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1. Introduction 

The main purpose of the recent supply management 

is to gain the long term relationship with fewer and 

reliable suppliers. Therefore, supplier evaluation, which 

is an important phase in supply management, depends on 

assessing a wide range of quantitative and qualitative 

factors [1]. Brun et al. [2] introduced a framework for 

selecting the right performance measurement system for 

different supply chains. Ho et al. [3] and Karsak and 

Dursun [4] obtained two comprehensives review on 

supplier selection methods. 

A part of literature is assigned to the supplier 

selection problem in which performance criteria are 

imprecise and express in the form of fuzzy numbers. In 

this line of research, Azadi et al. [5] proposed fuzzy data 

envelopment analysis for green supplier selection. 

Hatami-Marbini et al. [6] applied a flexible cross-

efficiency data envelopment analysis to solve supplier 

selection problem. Fallahpour et al. [7] proposed an 

integrated model based on the fuzzy data envelopment 

analysis and genetic programing for green supplier 

selection. 

All aforementioned studies are subjective approaches 

that require experts’ subjective opinion and their 

judgments to solve supplier selection problem. Subjective 

information may strongly affect the final ranking results. 

Secondly, when applying the AHP method, it is generally 

a difficult task for the decision maker to accurately assign 

crisp numbers to each pair-wise comparison. Thirdly, 

when the size of problem (i.e., the number of criteria and 

suppliers) grows, it is almost impossible using the AHP 

method because of difficulties when dealing with large 

pair-wise comparison matrices. Therefore, some authors 

use a more robust mathematical method such as DEA 

which does not require any subjective information [8-12]. 

In all DEA models extended in the aforementioned 

studies, it is emphasized that the performance measures 

(i.e., inputs and outputs) are exact. However, there are 

real situations, in which some of the inputs and outputs 

with respect to supplier attributes are imprecise in the 

form of bounded data, ordinal data and ratio bounded 

data. To address this issue, Wu et al. [13] presented a 

modified DEA method for supplier selection with 

imprecise information.  

Saen [14] proposed an imprecise DEA (IDEA) model 

to evaluate the performance of suppliers in the presence 

of both quantitative and qualitative data. The author 

applied the proposed model to evaluate the performance 

of 18 suppliers based on three performance measures. 

The total cost of shipments (TC) and supplier reputation 

(SR) considered as the cardinal and ordinal inputs, 

respectively. Besides, the number of bills received from 

supplier without errors (NB) considered as a bounded 

output. However, the IDEA model proposed by Saen [14] 

has some drawbacks such as unrealistic inputs-outputs 

weights and poor discrimination power among all 

suppliers, especially efficient suppliers. Since for each 

supplier, the IDEA model provides a flexibility to choose 

the weights in its own favour, i.e. in a way to maximize 

its own efficiency score. Allowing such weight flexibility 

may result in identifying a supplier to be efficient by 

giving an extremely high weight to criteria with respect to 

which it has shown an extremely good performance and 

an extremely small weight to those with respect to which 

it has shown a bad performance. Such an extreme 

weighting is unrealistic and causes the IDEA model to 

have a poor discriminating power. Moreover, IDEA 

model presented by Saen [14] is not an appropriate 

decision tool for supplier selection. Since, in case where 

there are several efficient suppliers, the conventional 

IDEA model cannot discriminate them and select the best 
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supplier. Saen [15] also proposed a pair of 

nondiscretionary factors imprecise data envelopment 

analysis (NF-IDEA) mode for supplier selection. 

To avoid unrealistic weight distribution and 

overcome the poor discriminating power of DEA models 

with exact data, several approaches have been proposed 

in DEA literature. One of them is constructed based on 

the weight restrictions. In the case of supplier selection, 

Saen [16] addressed a DEA model by considering both 

cardinal and ordinal data and weight restrictions. 

However, DEA models with weight restrictions are 

formulated based on the value judgment, which reduces 

the degree of objectiveness of DEA. To alleviate 

aforementioned deficiencies, some studies focused on the 

common weight DEA models with exact data [17-20].  

This paper develops a multi-objective imprecise 

DEA model based on the common weights for supplier 

evaluation in the presence of both cardinal and imprecise 

data. The proposed model improves the discriminating 

power among all suppliers. In addition, it can 

discriminate the efficient suppliers and determine a single 

supplier as the best one and at the same time it does not 

require any subjective information. The proposed model 

is computationally efficient, since, it does not require 

solving one LP model to evaluate each supplier. The 

efficiency of all suppliers can be provided by just solving 

the proposed model one time. 

