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1. Introduction 

Medical data commonly known as health information organized by technicians that help them to keep track 

medical records for healthcare facilities. They make sure that patient data is accurate, and all input data were kept into 

databases, where it can be analyzed for service quality and insurance reimbursement purposes. In addition, they ensure 

the confidentiality of sensitive medical information. Some medical data analysts choose to specialize in a particular 

area of the field, such as cancer treatment. It is important for the top management to do some decision making by using 

the data that are kept in database. However, there is no such systematic way that had been used by hospital to utilize the 

data and as a result the decision making will become very difficult. 

Recently, Artificial Neural Networks (ANN) had gained popularity among researchers and specialist in medical. 

Neural networks are a branch of “Artificial Intelligence" where is a system loosely modeled based on the human brain. 

The field goes by many names, such as connectionism, parallel distributed processing, neuro-computing, natural 

intelligent systems, machine learning algorithms, and artificial neural networks. Neural networks are a powerful 

technique to solve many real world problems this is because the ability to learn from experience in order to improve 

their performance and able to adapt with the changes in the environment [1-3].  

Abstract: The artificial neural network (ANN) particularly back propagation (BP) algorithm has recently been 

applied in many areas. It is known that BP is an excellent classifier for nonlinear input and output numerical data. 

However, the popularity of BP comes with some drawbacks such as slow in learning and easily getting stuck in 

local minima. Improving training efficiency of BP algorithm is an active area of research and numerous papers 

have been reviewed in the literature. Furthermore, the performance of BP algorithm also highly influenced by the 

size of the datasets and the data preprocessing techniques that been chosen. This paper presents an improvement of 

BP by adjusting the two term parameters on the performance of third order neural network methods. This work 

also demonstrates the advantages of using preprocessing dataset in order to improve the BP convergence. The 

efficiency of the proposed method is verified by means of simulation on medical classification problems.  The 

results show that the proposed implementation significantly improves the learning speed of the general back-

propagation algorithm. 

 

Keywords: Medical_diagnosis, neural network, back propagation 

Keywords: Keyword 1, keyword 2, number of keywords is usually 3-7, but more is allowed if deemed necessary 

http://publisher.uthm.edu.my/ojs/index.php/emait


Nazri Mohd Nawi et al., Emerging Advances in Integrated Technology Vol. 2 No. 1 (2021) p. 57-66 

 

 54 

Moreover, ANN are able to deal with incomplete information or noisy data and can be very effective especially in 

situations where it is not possible to define the rules or steps that lead to the solution of a problem. Biologically, 

Artificial Neural Network (ANN) is an interconnected group of artificial neurons that uses mathematical or 

computational model for information processing based on connectionist approach to computation. In more practical 

terms, ANN are non-linear statistical data modeling or decision making tools. They can be used to model complex 

relationships between inputs and outputs or to find patterns in data [4]. 

The performances of ANN particularly back propagation (BP) algorithm are very much depend on some 

parameter such as learning rate, momentum, target error and hidden nodes. Learning rate is defined in the context of 

optimization, and minimizing the loss function of a neural network. It defines a cost function for a neural network, and 

the goal is to minimize this cost function. For this research, we use gradient descent or other variants of it where the 

model parameters (here weights and biases in the network) are updated in a way to decrease the cost function. It 

determines how quickly or how slowly you want to update the parameters [5].  

Usually, one can start with a large learning rate, and gradually decrease the learning rate as the training 

progresses. Momentum is a physical property that enables a particular object with mass to continue in its trajectory 

even when an external opposing force is applied, this means overshoots. For example, one speeds up a car and then 

suddenly hits the brakes, the car will skid and stop after a short distance overshooting the mark on the ground. 

Therefore, the networks must be designed by trial and error: this empirical approach to network design is difficult to 

surmount. Furthermore, there is always a danger of overtraining a neural network because that minimizing the error 

measure occasionally does not correspond to finding a well-generalizing neural network. Therefore, this paper analyses 

the performance of BP by analyzing the effect of adjusting two parameters (learning rate and momentum) on some 

medical datasets. 

The remaining of the paper is organized as follows. The first section discusses on the basic concept of BP 

algorithm and its parameters are reviewed. While in the next section presents the tested on medical benchmark 

problems. This paper is concluded in the final section. 

