
 INTERNATIONAL JOURNAL OF INTEGRATED 
ENGINEERING 
ISSN: 2229-838X     e-ISSN: 2600-7916 
 

IJIE 
Vol. 16 No. 1 (2024) 378-393 
https://publisher.uthm.edu.my/ojs/index.php/ijie 

   
 

This is an open access article under the CC BY-NC-SA 4.0 license. 

 
 

Assessment of Agricultural Drought Using the Normalized 
Difference Drought Index (NDDI) to Prediction Drought at 
Corong River Basin  
N. A. Affandy1,4*, D. Iranata1, N. Anwar1, M. A. Maulana1, D. D. Prastyo2,       
W. Wardoyo1, B. M. Sukojo3 

1  Department of Civil Engineering/Faculty of Civil, Planning and Geo-Engineering,  
Sepuluh Nopember Institute of Technology, Surabaya, East Java, 60111, INDONESIA 

2  Department of Statistics/Faculty of Science and Data Analytics,  
Sepuluh Nopember Institute of Technology, Surabaya, East Java, 60111, INDONESIA 

3  Department of Geomatics Engineering/Faculty of Civil, Planning and Geo-Engineering,  
Sepuluh Nopember Institute of Technology, Surabaya, East Java, 60111, INDONESIA 

4  Department of Civil Engineering/Faculty of Engineering,  
Universitas Islam Lamongan, Lamongan, East Java, 60111, INDONESIA 

 
*Corresponding Author: nurazizah@unisla.ac.id 
DOI: https://doi.org/10.30880/ijie.2024.16.01.032 

Article Info Abstract 
Received: 11 December 2023 
Accepted: 14 April 2024 
Available online: 1 June 2024 

As a complex and widespread natural phenomenon, drought poses a 
significant threat to the agricultural sector, especially in developing 
countries, resulting in significant economic losses. Its close relationship 
with water resilience and crop production necessitates sophisticated 
monitoring approaches for agricultural drought. Leveraging satellite 
remote sensing technology and various data types such as 
multispectral, thermal infrared, and microwave, can monitors drought 
on a large scale. This technology provides a comprehensive perspective 
for timely and spatial data collection, facilitating monitoring vegetation 
in vast agricultural areas. The study focuses on developing an 
agricultural drought model from 2017 to 2021, using Landsat 8 
imagery. The model integrates the Normalized Difference Vegetation 
Index (NDVI) and Normalized Difference Water Index (NDWI), 
resulting in the establishment of the Normalized Difference Drought 
Index (NDDI) method. To predict agricultural drought in the Corong 
River Basin, the study employs the Seasonal Autoregressive Integrated 
Moving Average (SARIMA) model. Findings reveal varying degrees of 
dryness in the Corong River Basin, with 77% categorized as Strong dry 
conditions, 1% as Dry, 0.3% as Moderate wetness, and 21.6% as 
wetness. Drought predominantly occurs between July and October, 
impacting approximately 78% of the total dry area and extending 
across almost the entire region. The SARIMA (0,0,1)(3,0,0)12 model, 
with a MAPE value of 0.2399, emerges as the most effective for 
predicting agricultural drought. These forecasted results provide 
critical insights into the level of agricultural drought in the Corong 
River Basin and valuable information for drought mitigation strategies, 
especially in regulating the distribution of irrigation water. 
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1. Introduction 
Here introduce the paper, and put a nomenclature if necessary, in a box with the same font size as the rest of 

the paper. The paragraphs continue from here and are only separated by headings, subheadings, images and 
formulae. The section headings are arranged by numbers, bold and 10.0 pt. Here follows further instructions for 
Drought is an extreme and recurring event that can damage agricultural production and cause water scarcity [1]. 
Drought leads to various physical issues, such as the inability of crops to grow properly (known as puso) [2], [3] 
and can also increase the likelihood of forest and land fires [4]. Drought can be classified into four types: 
meteorological, hydrological, agricultural, and socioeconomic [5]. Drought severity is influenced by various 
factors such as the area's intensity, duration, geographical extent, and socioeconomic status [6]. When rainfall in 
a particular region falls significantly below (by 25% or more) the long-term average, it is called a meteorological 
drought [7]. Drought can lead to hydrological drought, characterized by surface water depletion, causing low river 
flow and drying up lakes, rivers, and reservoirs [8], [9]. Eventually, this results in agricultural drought, where soil 
moisture is inadequate and causes severe plant stress and decreased agricultural productivity [10]. 

