3.518445 10.8636 10.56 2.88 

10 Mushroom 10 2.800395 3.662055 10.2552 10.24 0.15 
11 Mushroom 11 3.01581 3.662055 11.04406 11.55 4.38 

Average 2.33 

 

  
(a) Setup A (b) Setup B 

  
(a) Setup A (b) Setup B 
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Table 6 Data of each detected and measured button mushroom size for experiment in setup B 

No. Name Width (cm) Height (cm) Measured Area 
(cm²) 

Actual Area 
(cm²) 

Percentage 
error (%) 

1 Mushroom 1 2.29776 3.73386 8.579514154 8.9 3.60 
2 Mushroom 2 2.513175 3.30303 8.301092420 7.95 4.42 
3 Mushroom 3 3.087615 3.662055 11.30701595 11.22 0.78 
4 Mushroom 4 3.44664 3.662055 12.62178525 12.95 2.53 
5 Mushroom 5 2.72859 3.518445 9.600393843 9.3 3.23 
6 Mushroom 6 3.087615 4.02108 12.41554692 12.96 4.20 
7 Mushroom 7 3.01581 3.662055 11.04406209 10.54 4.78 
8 Mushroom 8 2.944005 3.518445 10.35831967 10.54 1.72 
9 Mushroom 9 3.087615 3.662055 11.30701595 11.22 0.78 

Average 2.89 
 

The experiment data described in the previous subchapter was collected, and analysis has been done to find 
the percentage error between the area results measured by the system and the area results measured manually 
based on equation 3. Tables 5 and 6 also show the percentage errors for each mushroom in setup a and setup B, 
respectively. Based on Table 5, it is found that the maximum percentage error in setup A is 4.38% and minimum 
percentage error is 0.09%. On the other hand, based on experiment in setup B as shown in Table 6, it is found that 
the maximum percentage error is 4.78% and minimum percentage error is 0.78%. Since all the percentage error 
results for each button mushroom in both setups are below 5%, the results obtained from the system are 
acceptable. 

4. Conclusion 
This study demonstrates the development of a detection and measurement system for button mushrooms 

using the YOLOv4 algorithm, a deep learning-based CNN model. The proposed system aims to automate the 
detection and measurement of button mushrooms, reducing the need for manual checks and optimizing resource 
utilization. The results of evaluation of the YOLOv4 model with different iterations showed that the model with 
2000 iterations is the most suitable for the button mushroom detection and measurement system. It exhibited the 
shortest detecting time, highest F1-score and second-highest recall and precision values, with a negligible 
difference compared to the 5000-iteration result. The occurrence of overfitting phenomena was observed when 
the iterations exceeded 4000 that resulted in a decrease in mean average precision (mAP). Furthermore, the 
implementation of the system on actual hardware for two small-scale experiments demonstrated the successful 
detection and measurement of button mushrooms the images captured using the system correctly detected and 
measured each button mushrooms with a maximum percentage error below 5%. 

For future recommendations, to scale up for commercial application, the system should undergo testing in 
larger mushroom farms. This will require further scalability testing and optimization under various 
environmental conditions and a more extensive dataset. Moreover, integrating the system with robotic harvesting 
mechanism will complete the automation process. This integration would enable the system to not only monitor 
mushroom growth, but also automatically harvest mature mushrooms, thereby reducing labor costs and 
increasing efficiency. In conclusion, the developed detection and measurement system for button mushrooms 
demonstrates promising results and holds the potential to revolutionize mushroom cultivation practices. The 
introduction of automated detection and measurement processes can contribute to more sustainable and efficient 
mushroom farming practices, addressing the challenges of overpopulation and food shortages in an 
environmentally friendly manner. 
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