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1. Introduction 

Studies of load modeling are significant in the sense that, power system operators require knowledge of the system 

dynamics under small and large disturbance (faults operating) conditions. This is for decision making with regards to 

system stability margin and subsequently, control and or protection. Recently, different types of loads are continuously 

invented which necessitate more research on the load dependency on voltage and frequency fluctuations [1-3]. If a load 

model did not represent the actual system load, the result of the analysis, controller design, or protective action will 

contain errors, thereby leading to improper decision making by system operators. In many simulation studies, loads are 

model as static components; this assumption is actually an approximation. Nowadays, some researchers are replacing the 

static models with dynamic models so that it will be closer to the real system Dynamics[4]. However, modeling 

Distribution Network (DN) as a dynamic model alone does not have any physical meaning since loads in any DN is 

jointly a static and a dynamic component. For this reason, composite load models are considered more appropriate [5, 6]. 

The composite load model is an amalgamation of static and dynamic load models, static loads represent a portion of loads 

that are not time-dependent, their characteristics are fixed such as resistive loads. On the other hand; dynamic loads are 

time-dependent and are largely represented by Induction Motors (IMs) [7].  

Two different approaches of load modeling were established in numerous literature; component-based and 

measurement-based methods [8-11]. Component-based load modeling requires knowledge of individual loads, 

acquisition of relationship between the voltage and or frequency dependency on real and reactive power of each 

component, and then cumulate the results for all the components connected to the network. Due to the complexity of 

Abstract: Load modeling plays a significant impact in assessing power system stability margin, control, and protection. 

Frequency in the power system is desired to be kept constant, but in a real sense, it is not constant as loads continually 

change with time. In much literature, frequency dynamics are ignored in the formulation of load models for the basic 

assumption that it does not affect the models.  In this paper, the composite load model was formulated with Voltage-

Frequency Dependency (V-FD) on real and reactive powers and applied to estimate the load model. 2- Area network 4- 

machines Kundur test network was used for testing the developed model.  The model was trained with measurements from 

a low voltage distribution network supplying the Electrical Engineering department at Ahmadu Bello University, Zaria. Both 

training and testing data were captured under normal system operation (dynamics). To evaluate the V-FD model 

performance, Voltage-Dependent (VD) model was examined on the same measured data. The work makes use of the Feed 

Forward Neural Network (FFNN) as a nonlinear estimator. Results obtained indicate that including frequency dynamics in 

modeling active power reduces the accuracy of the model. While in modeling reactive power the model performance 

improves. Hence, it can be said that including frequency dynamics in load modeling depends on the intended application of 

the model. 

Keywords: Feed forward neural network, load modeling, measurement-based approach, composite load, V-FD 
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distribution systems, this method is practically not viable, unlike the measurement-based method, which employs the use 

of measurement instruments to capture the voltage/ frequency dependency on the real (active) and reactive powers 

expended by the load [4]. The measurement-based is easier and more accurate method since high-resolution measurement 

devices such as Smart Meter (SM), Power and Harmonic Analyzer (PHA), Frequency Disturbances Recorder (FDR), 

Phasor Measurement Unit (PMU), etc. are commercially available [12-14]. 

In Jahromi and Ameli[5], a measurement-based load model using the Genetic Algorithm (GA) was applied to 

optimally estimates load model indices. The researchers generated simulation data from digsilent software and implement 

a composite load model in the work, the work also makes use of standard IEEE 39 bus for testing. A noble result was 

obtained by minimizing errors between measured data and simulated outputs. Saviozzi, Massucco, and Silvestro[11], 

concentrated on load prediction and load modeling with the aid of Artificial Neural Networks (ANNs) for the execution 

of advanced functionalities for Distribution Management System (DMS), field measurement was used to carry out the 

proposed work in which a reasonable agreement was established between measured and estimated model. Zheng et al., 

[1] Proposed a Recurrent Neural Network (RNN) based approach with measured data in Active Distribution Network 

(ADN). The performance of the technique was assessed with detailed simulation in PSCAD and with Feed Forward 

Neural Network (FFNN). RNN is confirmed to outperform most of the techniques used for dynamic load modeling. 

Though, with a large change in Operating Condition (OC) much from the initial condition, it does not execute very well. 