Drought in agriculture is a complex natural and global phenomenon that can cause significant economic 
losses, especially for developing countries. Agricultural drought is closely related to water resilience and crop 
production [11]. Agricultural drought usually refers to when soil moisture decreases and affects crop production 
or even leads to crop failure without explicitly referring to surface water resources [12]. As the importance of food 
security is increasingly recognized, much research has been done to develop methodologies for monitoring 
agricultural drought. Over the past few decades, many methods have been developed to study agricultural drought 
based on factors such as rainfall, soil moisture, temperature, vegetation indices, and other indicators [13] 

Drought assessment through indices has changed over time [14]-[16]. Initially, indices such as the Vegetation 
Drought Response Index (TVDI) [17] and the Vegetation Temperature Condition Index (VTCI) [18]-[20], which 
were based on vegetation and temperature, were developed. However, these indices have since expanded to form 
a collection of indices utilized for drought assessment. This group of indicators, which depends on plant life, 
comprises the Moisture Stress Index (MSI) [21], Simple Ratio Water Index (SRWI) [22], Normalized Difference 
Water Index (NDWI) [23], Normalized Difference Drought Index (NDDI) [24], Land Surface Water Index (LSWI) 
[25], Vegetation Condition Index (VCI) [26]-[28], and the Severity of Drought Index (DSI) [29]-[31]. 

The advancement of remote sensing satellite technology has enabled researchers to use various types of 
remote sensing data, including multispectral, thermal infrared, or microwave data, to monitor droughts on a large 
scale [32], [33]. Satellite remote sensing offers a comprehensive view of the land and spatial context for measuring 
the impact of drought, making it a valuable source of timely and spatially continuous data that can facilitate 
monitoring vegetation dynamics in large areas [33]. The normalized difference vegetation index (NDVI) calculated 
from remote sensing images is a widely used indicator to monitor droughts. It separates vegetation from the 
background soil and provides valuable information about vegetation health [34], [35]. However, NDVI alone may 
not be sufficient to identify vegetation drought, as other factors like land cover changes and pest attacks can cause 
similar anomalies. Rainfall and soil moisture datasets from microwave satellite sensors have also been utilized to 
monitor droughts. Studies have shown that NDVI has a slow response to rainfall deficit [36], [37]. Conversely, the 
Normalized Difference Water Index (NDWI) uses both bands in the near-infrared region and is highly sensitive to 
rainfall [38]. 

Remote sensing technology has been widely used to monitor drought in Indonesia. However, the technology 
and methods used have not been reviewed at different study scales. This review would help identify the strengths 
and weaknesses of the methods used, allowing for improvements in future studies. Researchers have used remote 
sensing data to monitor drought in Indonesia based on the VHI index, using MODIS and TRMM images at the island 
and provincial scales [39]. Additionally, some researchers have used Landsat-8 images, vegetation indices, and 
machine learning to monitor drought at the provincial scale in Central Java and the district scale using the VHI and 
NDDI indices [40]-[42]. In a recent study, the analysis of drought in agricultural land was conducted using the 
NDDI method based on the use of NDVI and NDWI with data collection years in 2015 and 2019 in the Ciampel 
Regency [43].  
The Normalized Difference Drought Index (NDDI) is a superior drought index for several reasons. Firstly, it 
measures plant and soil water levels, which is critical for assessing drought severity. Secondly, it provides a more 
accurate reflection of the impacts of rainfall and crops compared to other indices. Additionally, it effectively 
reduces noise from the atmosphere and vegetation, which is not the case for indices such as NDVI or NDWI. Lastly, 
the NDDI is solely on satellite data, eliminating the need for extra weather data. These benefits make the NDDI an 
excellent tool for accurately monitoring drought conditions and their impacts [44], [45]. 

Predicting drought is vital for assisting local governments in minimizing the effects of drought and managing 
water resources efficiently. One of the most used methods for drought prediction is time series forecasting, where 
past observations are analyzed to establish a model that describes the correlation among them. The time series is 
then projected into the future based on this model. The Markov chain approach creates an early warning system 
[46]. They adopted a non-homogeneous Markov chain formulation to obtain drought characteristics and assess 
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dry spells in two climatic regions in Virginia, USA, based on long-term PDSI records [47]. Another frequently used 
time series model is the AutoRegressive Integrated Moving Average (ARIMA) model [48], [49]. However, this 
linear model presumes the time series data is stationary and cannot capture irregularities and non-linearities in 
the data. 