 

2. Literature Review 

This section will discuss on basic concepts about BP and some parameters that contribute to the performance of BP 

algorithm. Towards the end of this literature review we present some adjustment on the parameters and the 

implementation with third order methods on medical classification data.  

 

2.1 Classification on Medical Data 

Medical classification, or medical coding, is the process of transforming descriptions of medical diagnoses and 

procedures into universal medical code numbers. The diagnoses and procedures are usually taken from a variety of 

sources within the health care record, such as the transcription of the physician's notes, laboratory results, radiologic 

results, and other sources [6]. Diagnosis codes track diseases and other health conditions. These diagnosis and 

procedure codes are used by health care providers, government health programs, private health insurance companies, 

workers' compensation carriers, software developers, and others for a variety of applications in medicine, public health 

and medical informatics, including statistical analysis of diseases and therapeutic actions, reimbursement, knowledge-

based and decision support systems and direct surveillance of epidemic or pandemic outbreaks.  

 

2.2 Artificial Neural Networks 

 

ANN have been developed as generalizations of mathematical models of biological nervous systems. Thus, ANN 

was applied based on the adaptations of processing unit of human’s brains and imitates the process to be modeled in the 

neural network. The basic elements in the ANN are the data that presented to input layers which then passed on to the 

hidden layer and next to output layer. Figure 1 shows the Multilayer Perceptron (MLP) structure which has 3 nodes of 

input, 4 nodes of hidden layer and 2 nodes on the output layers. Thus, the architecture of MLP network is 3-4-2. Each 

connection between the nodes has weight associated with it. Next, a learning algorithm where in this research the most 

popular and stable algorithm is back propagation algorithm and third order neural network algorithm is used to test the 

networks performance. As all the parameter was set, the data will be transforms to the network inputs and training 

process will begins. 
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Fig. 1- Artificial neural networks 

 

 

Back Propagation Neural Network was first proposed by Rumelhart and McClelland [7]. The back propagation 

neural network algorithm is a multi-layer feedforward network trained according to error back propagation algorithm 

and is one of the most widely applied neural network models. It works by approximating the non-linear relationship 

between input and the output by adjusting the weight values internally. It can further be generalized for the input that is 

not included in the training patterns or predictive abilities. Back Propagation Neural Network is also considered as one 

of the simplest and most general methods used for supervised training of multi-layer neural network and been used in 

many different types of applications. 

In addition, Back Propagation Neural Network are also used for prediction and classification because they are 

using gradient descent (GD) rule which attempts to minimize the error of the network by moving down the gradient of 

the error curve, Back Propagation Neural Network. Basically back Propagation Neural Network is a multilayer network 

that has three or more layer which are fully connected. It means that every neuron in each layer is connected to every 

other neuron in the adjacent forward layer. A neuron determines its output in a manner that is similar to Rosenblatt’s 

perceptron. The derivative of this function is easy to compute. It guarantees the neuron output is bounded between 0 

and 1. Since all the hidden neuron or nodes have contributed to the errors evident in the output layer, the output error 

signals are transmitted backwards from the output layer to each node in the hidden layer that immediately contributed 

to the output layer. This process is then repeated, layer by layer, until each node in the network has received an error 

signal that describes its relative contribution to the overall error as shown in Figure 2. 

 

 

 
Fig 2 - Back Propagation Neural Network Typology 

 

Once the error signal for each node has been determined, the errors are then used by the nodes to update the values for 

each connection weights until the network converges to a state that allows all the training patterns to be encoded. Back 

Propagation Neural Network algorithm looks for the minimum value of the error function in weight space using a 

technique called the delta rule or gradient descent. The weights that minimize the error function is then considered to 

the learning problem.    
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2.3 Two Term Parameters 

 

There are many parameters that can affect the performance of BP. However, for this research only two parameters 

of Back Propagation had been selected which are learning rate and momentum coefficient. Those parameters are used 

for controlling the weight adjustment along the descent direction.  

The momentum is another possible way to improve the rate of convergence is by adding some momentum to the 

adjustment expression [8] and will speed up the convergence, stabilize the training procedure and avoid the local 

minima. Basically, the momentum is set to be constant in the interval [0, 1]. This is because, it is discovered from 

simulations that the fixed momentum value to speed up learning only when the recent downhill gradient of the error 

function and the last change in weight have a parallel direction. When the recent negative gradient is in a crossing 

direction to the previous update, the momentum may cause the weight to be altered up the slope of the error surface as 

opposed to down the slope as preferred.  The modification of conventional back propagation algorithm in the proposed 

algorithm that uses adaptive learning rate and momentum where the learning rates are adjusted at each iteration to 

speed up the training time. 