Hence an effective searching for the OC is required for generalization. Sharafi and Jalili [9], Described identification of 

low-frequency dynamics based on PMU data. The model of the system was identified using a transfer function to extract 

the model from input-output data. In their studies, disturbance such as fault was not considered, only the slow changes 

caused by load connection and disconnection and Static Var Compensator (SVC) encompassed the system dynamics. In 

the work of Zhang et al.,[15] a composite model structure was considered in estimating electromagnetic and 

electromechanical parameters of an ambient signal. However, the approach cannot work for large disturbance, and when 

there is a vast nonlinearity in the system. Contrary to the preceding works, Han [8] present an unbalanced fault data for 

load modeling, the work formulates a composite load model with separate equations that represent each phase for three 

different fault conditions considered. The result of the work reduced prediction error for the load model parameters 

estimation drastically.   

In this work, a composite load model for secondary distribution feeder using concurrent measurement data of PHA 

and FDR for development of load models based Voltage Dependency (VD) and Voltage-Frequency Dependency (V-FD) 

were formulated. This idea is targeting on the best model among the two models. FFNN as nonlinear estimation approach 

was used to trained and estimate the model with 4-layers and 40-neuron in each layer.  The contribution of this work is a 

V-FD on active and reactive powers investigation. Contrary to the recent literature, frequency is assumed constant and 

therefore ignored. With the recent invention of new types of loads, the transformation of DN from passive to active, 

frequency dynamics need to be investigated very well. The remaining of the article is structured as follows: section 2 

brought about problem formulation and a brief on FFNN. In section 3 case studies are presented. Results and discussion 

are provided in section 4 while conclusions are presented in section 5. 

 

2. Voltage Frequency-Dependent Model 

In white-box modeling, systems are modeled from first principles. This is possible if the system is not very complex 

in which the mathematical relationships can be easily extracted.  For gray box modeling, some information about the 

systems is known only the unknowns are searched. While in the case of black-box modeling (data-driven Models), 

everything of the systems is unknown only the input-output data is required to extract the model [16]. These are the three 

ways a load model can be formulated. 

 

2.1 Mathematical Representation 

The main interest of this work is in estimating a composite load model that represents relationships between voltage 

and frequency as inputs and power (active and reactive) as outputs. The composite load model can be described as a 

mixture of static and dynamic models as presented in Fig. 1. 
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Fig. 1 - Composite load 

The static part can be represented by constant impedance, constant current and constant Power (ZIP) model as follows: 

 

        𝑃𝑠 = 𝑃𝑛 (∝𝑧 [
𝑉

𝑉𝑛
]

2

+∝𝑖 [
𝑉

𝑉𝑛
] +∝𝑝)                              (1) 

        𝑄𝑠 = 𝑄𝑛 (𝛽𝑧 [
𝑉

𝑉𝑛
]

2

+ 𝛽𝑖 [
𝑉

𝑉𝑛
] + 𝛽𝑝)                             (2) 

 

where:  𝑃𝑠 and  𝑄𝑠 are active and reactive powers of static model respectively. 𝑃𝑛 𝑎𝑛𝑑 𝑄𝑛 are active and reactive powers 

of the load at stipulated voltage 𝑉𝑛 while  𝑉  is a phase voltage. ∝𝑧,∝𝑖, ∝𝑝, are quantities of ZIP components of the active 

power of the whole static load respectively. At the same time, 𝛽𝑧, 𝛽𝑖, 𝛽𝑝 are quantities of ZIP components of reactive 

power of the entire static load respectively[8, 17]. 

 

Similarly, the dynamic part of the active and reactive 𝑃𝑚 and 𝑄𝑚  can be represented by the equivalent d-q axes IM 

equations [8]:  

          𝑃𝑚 =  𝑣𝑑𝑠𝑖𝑑𝑠 + 𝑣𝑞𝑠𝑖𝑞𝑠                                             (3) 

          𝑄𝑚 = 𝑣𝑞𝑠𝑖𝑑𝑠 − 𝑣𝑑𝑠𝑖𝑞𝑠                                              (4) 

 

Then, the composite model will be 

          𝑃𝑐 = 𝑃𝑠 + 𝑃𝑚                                                            (5) 

          𝑄𝑐 = 𝑄𝑠 + 𝑄𝑚                                                         (6) 

 

Equations (5) and (6) represent the active and reactive component of the composite load model for voltage dependent 

model respectively. 