The primary benefit of the ARIMA forecasting model is that it only necessitates time series data. Therefore, 
the ARIMA model is primarily used for time series analysis on the shipment of goods and transportation demand 
[50]. ARIMA modelling has also been utilized for streamflow and inflow [51], [52] and power grids [49]. The 
SARIMA model can adequately describe time series that exhibit non-stationarity within and across seasons. If the 
estimated parameter is more significant than one, the forecast result will be larger than the observation, and with 
an increase in forecast steps, the forecast value gradually increases. 
 The SARIMA modelling approach has been recognized as a statistical method recommended for data collected 
over a long period. The primary aim of this study is to create a model for agricultural drought using remote 
sensing, with Landsat 8 imagery as the data source, and combining Normalized Difference Vegetation Index 
(NDVI) and normalised Difference Water Index (NDWI) algorithms to create the NDDI method. The analysis will 
be done for the time from 2017 to 2021. The next step is to use this model to forecast agricultural drought in the 
Corong River Basin. Seasonal Autoregressive Integrated Moving Average (SARIMA) models will be used based on 
the time series of drought monitoring results obtained from the Normalized Difference Drought Index (NDDI). 

2. Methodology 

2.1 Study Area 
This study takes place in the Corong River Basin, part of the Bengawan Solo River Basin, covering 815,081 km2. 
The Bengawan Solo River Basin is between 110o18' and 112o 45' east longitude and between 6o 49' and 8o 08' 
south latitude (Fig. 1). The Corong River Basin is responsible for supplying water to the Gondang Reservoir. The 
Gondang Reservoir, currently under construction, is designed to supply water to 7 field reservoirs for ten months, 
covering an area of 6,233 hectares during the dry season. During the rainy season, water is obtained from rainfall. 
Besides meeting irrigation needs, the Gondang Reservoir is also intended for domestic use and is being developed 
for fish farming and tourism. The reservoir has motorboats, parks, and animal cages [53]. 
 

Fig. 1 The location of the Corong River Basin 
 
2.2 The Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is the most used vegetation index for global greening. In 
green plants, chlorophyll substantially absorbs the Blue spectrum (0.4 - 0.5 m) and the Red spectrum (0.6 - 0.7 m) 
while reflecting the Green spectrum (0.5 - 0.6 m). As a result, healthy plants appear green. Between 0.7 and 1.3 
µm, the Near Infrared (NIR) band of healthy plants has high reflectivity. The internal leaf structure of the plant 
primarily causes NDVI. Strong reflectance in the NIR spectrum and strong absorption in the red spectrum are both 
bands used to compute NDVI. The formula below provides the Normalized Difference Vegetation Index (NDVI). 
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In this research analysis, Landsat 8 data was used to obtain NDVI values using the formula: 
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NDVI is a classic index that measures vegetation growth and density, and ranges from -1.0 to 1.0. Negative 
values indicate clouds or water, while positive values indicate bare soil (values close to zero) and dense green 
vegetation (values equal to or greater than 0.4). NDVI is widely used to evaluate key vegetation parameters 
primarily influenced by climate conditions, human activities, and anthropogenic causes. 
Generally, the following results were obtained: NDVI values ranging from -1 to 0 represent bodies of water. NDVI 
values ranging from -0.1 to 0.1 represent barren rock, sand, or snow. NDVI values ranging from 0.2 to 0.5 represent 
shrubs, grasslands, or mature plants. NDVI values ranging from 0.6 to 1.0 represent dense vegetation or tropical 
rainforests. 

2.3 The Normalized Difference Water Index (NDWI) 
The Normalized Difference Water Index (NDWI) is utilized to analyze water bodies, which involves using the 

remote sensing bands of Near Infrared and Green. This index is based on the fact that liquid water bodies typically 
reflect more light in the Blue spectrum (0.4-0.5 m) as compared to Green and Red spectra. The reflection in the 
visible spectrum's blue region gives clear water a blue appearance. However, murky water has a higher reflectance 
in the visible spectrum due to no reflection in the Near Infrared (NIR) band. NDWI was introduced by Gao in 1996 
to improve the detection of water-related features in a landscape. The index uses the Near Infrared (NIR) and 
Shortwave Infrared (SWIR) bands, and its calculation involves a specific formula. 
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For Landsat 8 data,  
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In this research, the NDWI transformation is employed to investigate its correlation with the possibility of 
drought. The study assumes that when the spectral value of the moisture index transformation of an object is low 
and indicated by the red-coloured spatial data index, the object is drier. Conversely, the object is wetter or more 
humid when the spectral value is high and indicated by the blue-coloured spatial index. 