The learning rate is one of the most effective means to accelerate the convergence of BP learning which values lies 

between [0,1]. It is a crucial factor to control the variable of the neuron weight adjustments for each iteration during the 

training process and therefore it affects the convergence rate. Learning rate defined in the context of optimization, and 

minimizing the loss function of a neural network. It defines a cost function for a neural network, and the goal is to 

minimize this cost function. For this optimization problem, we use gradient descent or other variants of it where the 

model parameters (here weights and biases in the network) are updated in a way to decrease the cost function. It 

determines how quickly or how slowly you want to update the parameters. The convergence speed is dependence on 

the choice of learning rate. The algorithm will take longer time to converge or may never converge or may never 

converge if the learning rate is too small. Therefore, the network will accelerate the convergence rate significantly and 

still possibly will cause the instability if the learning rate value is too high. The value of learning rate usually set to be 

constant for all weights in the whole learning process. 

 

3. The Proposed Third Order Neural Network 

 

According to Fletcher and Powel [9] and Fletcher and Reeves [10] most widely used Conjugate Gradient (CG) 

algorithms is ability to generate in very economical fashion, a set of vectors with a property known as conjugacy. Both 

these procedures generate conjugate search directions and therefore aim to minimize a positive definite quadratic 

function of   variables in   steps. The proposed algorithm referred to Rivaie, Mustafa, Ismail and Leong (RMIL/AG) 

begins the minimization process with an initial estimate   and an initial search direction as:   
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where the scalar )1( n  is to be determined by the requirement that nd  and 1nd  must fulfil the conjugacy property 

[11]. There are many formulae for the parameter )1( n  and the choice of the formulae for selection of )1( n  is 

problem dependent [11]. In this paper, common formula as referred by Rivaie, Mustafa, Ismail and Leong [11] (RMIL) 

is used which has been stated as: 
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Like )(n , the computation of learning rate   also requires knowledge as that of )(n . The learning rate   can be 

optimally chosen as to minimize the error )(E  along the chosen search direction nd . 

 

)())(()( 111)(   nnnn dwEwEE                            (4) 

The given us an automatic procedure for the setting the learning rate, once the search direction is chosen. This 
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procedure is also referred to as ‘line search’ method. 

In this paper we used golden section search technique to obtain optimized learning rate. The golden search technique 

starts by restricting   in ],[ 1 h . In this paper wet set 01   and 1h , then the following steps are performed. 

Compute )(),( 1 hEE   

 

If )()( 1 hEE   , then set )(618.0 11 hh    

If )()( 1 hEE   , then set )(618.0 11 hh    

The process is repeated until   )( 1 h  and then set 
2

1 h



 . 

 

The complete RMIL/AG [11] [10] algorithm works as follows: 

Step 1 Initialize the weight vectors randomly, the gradient vector 0g  to zero and gain vector to unit values. Let the 

first search direction 0d  be 0g . Set 00  , 1epoch  and 1n . Let Nt be the total number of weight 

values. Select a convergence tolerance CT. 

Step 2 At step n, evaluate gradient vector )( nn cg . 

Step 3 Evaluate )( nwE . If CTwE n )(  then STOP training ELSE go to step 4. 

Step 4 Calculate a new gradient based search direction which is a function of gain parameter: 

1)(  nnnnn dcgd  . 

Step 5 IF 1n  THEN,  

update 
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ELSE go to step 6. 

Step 6 IF 0]/)1[(  Ntepoch  THEN ‘restart’ the gradient vector with )( 11  nnn cgd  ELSE go to step 7. 

Step 7  Calculate the optimal value for learning rate 
*

n  by using line search technique 

Step 8   Update nnnnn dwww *

1 ::   

Step 9   Evaluate new gradient vector )( 11  nn cg  with respect to gain value 1nc . 

Step 10  Calculate new search direction:    

nnnnnn dccgd )()( 1111     

Step 11 Set 1 nn  and go to step 2. 