The rest of the paper is organized as follows. Section 

2 briefly presents the conventional IDEA model. The 

proposed common weight multi-objective DEA model 

under both cardinal and imprecise data is constructed in 

section 3. The solution procedure of the proposed model 

is demonstrated in section 4. Application of the proposed 

model for supplier selection is shown by a numerical 

example taken from the literature in section 5. The 

robustness and discriminating power of the proposed 

model are also illustrated in this section. Finally, the 

concluding remarks are reported in section 6. 

 

2. Imprecise data envelopment analysis 

The DEA model developed by Charnes et al. [21] is a 

mathematical programming model that considers several 

inputs and outputs to assess the efficiency of n decision-

making units (DMUs) with m inputs and s outputs. The 

efficiency of k-th DMU can be calculated by solving the 

following model [22]: 
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where 

xij: the i-th input value for j-th DMU, 

yrj: the r-th output value for the j-th DMU, 

ur : the weight of the r-th output, 

vi : the weight of the i-th input, and 

 :  a very small positive value. 

The above fractional DEA model assumes that all 

outputs and inputs data are exact. However, there are 

many situations especially in the supplier selection 

problems where the exact data are not available. Zhu [23] 

discussed that some of the inputs and outputs may be 

imprecise data in the form of bounded data, ordinal data 

and ratio bounded data as follows: 

Bounded data: 

ijijijrjrjrj
xxxandyyy   

BIiBOrfor  ,                                      (2) 

where 
rj

y  and 
ijx   denote the lower bounds, 

rj
y  and 

ijx  denote the upper bounds, and BO and BI represent 

the sets of underlying bounded outputs and bounded 

inputs, respectively. 

Weak ordinal data: 

DIiDOrkjforxxyy ikijrkrj  ,,;  

or, to simplify the presentation. 

DOryyyy rnrkrr  21         (3) 

DIixxxx inikii  21      (4) 

where DO and DI represent the sets of underling weak 

ordinal outputs and inputs, respectively. 

Strong ordinal data: 

SOryyyy rnrkrr  21         (5) 

SIixxxx inikii  21       (6) 

where SO and SI represent the sets of underling strong 

ordinal outputs and inputs, respectively. 

Ratio bounded data: 
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where 
rjL and 

ijG  represent the lower bounds, and 

rjU and 
ijH  denote the upper bounds. RO and RI 

represent the sets of underlying ratio bounded outputs and 

inputs, respectively.  

Suppose 
 iijx  and 

 rrjy represent any or all of 

Eq. (2-8). If we have some imprecise inputs and (or) 

outputs, we incorporate 
 iijx  and 

 rrjy  into 

model (1). It is clear that in this condition, model (1) is a 

non-linear and non-convex model, because some inputs 

and outputs become unknown variables. Model (1) can be 
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converted to the following fractional programming i.e., 

model (10), by Zhu scale-transformation [23] and 

variable-alteration, which are formulated as follows: 

jixvX

jryuY

ijiij

rjrrj

,

,




                                    (9) 

Using the fractional IDEA model (10) where some inputs 

and/or outputs are imprecise and others are exact, the 

efficiency score of k-th DMU can be measured by kh  as 

follows [23]: 
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In the above model, 
i

and 
 r  are also transformed 

into 


iD
~

and 


rD
~

 respectively as follow; 

1. bounded data: rjrrjrjr yuYyu  and
 

ijiijiji xvXxv  . 

2. ordinal data: 
rkrj YY 

 
and

 
kjXX ikij  for 

some r, i, 

3. ratio bounded data:
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4. exact data: 
rjrrj yuY ˆ

 

and

 

ijiij xvX ˆ , where 

rjŷ  and 
ijx̂  represent exact data. 

 

3. The proposed multi objective imprecise 

data envelopment analysis (MOIDEA) 

The proposed MOIDEA model is established based on 

the computation of efficiency through the difference 

between inputs and outputs. Chen et al. [18] used the 

difference approach to introduce multi-objective DEA 

with exact data. The logic behind the use of this 

difference in situation which some inputs and outputs are 

imprecise, is interpreted as follows:  

The proposed MOIDEA model is originated from model 

(10). To do this end, consider a DMUk and some values 

misrYXvu rkikir ...,,1,,...,1,,,, ****   satisfying the 

constraints of problem (10). We have the following 

equality statements: 
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In other words, when the ratio of the outputs to the inputs 

is 1 (i.e., hk is efficient), the difference between the inputs 

and outputs is zero and vice versa. If the difference 

between inputs and outputs becomes zero for a given 

DMU, it is efficient. Therefore, the difference between 

inputs and outputs can be used as a basis for the 

efficiency computation. Now, we show that the efficiency 

of DMU k can be investigated by minimizing the 

difference between outputs and inputs. Therefore, we 

propose to use the difference between outputs and inputs 

to construct a novel MOIDEA model. 