2.4 The Normalized Difference Drought Index (NDDI) 
The NDDI (Normalized Difference Drought Index) transformation determines drought conditions in 

agricultural land. Previous research has indicated a relationship between vegetation and moisture indexes. The 
assumption used in this study is that high drought index values will occur when both the vegetation index and 
moisture index decrease. If this happens, drought conditions will occur in agricultural land. 
NDDI is a drought index developed to identify drought conditions in agricultural land. NDDI combines vegetation 
information from NDVI and water information from NDWI to obtain a better indication of agricultural drought 
conditions than using vegetation indices alone [54]. The equation for the NDDI value is: 
 

NDVI NDWINDDI
NDVI NDWI

−
=

+
 (5) 

 
NDVI represents the Normalized Difference Vegetation Index, while NDWI represents the Normalized 

Difference Wetness Index. The NDDI value, ranging from -1 to 1, serves as an indicator of drought conditions, with 
higher values indicating a more severe drought [55]. To evaluate the severity of drought, the occurrence of 
drought for each pixel was assessed by considering the NDDI classes [56], [57] that wet exceed 0.5. These classes 
correspond to wet (NDDI<0.5 Moderate Wet (NDDI 0.5–0.7), Dry (NDDI 0.7–1.0), and Strong Dry (NDDI>1.0). 
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2.5 Image Processing 
Remote sensing image data analysis using Landsat 8 OLI/TIRS level 2 images that have been geometrically 

and radiometrically corrected from 2017 to 2021. This data is employed for drought analysis using NDVI and 
NDWI. Both indices are utilized to conduct NDDI analysis. 

2.6 Seasonal Autoregressive Integrated Moving Average (SARIMA) 
The process of developing a SARIMA model involves several steps. First, creating ACF and PACF plots is 

necessary, followed by building the model and estimating its parameters while ensuring their significance. 
Subsequently, evaluating whether the residuals are white noise to determine the appropriate model. Finally, 
selecting the most suitable model is advised. 

Autocorrelation measures how a time series is related to itself at different lags. The autocorrelation function 
(ACF) coefficient [58], denoted by ρk, is used to compute autocorrelation. 
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where k is 0, 1, 2, ..., n, the rk is autocorrelation coefficient at lag k, Zt is observation data at the time of the t, and 
𝑍̅𝑍 is average data of observations. 

Partial autocorrelation measures the degree of kinship of the linear relationship between and when the 
influence of time lag 1, 2, ..., k-1 is considered separate. According to, the estimate of PACF is based on the 
autocorrelation coefficient in the Yule-Walker equation for k time lag, i.e. [57]. 
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So that the estimation of the PACF value is obtained as follows: 
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with φkj is φk-1,j.−.φkkφk-1,j-k for j = 1, 2, ..., k-1, where φkk is partial autocorrelation coefficient at lag k, ρk is 
autocorrelation coefficient on the suspected lag k with rk, ρj is autocorrelation coefficient on the suspected lag j 
with rj, and ρk-j are autocorrelation coefficient on lag (k-j) suspected with rk-j.  

Seasonal Autoregressive Integrated Moving Average (SARIMA) model is denoted as ARIMA (ρ, d, q)(P, D, Q)𝑠𝑠, 
where (ρ, d, q) represent the orders of the autoregressive (AR), moving average (MA), and non-seasonal 
differencing components, respectively. In contrast, (𝑃𝑃,𝐷𝐷, 𝑄𝑄) represent the orders of the seasonal AR, MA, and 
seasonal differencing components. The seasonal pattern in the time series is represented by s, the seasonal period. 
The general form of the ARIMA (ρ, d, q)(P, D, Q)𝑠𝑠 model equation is written as follows: 

 

( ) ( )( )( ) ( ) ( )2 1 1 D
p p s t q Q s tB B B B Y B Bφ θ εΦ − − = Θ  (10) 