 

4. Results and Discussions 

 

The performance criterion used in this research focuses on the speed of convergence, measured in number of 

iterations, CPU time and accuracy. Two algorithms have been utilized in these researches which are Halley with BFGS 

and Halley with DFP methods which is representing Third Order method. 5 hidden nodes were selected throughout this 

research because it is the most stable architecture for selected datasets. Since the third order neural networks perform 

very fast for their convergence therefore, this research selected the maximum of 1500 epoch for running the simulation. 

This research was carried out by testing the algorithms performance using three medical data classification such as 

Breast Cancer, Diabetes, and Heart. The simulation testing was done by using Matlab R2010b software and performed 

on a CPU of Intel(R) 1017U, with 1.60 GHz processor. Meanwhile, some values are set as shown in Table 1. 
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Table 1 - Fixed variables 

Variables Value 

Hidden Nodes 5 

Target Error 0.001 

Maximum Epoch 1500 

Trials Total 50 

Momentum 0.3, 0.4, 0.5 

Learning Rate 0.3, 0.5, 0.7 

 

The simulation required data such as epoch, CPU time and accuracy. The data is then calculated into average. The 

results are recorded into a table of summary of epoch, CPU time, accuracy, Halley with BFGS and Halley with DFP. 

 

4.1 Breast Cancer Data Set 

The first benchmark problem data set is Breast Cancer data set. This is one of three domains provided by the 

Oncology Institute that has repeatedly appeared in the machine learning literature. Obtained from UCI Machine 

Learning Website, this data set includes 350 instances altogether. While for the testing example are 174 instances. The 

instances are described by 9 attributes of input and 2 attributes of output. The results of the testing were recorded as in 

Table 2 and 3. As summarized in the Table 3, Halley with DFP performed better than Halley with BFGS with the 

highest average accuracy of 93.57 percent at parameter with the learning rate 0.5 and momentum 0.3. Table 2 shows 

that, Halley with BFGS performed last at parameter learning rate of 0.3 and momentum of 0.3 and achieves accuracy of 

93.06 percent. Other than that, Halley with BFGS performs better in the term of CPU time average where Halley with 

BFGS is faster than Halley with DFP. As Halley with DFP reach 63 epochs to converge, Halley with BFGS performs 

with less epochs average that is 51 epochs. This means Halley with BFGS converges to global minima within fewer 

epochs, faster than Halley with DFP. 

 

Table 2 - The performance of Halley with BFGS on Breast cancer data set 

 HALLEY WITH BFGS   

PARAMETER ACCURACY 

(%) 

CPU 

TIME 

EPOCH 

LR= 0.3 , CM=0.3 93.06 2.92 51 

LR= 0.3 , CM=0.4 93.18 3.00 52 

LR= 0.3 , CM=0.5 93.23 3.02 53 

LR= 0.5 , CM=0.3 93.11 3.00 51 

LR= 0.5 , CM=0.4 93.09 2.98 52 

LR= 0.5 , CM=0.5 93.07 3.04 53 

LR= 0.7 , CM=0.3 93.11 3.08 55 

LR= 0.7 , CM=0.4 93.19 3.04 54 

LR= 0.7 , CM=0.5 93.09 2.96 52 

 

 

Table 3 - The performance of Halley with DFP on Breast cancer data set 

 HALLEY WITH DFP   

PARAMETER ACCURACY 

(%) 

CPU 

TIME 

EPOCH 

LR= 0.3 , CM=0.3 93.44 3.10 57 

LR= 0.3 , CM=0.4 93.34 3.18 56 

LR= 0.3 , CM=0.5 93.45 3.17 57 

LR= 0.5 , CM=0.3 93.57 3.53 63 

LR= 0.5 , CM=0.4 93.53 3.30 60 

LR= 0.5 , CM=0.5 93.36 3.17 58 

LR= 0.7 , CM=0.3 93.31 3.07 55 

LR= 0.7 , CM=0.4 93.44 3.13 55 

LR= 0.7 , CM=0.5 93.44 3.14 56 
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4.2 Heart Data Set 

The second benchmark problem data set is Heart data set. This data set contains 37 attributes, where 35 were the 

input and 2 were the output. The data sets taken have 152 instances. Meanwhile, 76 instances were used for testing. 