By assuming

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m

i

ik nkX
1

...,,1,0 , the constraints of 

model (10) are equivalent to the following statements. 
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By referring to the constraints of the model (10), we 

conclude that: 
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Thus, the maximum value that the efficiency hk can 

ideally reach is equal to 1. We introduce 


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 for each DMU. According to 

formulation (11), we deduce: 
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1kh  . Consider the following linear programming 

model: 
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The constraints of model (12) are equivalent to those of 

model (10). Moreover, if the optimal value of the 

objective function of problem (12) becomes zero, then 

DMU k is efficient. If DMU k is efficient in the sense of 

model (10), then we have: 
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where 
**** ,,, rirkik uvYX  are the corresponding optimal 

solutions. Then, they are also optimal for problem (12), 

and the optimal value of its objective function is 

0kg , that is, the DMU k is also efficient in the sense 

of model (10). If the DMU k is not efficient, an optimal 

solution of problem (10) is not necessarily optimal for 

problem (12). Conversely, an optimal solution of problem 

(12) is not necessarily optimal for problem (10). Thus, 

problems (10) and (12) are equivalent only in the case 

where DMU k is efficient. 

We proposes problem (13) which is equivalent to 

problem (12). The objective function of proposed model 

(13) is to minimize the distance function between kg
 
and 

0.  
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which |0|)0,(1  kkk ggdg is the usual distance 

in R. Problem (13) can be interpreted as follows. When 

the optimal value of )0,(1 kgd  be equal to 0, that 

is, 0kg , DMU k is efficient. When the optimal 

value 0)0,(1 kgd , that is, 0kg , the DMU k is 

inefficient. According to the proposed model (13), the 

efficiency value of DMU k is calculated as: 
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ikX  are corresponding optimal values of 

model (13). 

According to model (13), the efficiency of special DMU k 

is measured by minimizing the distance from ideal point 

0. Therefore, if we want a common set of weights that 

maximizes the efficiency of all DMUs, the proposed 

multi-objective DEA model is initially written as: 
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The goal of the proposed multi objective problem (14) is 

to minimize the distance to the ideal value 0 for each of 

DMUs. Hence, n-vector (0, 0,…,0) is considered as a 

reference point. In order to obtain a solution, We propose 

to convert the above n objective functions into the 

following single objective function. 
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we can extend other distance functions as follows:  
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Chebychev distance. According to this matter, proposed 

model (16) is converted to the following model:  
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Following Steuer [24], the above problem may produce a 

weak Pareto optimal solution, but not Pareto optimal. 

Therefore, we propose to apply the modified Tchebychev 

metric to get a Pareto optimal solution [24]. Finally, we 

reformulate the above problem as follows: 
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where   and z  are sufficiently small scalars. As kg  is 

non-negative, this article proposes to rewrite problem 

(18) to the following problem: 
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Proposed model (19) may result in more than one 

efficient supplier, and thus, fails in determining the best 

DMU. In such situation, Karsak and Ahiska [17] 

introduced a discriminating parameter to discriminate 

efficient DMUs in the context of DEA models. By 

following their approach, we propose the following 

common weight MODEA model to overcome this 

difficulty: 
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where EF denotes the set of DMUs that are currently 

received efficiency score of 1 and ]1,0[K  is a 

discriminating parameter. Proposed model (20) finally 

converges to a single DMU which receives efficiency 

score of 1 by augmenting the value of K from zero to one 

with a predetermined step size like 0.01 or 0.1. The lesser 

gl value of efficient DMUs by applying model (20) results 

in the better rank for lth DMU. 
 

 

4. Solution procedure  

In order to solve the supplier selection problem, we 

first employ proposed model (19) to obtain the efficiency 

score of suppliers. Sometimes, model (19) may result in 

more than one efficient supplier and hence decision 

maker cannot have any discrimination among efficient 

suppliers. In this manner, we recommend to use proposed 

model (20) to discriminate all suppliers. To sum up, we 

can carry out the following steps, which are graphically 

depicted in Figure 1, to obtain the full ranking results for 

all suppliers. In this manner, we can select the best 

supplier.  

Step1. Obtain the data for input and output variables 

and use formulations (2-8) for imprecise input-

output variables.  