 
with φp(B) = (1.−.φ1B.−.φ2B2 - ⋅⋅⋅ - φpBp); θq(B) = (1.−.θ1B.−.θ2B2 - ⋅⋅⋅ - θpBq); Φp.(Bs) = (1.−. Φ1Bs.−. Φ2B2s - ⋅⋅⋅ - ΦpBps) 
and ΘQ(Bs) = (1.−.Θ1Bs.−.Θ2B2s - ⋅⋅⋅ - ΘpBQs), where 𝑌𝑌𝑡𝑡 is the observation at time 𝑡𝑡, 𝜙𝜙𝑝𝑝 is the AR coefficient at order 
𝑝𝑝, 𝜃𝜃𝑞𝑞 is the MA coefficient at order 𝑞𝑞, Φ𝑃𝑃 is the Seasonal AR coefficient at order 𝑃𝑃, Θ𝑄𝑄 is the  Seasonal MA coefficient 
at order 𝑄𝑄, (1 − 𝐵𝐵)𝑑𝑑 is the Non-seasonal differencing, (1 − 𝐵𝐵)𝑠𝑠 is the Seasonal differencing, 𝐷𝐷 is the Seasonal 
differencing order, s is the Number of periods per season, 𝜀𝜀𝑡𝑡 is the Residual at time 𝑡𝑡 and 𝐵𝐵 is the Backshift operator. 

In the SARIMA method, the data needs to be in a stationary state. Thus, the initial step involves testing the 
stationarity of the data. This involves checking the stationarity of the variance using the Box-Cox transformation 
and examining the stationarity of the mean through the Augmented Dickey-Fuller test [59]. If the data is non-
stationary in terms of variance and mean, it can be made stationary by applying variance stabilization 
transformation and differencing. The next step is identifying an initial model by analyzing the autocorrelation 
function (ACF) and partial autocorrelation function (PACF) plots. Following that, the parameters of the formed 
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model are estimated by assessing the significance of the AR, MA, seasonal, and non-seasonal parameters (they 
should significantly deviate from zero). A diagnostic check is performed as the fourth step. It ensures that the 
errors adhere to a white noise process, indicating the absence of autocorrelation. This check involves examining 
the results of the Ljung-Box test (p-value > alpha = 0.05). Additionally, the errors should exhibit a normal 
distribution, which is assessed by reviewing the outcomes of the Kolmogorov-Smirnov test (p-value > alpha = 
0.05) [60]. Finally, the best model is chosen by considering the model with the smallest mean square error (MS) 
or the smallest means square [61]. 

 

3. Results and Discussion 
3.1 The Normalized Difference Vegetation Index (NDVI) 

The NDVI (Normalized Difference Vegetation Index) in remote sensing indicates the relationship between 
spectral variability and vegetation changes in growth rate. Since the index is determined using normalization 
processes, NDVI values range between 0 and 1, indicating sensitivity to green vegetation even in areas with little 
vegetation cover. This index generally applies to regional and global vegetation evaluation studies and is related 
to plant structure and photosynthesis [62]. The results are NDVI data processing in the Corong River Basin range 
from 0.21 to 0.73, with an annual average of 0.47. The trend in NDVI values varies yearly, experiencing decreases 
and increases strongly related to rainfall conditions. The highest increase occurred in 2021, and the lowest 
decrease occurred in 2019 and 2020. The NDVI value was calculated using Landsat surface reflectance remote 
sensing images that have been corrected with 30 m × 30 m medium-resolution data. This data can represent the 
vegetation cover properties in a specific area. Choosing this resolution can improve the accuracy of the results 
according to the field conditions and enhance plant efficiency and hydrological models [63]. 

From Fig. 2, in a recent study, NDVI was found to provide accurate land mapping around irrigation areas at a 
regional scale to understand drought in the event of decreased rainfall [3]. Changes in rainfall patterns in a warmer 
climate will strongly affect the hydrological cycle of agricultural land. For the possible effects of NDVI values in 
the region, accurate knowledge of the regional geographic distribution of irrigation areas is needed [64]. In this 
study, NDVI data were collected on a time series/periodic basis for 5 years, from 2017-2021, to represent regional 
characteristics in the study area. 
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Fig. 2 Map of NDVI distribution (2017-2021) in the Corong River Basin 

 
3.2 The Normalized Difference Water Index (NDWI) 

NDWI is used in this research analysis to assess the reflection of water content in soil and on the surface of 
plants. The NDWI value ranges from -1 to +1, where higher NDWI values indicate a high plant water content. 
Lower NDWI values indicate a low vegetation water content, causing a decrease in NDWI during water absorption 
periods. At this point, it is often stated that NDWI can be used to determine the degree of wetness or dryness. 
When rainfall increases, the NDWI value also increases [5]. 