Taken from UCI Machine Learning Website, the data set was already processed. The simulation result for this 

benchmark data set was summarized in Table 4 and 5. As shown in the table, Halley with DFP was more performed 

than Halley with BFGS with the highest average accuracy of 74.15 percent at parameter for the learning rate is 0.5 and 

momentum is 0.3. In last place, Halley with BFGS at parameter learning rate is 0.5 and momentum is 0.5 with accuracy 

is 70.98 percent. Other than that, Halley with BFGS performs better in the term of CPU time average where Halley 

with BFGS is faster than Halley with DFP. As Halley with DFP reach 695 epochs at learning rate is 0.5 and momentum 

is 0.4 as the average from parameter, Halley with BFGS performs with less epochs average that is 118 epochs. This 

means Halley with BFGS converges to global minima within fewer epochs, faster than Halley with DFP. 

 

Table 4 - The performance of Halley with BFGS on Heart data set 

 HALLEY WITH BFGS  

PARAMETER ACCURACY 

(%) 

CPU 

TIME 

EPOCH 

LR= 0.3 , CM=0.3 71.24 8.16 134 

LR= 0.3 , CM=0.4 71.16 7.72 118 

LR= 0.3 , CM=0.5 71.29 8.40 136 

LR= 0.5 , CM=0.3 71.26 8.98 147 

LR= 0.5 , CM=0.4 71.29 6.95 120 

LR= 0.5 , CM=0.5 70.98 7.00 120 

LR= 0.7 , CM=0.3 71.26 7.90 138 

LR= 0.7 , CM=0.4 71.22 7.40 129 

LR= 0.7 , CM=0.5 71.34 7.64 132 

 

Table 5 - The performance of Halley with DFP on Heart data set 

 HALLEY WITH DFP  

PARAMETER ACCURACY 

(%) 

CPU 

TIME 

EPOCH 

LR= 0.3 , CM=0.3 73.38 33.36 538 

LR= 0.3 , CM=0.4 73.83 39.30 575 

LR= 0.3 , CM=0.5 73.81 36.39 587 

LR= 0.5 , CM=0.3 74.15 39.15 635 

LR= 0.5 , CM=0.4 74.05 42.03 695 

LR= 0.5 , CM=0.5 74.07 34.16 579 

LR= 0.7 , CM=0.3 73.40 28.60 465 

LR= 0.7 , CM=0.4 73.56 35.94 614 

LR= 0.7 , CM=0.5 73.64 41.11 666 

 

 

4.3 Diabetes Data Set 

The last benchmark problem data set is Diabetes data set. Taken from UCI Machine Learning Website, this data set 

describes that diabetes patient records were obtained from two sources: an automatic electronic recording device and 

paper records. Therefore, this data set consists of 384 instances where 192 instances were used for testing. As for the 

attribute, there are 10 attributes where 8 attributes are for input and 2 attributes are for output. Table 7 and 8 

summarizes the simulation testing result on Diabetes data set. In this data set from Table 6 and 7, Halley with DFP was 

more performed than Halley with BFGS with the highest average accuracy of 64.64 percent at parameter for the 

learning rate is 0.3 and momentum is 0.5. In last place, Halley with BFGS at parameter learning rate is 0.3 and 

momentum is 0.3 with accuracy is 63.07 percent. Other than that, Halley with DFP performs better in the term of CPU 

time average where Halley with DFP is faster than Halley with BFGS. As Halley with DFP reach 139 epochs as the 

average, Halley with BFGS performs with less epochs average that is 112 epochs. This means Halley with BFGS 

converges to global minima within fewer epochs, faster than Halley with DFP. 
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Table 6 - The performance of Halley with BFGS on diabetes data set 

 HALLEY WITH BFGS  

PARAMETER ACCURACY 

(%) 

CPU 

TIME 

EPOCH 

LR= 0.3 , CM=0.3 63.07 6.78 116 

LR= 0.3 , CM=0.4 63.19 5.87 115 

LR= 0.3 , CM=0.5 63.24 5.57 117 

LR= 0.5 , CM=0.3 63.21 6.26 115 

LR= 0.5 , CM=0.4 63.28 6.19 120 

LR= 0.5 , CM=0.5 63.13 5.29 119 

LR= 0.7 , CM=0.3 62.88 4.49 112 

LR= 0.7 , CM=0.4 63.17 4.57 117 

LR= 0.7 , CM=0.5 63.10 5.28 114 

 

Table 7 - The performance of Halley with BFGS on heart data set 

 HALLEY WITH DFP  

PARAMETER ACCURACY 

(%) 