Step 2. Formulate the supplier selection problem 

according to proposed model (19) and solve it to 

identify the efficient DMU(s) (i.e. DMU(s) having 

the efficiency score of 1). If there is a single 

efficient DMU, stop; otherwise, go to step 3. 

Model (19) may result in one efficient supplier in 

this step. In this manner, we can select it as the 

best supplier. Furthermore, model (19) may 

determine several suppliers as the efficient DMUs. 

In this manner, we employ step 3 to discriminate 

all suppliers. 
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Provide input and 
output data 

Solve proposed 
model (19) 

Is there a 
single efficient 

DMU? 
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model (20) 

Stop 

Yes 

No 

Fig 1. The solution procedure 

 

 

Step 3. Construct the EF set, which contains the 

efficient suppliers determined in step 2. On the 

other hand, the suppliers that are received 

efficiency score of 1 by solving model (19) form 

EF set.  

Step 4. Formulate proposed model (20) based on the 

EF set introduced in step 3. Then, solve proposed 

model (20), by augmenting the discrimination 

parameter K   [0, 1] from zero to 1 by a 

predetermined step size like 0.01 or 0.001. Repeat 

step 4 until a single DMU remains efficient. It is 

worthy to mention that model (20) finally 

converges to a single best supplier with efficiency 

score of 1. 

Application of the proposed MOIDEA model as well 

as the solution methodology is illustrated in the next 

section. 
 

5. Application of the proposed model for 

supplier selection 

Saen [14] proposed the following model for supplier 

selection in the presence of both ordinal and cardinal 

data. Model (21) requires solving n LP model to obtain 

the efficiency score of each supplier. 
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(21) 

 

Saen [14] employed model (21) to evaluate 18 

suppliers whose the related data are presented in Table 1. 

The proposed multi-objective models are also applied on 

this data to evaluate and rank 18 suppliers. This data 

contains two inputs. The total cost of shipments (TC) is 

considered as the cardinal input. The other input which is 

considered as the qualitative input, is supplier reputation 

(SR). SR is an intangible factor that is not usually 

explicitly included in evaluation model for supplier. This 

qualitative variable is measured on an ordinal scale. Also 

number of bills received from supplier without errors 

(NB) is considered as the bounded output. 

The results of applying model (21) are shown in 

columns 5 and 6 of Table 1, which were obtained by Saen 

[14]. Seven out of 18 suppliers are received efficiency 

score of 1, i.e., supplier numbers 4, 6, 8, 9, 11, 14 and 17. 

The remaining 11 suppliers are inefficient whose 

efficiency scores are less than 1. According to the results, 

model (21) cannot discriminate the efficient suppliers and 

therefore fails to rank them and select the best supplier. 

To overcome this deficiency, this paper proposes 

MOIDEA model via common weights which has more 

discriminating power compared to model (21) for 

supplier evaluation and selection. 

The seventh column presents the efficiency scores by 

applying the proposed MOIDEA model. According to the 

results, three out of 18 suppliers receives efficiency score 

of 1, i.e., supplier numbers 4, 11 and 14 which are also 

considered as efficient suppliers by using model (21). The 

remaining suppliers, which receive efficiency score 

smaller than 1, are considered as inefficient suppliers. 

The number of efficient suppliers reduces from seven to 

three by applying the proposed model (19). This 

reduction implies the high discrimination power of the 

proposed MOIDEA model (19) compared with model 

(21). However, in this case model (19) could not 

discriminate all suppliers and hence it is unable to select 

the best supplier. 

Table 1 

In order to discriminate all efficient suppliers based 

on their efficiency scores, model (20) is employed. 

According to the results of model (19), EF set contains 

supplier numbers 4, 11 and 14. Model (20) is applied to 

obtain the full ranking results and discriminate all 

suppliers.  
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Table 1. Data and results 

Supplier 

No. 

Inputs  Output  Saen (2007)  MOIDEA 

TC x1j SRa x2j 
 NB y1j 

 Efficiency Ranking  Efficiency Ranking 

1 253 5  [50, 65]  0.722 12  0.332 13 

2 268 10  [60, 70]  0.7 13  0.338 12 

3 259 3  [40, 50]  0.556 16  0.250 17 

4 180 6  [100, 160]  1 1  1 1 

5 257 4  [45, 55]  0.611 15  0.277 16 

6 248 2  [85, 115]  1 1  0.600 7 

7 272 8  [70, 95]  0.95 8  0.452 11 

8 330 11  [100, 180]  1 1  0.706 6 

9 327 9  [90, 120]  1 1  0.475 10 

10 330 7  [50, 80]  0.8 10  0.314 15 

11 321 16  [250, 300]  1 1  1 1 

12 329 14  [100, 150]  0.75 11  0.590 8 

13 281 15  [80, 120]  0.66 14  0.553 9 

14 309 13  [200, 350]  1 1  1 1 

15 291 12  [40, 55]  0.55 17  0.245 18 

16 334 17  [75, 85]  0.34 18  0.329 14 

17 249 1  [90, 180]  1 1  0.935 4 

18 216 18  [90, 150]  0.892 9  0.899 5 
a Ranking such that: 18=highest rank, …. , 1= lowest rank 

17,216,218,2 xxx    

 

Table 2. Summary of results by applying model (20) 

Supplier 

No. 