From Fig. 3, The results of NDVI data processing in the Corong River Basin are from -0.608 to -0.256, with an 
annual average of -0.506. The NDWI value in this area generally indicates a low level of wetness, even tending to 
be dry. Although there has not been a significant change in the NDWI value, this data can represent the water 
content in both soil and surface. The northern area has a relatively high level of wetness, while the central to 
southern areas are relatively dry. This finding is consistent with previous research [65], which shows that areas 
with high NDWI values have vegetation or soil with high water or moisture content, especially around the Gondang 
reservoir. 
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Fig. 3 Map of NDWI distribution (2017-2021) in the Corong River Basin 

3.3 The Normalized Difference Drought Index (NDDI) 
The NDDI transformation combines data from NDVI and NDWI to create a broader and more precise range of 

transformation values, with differences of up to 5%. NDVI uses radiation absorption to measure vegetation canopy 
chlorophyll and mesophyll content, while NDWI measures canopy moisture based on water and mesophyll 
content. In the NDDI transformation, higher values indicate denser and wetter vegetation. However, in the case of 
NDDI transformation, higher values imply drier areas. 

NDDI can be classified into three classes: no drought (NDDI value less than 0.1), moderate drought (NDDI 
value ranging from 0.1 to 0.3), and severe drought (NDDI value greater than 0.3) (Fig. 4). However, some studies 
may use different thresholds or categories depending on context and purpose. This study measured drought with 
vulnerability index classes following the latest research conducted in Romania with characteristics of wheat 
farming areas. The drought classes were moderate drought (0.5 - 0.6), severe drought (0.6 - 1.0), and extreme 
drought (>1.0). 

From Fig. 4, the study shows that the Corong River Basin experienced 77% Strong dry, 1% Dry, 0.3% Moderate 
wetness, and 21.6% wetness. The proportion of the area affected by drought has increased in the last two years, 
2020 and 2021, while there was a significant decrease in 2018. Agriculture in the area is greatly affected by 
drought. Although NDVI analysis shows that vegetation such as rice grows in the area, NDWI analysis indicates 
that the area experiences drought due to low soil moisture levels. 

Regular analyses are conducted to monitor the area's dryness level based on NDDI processing data. It is found 
that drought often occurs from July to October every year. The average percentage of dry areas is 78% of the total 
area during these months. In Fig. 5, the distribution of drought occurs in almost the entire area. In 2017, wetness 
only occurred in a few scattered points, while in most of the area, it was almost dry. In 2018, wetness increased in 
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the southern part of the area, while from 2019 to 2021, wetness only occurred in the northern to eastern regions, 
with a little in the south. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Map of NDWI distribution (2017-2021) in the Corong River Basin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 5 Map of NDDI distribution (2017-2021) in the Corong River Basin 
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3.4 Forecasting Agricultural Drought using Normalized Difference Drought Index 
(NDDI) with Seasonal Autoregressive Integrated Moving Average (ARIMA) 

3.4.1 Identification of Stationarity in Mean 
After the data is declared stationary in variance, it will also be tested for stationarity in the mean. A 

stationarity test in the mean uses the Augmented Dickey-Fuller test. Based on the test results from Augmented 
Dickey-Fuller, a 𝛿𝛿 value of -3.87209 and a ρ-value of 0.002 were obtained. The data can be considered stationary 
in the mean, thus fulfilling the assumption of stationarity. They can be continued for further analysis: ARIMA 
modelling using ACF and PACF plots. 

3.4.2 Identification of ARIMA Model Order 
The model order of ARIMA can be determined using ACF and PACF plots. In Fig. 6, it is shown that the NDDI 

time series plot of the agricultural drought index in the Corong River Basin has an ACF lag 12, indicating that the 
differencing process is not necessary. For the PACF graph, a lag 12 outside the lines indicates seasonal data. From 
the above ACF and PACF tables, the tentative ARIMA model is ARIMA (1,0,1)(3,0,2)12, ARIMA (0,0,1)(3,0,0)12, 
ARIMA (1,0,0)(0,0,2)12, ARIMA (1,0,0)(0,0,1)12, and ARIMA (0,0,2)(3,0,1)12. 

 

Fig. 6 A time series plot, (a) autocorrelation function (ACF), and (b) partial autocorrelation function (PACF) of the 
NDDI agricultural drought index in the Corong River Basin 

3.4.3 Parameter Significance Test 
Once the ARIMA model has been estimated, the next step is to estimate the parameters of the ARIMA model 

and perform significance tests on them. The estimated parameters and their significance testing results for each 
model estimation are presented in Table 1. Based on the results, it can be seen that the significance test and 
parameter estimation results from the ARIMA model suggest that all models are significant. 