CPU 

TIME 

EPOCH 

LR= 0.3 , CM=0.3 63.92 7.03 129 

LR= 0.3 , CM=0.4 64.15 7.35 132 

LR= 0.3 , CM=0.5 64.64 8.32 147 

LR= 0.5 , CM=0.3 64.20 7.60 134 

LR= 0.5 , CM=0.4 64.00 7.53 132 

LR= 0.5 , CM=0.5 64.33 7.76 139 

LR= 0.7 , CM=0.3 64.18 7.29 136 

LR= 0.7 , CM=0.4 64.33 6.24 139 

LR= 0.7 , CM=0.5 64.07 4.61 136 

 

 

4.4 Analysis on Algorithms Efficiency 

Figure 3 and Table 8 summarize the average accuracy for breast cancer data set per each method. In Figure 3, 

Halley with DFP shows highest accuracy for Breast Cancer is at parameter learning rate is 0.5 and momentum 0.3. 

While Halley with BFGS at parameter for learning is 0.5 and momentum is 0.5 shows the lowest accuracy in Breast 

Cancer data set compared to other algorithms. However, Halley with BFGS shows the lowest accuracy for Breast 

Cancer data set than Halley with DFP. 

 

Table 8 - The summary of accuracy result performance for breast cancer data set 

 HALLEY 

WITH BFGS 

HALLEY 

WITH DFP 

PARAMETER ACCURACY 

(%) 

ACCURACY 

(%) 

LR= 0.3 , CM=0.3 93.06 93.44 

LR= 0.3 , CM=0.4 93.18 93.34 

LR= 0.3 , CM=0.5 93.23 93.45 

LR= 0.5 , CM=0.3 93.11 93.57 

LR= 0.5 , CM=0.4 93.09 93.53 

LR= 0.5 , CM=0.5 93.07 93.36 

LR= 0.7 , CM=0.3 93.11 93.31 

LR= 0.7 , CM=0.4 93.19 93.44 

LR= 0.7 , CM=0.5 93.09 93.44 
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Fig. 3 - The summary of average accuracy for breast cancer data set 

 

Figure 4 and Table 9 summarized the average accuracy for heart data set per each method. In Figure 4, Halley with 

DFP shows highest accuracy for Heart is at parameter learning rate is 0.5 and momentum 0.3. While Halley with BFGS 

at parameter for learning is 0.5 and momentum is 0.5 shows the lowest accuracy in Heart data set compared to other 

algorithms. However, Halley with BFGS shows the lowest accuracy for heart data set than Halley with DFP. 

 

Table 9 - The summary of accuracy for breast cancer data set 

 HALLEY 

WITH BFGS 

HALLEY  

WITH DFP 

PARAMETER ACCURACY 

(%) 

ACCURACY 

(%) 

LR= 0.3 , CM=0.3 71.24 73.38 

LR= 0.3 , CM=0.4 71.16 73.83 

LR= 0.3 , CM=0.5 71.29 73.81 

LR= 0.5 , CM=0.3 71.26 74.15 

LR= 0.5 , CM=0.4 71.29 74.05 

LR= 0.5 , CM=0.5 70.98 74.07 

LR= 0.7 , CM=0.3 71.26 73.40 

LR= 0.7 , CM=0.4 71.22 73.56 

LR= 0.7 , CM=0.5 71.34 73.64 

 

 
Fig. 4 - The summary of average accuracy heart data set 

 

Figure 5 and Table 10 summarized the average accuracy for diabetes data set per each method. In Figure 5, Halley 

with DFP shows highest accuracy for diabetes is at parameter learning rate is 0.3 and momentum 0.5. While Halley 

with BFGS at parameter for learning is 0.7 and momentum is 0.3 shows the lowest accuracy in diabetes data set 

compared to other algorithms. However, Halley with BFGS shows the lowest accuracy for diabetes data set than Halley 

with DFP. 