K=0.0001  K=0.0005  K=0.001 

Efficiency Ranking  Efficiency Ranking  Efficiency Ranking 

1 0.332 13  0.332 13  0.332 13 

2 0.338 12  0.338 12  0.338 12 

3 0.250 17  0.250 17  0.250 17 

4 0.719 5  0.719 5  0.719 5 

5 0.277 16  0.277 16  0.277 16 

6 0.600 7  0.600 7  0.600 7 

7 0.452 11  0.452 11  0.452 11 

8 0.706 6  0.706 6  0.706 6 

9 0.475 10  0.475 10  0.475 10 

10 0.314 15  0.314 15  0.314 15 

11 1 1  1 1  1 1 

12 0.590 8  0.590 8  0.590 8 

13 0.553 9  0.553 9  0.553 9 

14 0.837 4  0.837 4  0.837 4 

15 0.245 18  0.245 18  0.245 18 

16 0.329 14  0.329 14  0.329 14 

17 0.935 2  0.935 2  0.935 2 

18 0.899 3  0.899 3  0.899 3 
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To do this end, discriminating parameter K is set as 

0.0001, 0.0005, and 0.001. In other words, discriminating 

parameter K is augmented from 0.0001 by a 

predetermined step size like 0.0004 or 0.0005. The 

efficiency and ranking results of suppliers are reported 

under different K values in Table 2. According to these 

results, model (20) discriminates all suppliers under all K 

values. The ranking of suppliers for different K values are 

also reported in Table 2. According to these results, 

supplier number 11 is identified as the best supplier under 

all K values. It is worthy to mention that in our case all 

suppliers are discriminated by setting K=0.0001. 

However, in the case where the full ranking results 

are not obtained under a given K value, we must augment 

this parameter by an appropriate step size so that all 

suppliers are discriminated and the full ranking results are 

obtained. An appropriate value for discrimination 

parameter K is a minimum value for which model (20) 

converges to a single best supplier.  

In the resolution of the problems (20) and (21),   is set 

to 10-3,   is set to 10−5, and z is set to 10−4.  

 

6. Concluding Remarks 
Imprecise data envelopment analysis is a popular 

and applicable tool for supplier evaluation and selection 

in situation which there are both cardinal and imprecise 

data. Besides of its popularity, IDEA model has some 

drawbacks such as unrealistic inputs-outputs weights and 

the lack of discrimination among of all DUMs. To 

remove these deficiencies, this paper develops a multi-

objective IDEA via common weights in the presence both 

of cardinal and imprecise data. The proposed MOIDEA is 

capable to discriminate all of suppliers and specifies one 

single best supplier. Applicability of the proposed models 

is illustrated by a numerical example taken from the 

literature for supplier evaluation and selection. Both 

robustness and discriminating of the proposed model are 

studied through this case study. In summary, the proposed 

common weight MOIDEA has the following merits: 

1. The recent IDEA model, i.e., model (21), provides n 

sets of weights for underlying performance criteria 

when evaluating each supplier. It was discussed 

earlier that such weighting values are unrealistic. 

Instead, the proposed method obtains a set of 

common weights for evaluating all suppliers which 

leads to efficiency scores calculated by similar 

weights which is very essential for fair comparison 

of suppliers.  

2. The proposed model (19) has more discriminating 

power than the model (21) by reducing the number of 

efficient suppliers which receive efficiency score of 

1. In the cases in which model (19) provides more 

than one efficient supplier, by assigning an 

appropriate value to the discriminating parameter K, 

model (20) ranks efficient suppliers.  

3. The proposed method does not require solving n 

models as it is the case in model (21). That is, by a 

single formulation (19), the efficiency score of all 

suppliers can be computed. In situation where there 

exist several efficient suppliers, proposed model (20) 

finally converges to a single efficient supplier by 

setting appropriate value for discriminating 

parameter. However, in the worst case of applying 

proposed method, the number of models required to 

be solved, were less than n in our numerical test. 
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