Table 1 Parameter significance test ARIMA model of NDDI 

Model Estimation ρ-value Significance of Parameters 
ARIMA (1,0,1)(3,0,2)12 AR1 0.016 Significance 

SAR1 0.006 Significance 
SAR2 0.017 Significance 
SAR3 0.000 Significance 
MA1 0.000 Significance 

SMA1 0.000 Significance 
SMA2 0.041 Significance 

ARIMA (0,0,1)(3,0,0)12 SAR1 0.000 Significance 
SAR2 0.000 Significance 
SAR3 0.000 Significance 
MA1 0.000 Significance 

ARIMA (1,0,0)(0,0,2)12 AR1 0.000 Significance 
SMA1 0.004 Significance 
SMA2 0.014 Significance 

ARIMA (1,0,0)(0,0,1)12 AR1 0.000 Significance 
SMA1 0.003 Significance 

ARIMA (0,0,2)(3,0,1)12 SAR1 0.000 Significance 
SAR2 0.000 Significance 
SAR3 0.000 Significance 
MA1 0.000 Significance 
MA2 0.017 Significance 

  
(a) (b) 
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SMA1 0.001 Significance 

3.4.4 Diagnostic Test of Residuals 
After the estimation and significance test of the parameters of the ARIMA model, an independent test of the 

model residuals will be conducted to determine whether there is any autocorrelation in the residual model or a 
white noise test. Based on the results from Table 2, it can be said that some of the estimated model residuals 
ARIMA (1,0,1)(3,0,2)12 and ARIMA (0,0,2)(3,0,1)12 have p-values < 0.05, indicating that the residual model is 
autocorrelated.  

Table 2  The significance test of parameters and the Ljung-box-pierce test of the tentative SARIMA model 

Model p-value Significance of 
Parameters 

ARIMA (1,0,1)(3,0,2)12 0.000 Non Significance 
ARIMA (0,0,1)(3,0,0)12 0.138 Significance 
ARIMA (1,0,0)(0,0,2)12 0.921 Significance 
ARIMA (1,0,0)(0,0,1)12 0.491 Significance 
ARIMA (0,0,2)(3,0,1)12 0.000 Non Significance 

 

3.4.5 Selection of The Best Model 
Next, the significant models that have undergone residual diagnostic testing will be evaluated for their AIC 

values, and the best model will be selected based on the criterion of the smallest AIC value. The following are the 
AIC values of the significant models. Table 3 and Fig. 7 show that the best model can be selected based on the 
smallest AIC. To make predictions, the best model with the smallest AIC is ARIMA (0,0,1)(3,0,0)12. 

Table 3 The AIC value of the estimated model 

KODE Model AIC MAPE 

SARIMA1 ARIMA (0,0,1)(3,0,0)12 294,45 0.239947 
SARIMA2 ARIMA (1,0,0)(0,0,2)12 321.31 0.526315 
SARIMA3 ARIMA (1,0,0)(0,0,1)12 326.68 0.541836 

 

 

Fig. 7 Time Series Plot NDDI, ARIMA1, ARIMA2 and ARIMA3 
 

ARIMA (0,0,1)(3,0,0)12 is a statistical model for analyzing time series data. The mathematical equation for this 
model is as follows: 

( ) ( )2 3
1 2 3 11 1s s s

t tB B B Y Bθ ε−Φ −Φ −Φ = −  (11) 

 

 



Int. Journal of Integrated Engineering Vol. 16 No. 1 (2024) p. 378-393 389 

 

 

12 12 12
1 2 3 1t t t t t tY B Y B Y B Y Bε θ ε−Φ −Φ −Φ = −  (12) 

 

12 24 36 10.6883 0.7068 0.9823 1.01100t t t t t tY Y Y Y ε ε− − − −+ − − = +  (13) 
 
where is the value of the time series at time t, c is a constant, εt is the noise at time t, θ1 is an autoregressive moving 
average (ARMA) parameter, Φ1, Φ2, and Φ3 are autoregressive seasonal (SAR) parameters with a period of 12, and 
(0,0,1) indicates that the model has one regular moving average (MA) parameter. This ARIMA model can be used 
to predict the value of Yt in the future based on historical data that has been observed. 
 

12 24 36 10.6883 0.7068 0.9823 1.01100t t t t t tY Y Y Y ε ε− − − −+ − − = +  (14) 

3.4.6 Prediction 
If the best model has been obtained, ARIMA (0,0,1)(3,0,0)12, the next step is to make predictions for the next 

12 months from January to December 2021, which can be seen in Table 4 with a MAPE value of 0.2399. 
 