 

 

 

 

 

 



Nazri Mohd Nawi et al., Emerging Advances in Integrated Technology Vol. 2 No. 1 (2021) p. 57-66 

 

 62 

Table 10 - The summary of accuracy for diabetes data set 

 HALLEY  

WITH BFGS 

HALLEY  

WITH DFP 

PARAMETER ACCURACY 

(%) 

ACCURACY 

(%) 

LR= 0.3 , CM=0.3 63.07 63.92 

LR= 0.3 , CM=0.4 63.19 64.15 

LR= 0.3 , CM=0.5 63.24 64.64 

LR= 0.5 , CM=0.3 63.21 64.20 

LR= 0.5 , CM=0.4 63.28 64.00 

LR= 0.5 , CM=0.5 63.13 64.33 

LR= 0.7 , CM=0.3 62.88 64.18 

LR= 0.7 , CM=0.4 63.17 64.33 

LR= 0.7 , CM=0.5 63.10 64.07 

 

 
Fig. 5 - The summary of average accuracy diabetes data set 

 

According to these figure shows that Halley with DFP shows the higher accuracy for three data sets which were 

Diabetes, Heart and Breast Cancer data sets. For heart and breast cancer are higher at parameter for learning is 0.5 and 

momentum 0.3. Meanwhile, for diabetes at parameter for learning is 0.3 and momentum is 0.5 shows the lowest 

accuracy. Besides that, Halley with BFGS shows the lowest accuracy for three data sets which were Diabetes, Heart 

and Breast Cancer data sets. For heart and breast cancer are lower at parameter for learning is 0.5 and momentum is 

0.5. Meanwhile, for diabetes at parameter for learning is 0.7 and momentum is 0.3 shows the lowest accuracy.  

Figure 6 and Table 11 shows the summary of CPU time average for heart data sets. It shows that CPU time for 

Halley with BFGS is a lot faster than other algorithms in breast cancer data set at parameter for learning is 0.3 and 

momentum 0.3. Meanwhile, the slowest CPU time in each data set was Halley with DFP at parameter for learning is 

0.5 and momentum 0.3.  

 

Table 11 - The summary of CPU for breast cancer data set 

 HALLEY 

WITH BFGS 

HALLEY 

WITH DFP 

PARAMETER CPU TIME CPU TIME 

LR= 0.3 , CM=0.3 2.92 3.10 

LR= 0.3 , CM=0.4 3.00 3.18 

LR= 0.3 , CM=0.5 3.02 3.17 

LR= 0.5 , CM=0.3 3.00 3.53 

LR= 0.5 , CM=0.4 2.98 3.30 

LR= 0.5 , CM=0.5 3.04 3.17 

LR= 0.7 , CM=0.3 3.08 3.07 

LR= 0.7 , CM=0.4 3.04 3.13 

LR= 0.7 , CM=0.5 2.96 3.14 
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Fig. 6 - The summary of CPU time for breast cancer data set 

 

Figure 7 and Table 12 shows the summary of CPU time average for heart data sets. It shows that CPU time for 

Halley with BFGS is a lot faster than other algorithms in breast cancer data set at parameter for learning is 0.5 and 

momentum 0.4. Meanwhile, the slowest CPU time in each data set was Halley with DFP at parameter for learning is 

0.5 and momentum 0.4.  

 

Table 12 - The summary of CPU time for heart data set 

 HALLEY 

WITH BFGS 

HALLEY 

WITH DFP 

PARAMETER CPU TIME CPU TIME 

LR= 0.3 , CM=0.3 8.16 33.36 

LR= 0.3 , CM=0.4 7.72 39.30 

LR= 0.3 , CM=0.5 8.40 36.39 

LR= 0.5 , CM=0.3 8.98 39.15 

LR= 0.5 , CM=0.4 6.95 42.03 

LR= 0.5 , CM=0.5 7.00 34.16 

LR= 0.7 , CM=0.3 7.90 28.60 

LR= 0.7 , CM=0.4 7.40 35.94 

LR= 0.7 , CM=0.5 7.64 41.11 

 

 

Figure 7 - The summary of CPU time heart for data set 
 

Figure 8 and Table 13 shows the summary of CPU time average for heart data sets. It shows that CPU time for 

Halley with BFGS is a lot faster than other algorithms in breast cancer data set at parameter for learning is 0.7 and 

momentum 0.5. Meanwhile, the slowest CPU time in each data set was Halley with DFP at parameter for learning is 

0.3 and momentum 0.5. 
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Table 13 - The summary of CPU time for diabetes data set 