Table 4  Results of NDDI using ARIMA (0,0,1)(3,0,0)12 

Period Actual Forecast Category 
Jan 2021 17.4120 15.8248 Strong dry 
Feb 2021 11.2570 16.0686 Strong dry 
Mar 2021 6.4850 13.7689 Strong dry 
Apr2021 8.4680 11.4934 Strong dry 
Mei 2021 10.4730 6.6635 Strong dry 
Jun 2021 10.0780 0.5361 Moderate wet 
Jul 2021 7.7190 -0.4273 wet 

Aug 2021 1.6210 -3.7083 wet 
Sep 2021 -5.0610 -8.4222 wet 
Oct 2021 -2.7300 15.9137 Strong dry 
Nov 2021 -3.8800 -9.4135 wet 
Dec 2021 10.6710 -10.5355 wet 

 
In Table 4, it can be seen that according to the model for forecasting, the highest drought value of 16.0686 

was obtained in February 2021. However, from the actual data, the highest drought value of 17.4120 was obtained 
in January 2021. The Mean Squared Error value can be calculated as follows: 
 

( ) ( )
2

'

1

1 1 1127.423 93.9519
12

n

i i
i

MSE Y Y
n =

= − = =∑  (15) 

 
From the above analysis, the Mean Squared Error value obtained is 93.9519. The Mean Squared Error method 

is generally used to check the estimated error value in forecasting. A low Mean Squared Error value or a Mean 
Squared Error value close to zero indicates that the forecasted results align with the actual data and can be used 
for future forecasting calculations. 

3.5 Discussion 
This study aimed to create a model for agricultural drought using remote sensing, with Landsat 8 imagery as the 
data source, and combining Normalized Difference Vegetation Index (NDVI) and normalized Difference Water 
Index (NDWI) algorithms to create the NDDI method. This will be done for the time from 2017 to 2021. The next 
step is to use this model to forecast agricultural drought in the Corong River Basin. Seasonal Autoregressive 
Integrated Moving Average (ARIMA) models will be used based on the time series of drought monitoring results 
obtained from the Normalized Difference Drought Index (NDDI). The research revealed that the Corong watershed 
region suffered from 77% Strong dry, 1% Dry, 0.3% Moderate wetness, and 21.6% wetness. The percentage of 
drought-affected areas has increased in the last two years (2020-2021), whereas there was a significant decrease 
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in 2018. This rise is likely due to the El Nino and La Nina phenomena, which intensified in Indonesia in 2019-2020 
and probably contributed to the increased percentage of dry areas. Regular assessments are performed based on 
NDDI data processing to track the region's dryness level [60]. The study also found that drought mainly occurred 
from July to October every year, with an average of 78% of the area being dry during these months. The 
distribution of drought covered nearly the entire region. In 2017, only a few scattered points had wetness, while 
the rest of the area was almost dry. Wetness increased in the southern part of the area in 2018, whereas from 
2019 to 2021, wetness occurred primarily in the northern to eastern regions and, to a lesser extent, in the south. 
Based on the discussion results, the author concluded that the ARIMA (0,0,1)(3,0,0)12 model with a MAPE value 
of 0.2399 is suitable for predicting agricultural drought using NDDI based on the testing steps that have been 
carried out. This is because it is the model with the smallest AIC value, has significant parameters, and meets all 
assumptions. Based on the analysis provided, the calculated Mean Squared Error is 93.9519. The Mean Squared 
Error technique is commonly employed to assess the accuracy of forecasts by measuring the magnitude of 
estimation errors. A smaller Mean Squared Error value, or one that approaches zero, indicates a closer alignment 
between the forecasted values and the actual data, thus making it suitable for future forecasting calculations. 
Predictions were made for the following 12 periods using this model, showing the level of agricultural drought in 
the Corong River Basin. These results can be used for drought mitigation, especially for regulating water 
distribution in irrigation areas. 

4. Conclusion 
Based on the discussion results, the study found that the Corong River basin experienced a drought of 77% 

Strong dry, 1% Dry, 0.3% Moderate wetness, and 21.6% wetness. The study also found that drought mainly 
occurred from July to October each year, with an average of 78% of the total dry area during those months. The 
distribution of drought covers almost the entire area. Meanwhile, the best forecasting model for drought analysis 
was obtained using the ARIMA (0,0,1)(3,0,0)12 model with a MAPE value of 0.2399, suitable for predicting 
agricultural drought using NDDI. This model was the best because it had the smallest AIC value and significant 
parameters and met all assumptions. The prediction results for the next 12 months can indicate the level of 
agricultural drought in the Corong River Basin, which can be used for drought mitigation, especially in regulating 
the distribution of irrigation water in dry seasons. 
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