 HALLEY  

WITH BFGS 

HALLEY  

WITH DFP 

PARAMETER CPU TIME CPU TIME 

LR= 0.3 , CM=0.3 6.78 7.03 

LR= 0.3 , CM=0.4 5.87 7.35 

LR= 0.3 , CM=0.5 5.57 8.32 

LR= 0.5 , CM=0.3 6.26 7.60 

LR= 0.5 , CM=0.4 6.19 7.53 

LR= 0.5 , CM=0.5 5.29 7.76 

LR= 0.7 , CM=0.3 4.49 7.29 

LR= 0.7 , CM=0.4 4.57 6.24 

LR= 0.7 , CM=0.5 5.28 4.61 

 

 
Fig. 8 - The summary of CPU time for diabetes data set 

 

It shows that CPU time for Halley with BFGS is a lot faster than other algorithms in every data set than Halley 

with DFP. Average size data sets Breast Cancer data set each algorithm needs less CPU time to complete the simulation 

than Heart and Diabetes. Figure 9 and Table 14 illustrates the summary of epochs where in breast cancer data sets, 

Halley with BFGS and Halley with DFP converge to global minima just within lesser epoch in this data set.  

 

Table 14 - The summary of epoch for breast cancer data set 

 HALLEY 

WITH BFGS 

HALLEY  

WITH DFP 

PARAMETER EPOCH EPOCH 

LR= 0.3 , CM=0.3 51 57 

LR= 0.3 , CM=0.4 52 56 

LR= 0.3 , CM=0.5 53 57 

LR= 0.5 , CM=0.3 51 63 

LR= 0.5 , CM=0.4 52 60 

LR= 0.5 , CM=0.5 53 58 

LR= 0.7 , CM=0.3 55 55 

LR= 0.7 , CM=0.4 54 55 

LR= 0.7 , CM=0.5 52 56 

 

 
Fig. 9 - The summary of epoch breast for cancer data set 
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Figure 10 and Table 15 illustrates the summary of epochs where in heart data sets, Halley with BFGS converge to 

global minima just within lesser epoch in this data set. Halley with DFP almost reaches for maximum value of epochs. 

 

Table 15 - The summary of epoch for heart data set 

 HALLEY 

WITH BFGS 

HALLEY 

WITH DFP 

PARAMETER EPOCH EPOCH 

LR= 0.3 , CM=0.3 134 538 

LR= 0.3 , CM=0.4 118 575 

LR= 0.3 , CM=0.5 136 587 

LR= 0.5 , CM=0.3 147 635 

LR= 0.5 , CM=0.4 120 695 

LR= 0.5 , CM=0.5 120 579 

LR= 0.7 , CM=0.3 138 465 

LR= 0.7 , CM=0.4 129 614 

LR= 0.7 , CM=0.5 132 666 

 

 
Fig. 10 - The summary of epoch for heart data set 

 

Figure 11 and Table 16 illustrates the summary of epochs where in diabetes data sets, Halley with BFGS and 

Halley with DFP converge to global minima just within lesser epoch in this data set. 

 

Table 16- The summary of epoch for diabetes data set 

 HALLEY 

WITH BFGS 

HALLEY 

WITH DFP 

PARAMETER EPOCH EPOCH 

LR= 0.3 , CM=0.3 116 129 

LR= 0.3 , CM=0.4 115 132 

LR= 0.3 , CM=0.5 117 147 

LR= 0.5 , CM=0.3 115 134 

LR= 0.5 , CM=0.4 120 132 

LR= 0.5 , CM=0.5 119 139 

LR= 0.7 , CM=0.3 112 136 

LR= 0.7 , CM=0.4 117 139 

LR= 0.7 , CM=0.5 114 136 
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Fig. 11 - The summary of epoch for diabetes data set 

 

5. Conclusion 

The limitation of BP algorithm has been improved in this research by implementing third order method. 

Furthermore, this research also shows that the performance of the network depends on the choice of proper parameters 

such as learning rate and momentum value. This research proposed the effect of hyper-parameters on the performance 

of third order neural networks. The performance of third order neural network had been analyzed by changing the 

learning rate and momentum value for all nodes in the learning process. The performance of Halley with BFGS and 

Halley with Davidon-Fletcher Powell (DFP) had been evaluated by testing on three benchmark medical data sets. The 

result of simulation shows that by changing the hyper-parameters value in Halley with DFP, it performs better as 

compared to others it is considered as the best approach for medical classification problems like Heart, Breast Cancer, 

and Diabetes. 
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