The frequency dependency on the load can be derived by multiplying equation (5) and equation (6) with the frequency 

factor of equation (7). 

 

          𝑓𝑓𝑎𝑐𝑡𝑜𝑟 = (1+∝ ∆𝑓)                                                (7) 

 

This yield equations (8) and (9) as composite load model representation 

 

          𝑃𝑐 = (𝑃𝑛 (∝𝑧 [
𝑉

𝑉𝑛
]

2

+∝𝑖 [
𝑉

𝑉𝑛
] +∝𝑝) + [𝑣𝑑𝑠𝑖𝑑𝑠 +  𝑣𝑞𝑠𝑖𝑞𝑠])(1+∝ ∆𝑓)                      (8) 

 

          𝑄𝑐 = (𝑄𝑛 (𝛽𝑧 [
𝑉

𝑉𝑛
]

2

+ 𝛽𝑖 [
𝑉

𝑉𝑛
] + 𝛽𝑝) + [𝑣𝑞𝑠𝑖𝑑𝑠 − 𝑣𝑑𝑠𝑖𝑞𝑠])(1+∝ ∆𝑓)                      (9) 

 

Where: ∆𝑓 is a frequency deviation from nominal and ∝ is the sensitivity parameter of the frequency.  

Generally, the process of load modeling is an optimization problem with the sole objective of minimizing the error 

between measured power, active and reactive (𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  and 𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒), and the simulated (estimated) power, active and 

reactive (𝑃𝑒  𝑎𝑛𝑑 𝑄𝑒)[18]. In this case, the error measurement is evaluated by Mean Square Error (MSE) as given in 

equation (10). 

 

𝑀𝑆𝐸 =
∑ (𝑒𝑟𝑟𝑜𝑟)2𝑁

𝑖=1

𝑁
                                                         (10) 

 

𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑                                (11) 
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where: 𝑁 is the total sampled data. The whole process can be abridged as in Fig. 2.  

 
Fig. 2 - The procedure of load modeling and identification 

Performance of the model can also be evaluated by measures of percentage fitness; this index can be expressed as: 

%𝑓𝑖𝑡 =
∑(𝑒𝑟𝑟𝑜𝑟)2

∑(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2                             (12) 

 

2.2 Feed Forward Neural Network (FFNN) 

Power systems are known to be dynamic and highly nonlinear, therefore, to capture its actual dynamics it has to be 

formulated in a nonlinear form. Although, the linearized system makes the model valid but only for small variations. 

Generally, Neural Networks (NNs) are brain-based imitation systems that are constructed on a mathematical model to 

process information [19]. NNs learn by experience from the fast information fed with and try to mimic how the human 

brain performs a particular task [20]. The model of FFNN happens to be a nonlinear network that maps from a group of 

the input variable(s) to a group of the output variable(s) structured by a vector W of modifiable parameters. Fig. 3 shows 

a basic FFNN configuration. FFNN knowledge acquisition is by calculating the error response of the NN for a given 

sample, transmitting the error back through the NN while adjusting the weight vectors trying to minimize the error. FFNN 

is known to be very great which qualifies them to handle a lot of complicated problems in a different area of applications 

[21]. FFNN describes a function as: 

 

𝑦 = 𝑓(𝑥, 𝑤)                                                                       (13) 

 

This function studies the value of the vectors 𝑤 that yield in the greatest function approximation. It has three layers: the 

input, middle also known as hidden and output layers.  The middle layer may be of one layer (called Shallow network) 

or more than one number of layers (called deep networks). From Fig. 3 we can build N direct combinations of the input 

set xi… xD in form of: 

 

𝑎𝑗 = ∑ 𝑤𝑗𝑖
(1)

. 𝑥𝑖 + 𝑤𝑗𝑜
(1)𝐷

𝑖=1                                                  (14) 

 

Where j= 1….N and the superscript (1) in Equation (14) indicates the matching parameters that are in the layer number 

one of the network. 𝑤𝑗𝑖
(1)

and 𝑤𝑗𝑜
(1)

are the weights and biases respectively. The quantity 𝑎𝑗 is the activation, which can be 

transformed using a differentiable, nonlinear activation function. The nonlinear activation functions can either be 

sigmoid, logistic, rectified linear unit (ReLu), or tanh and many other functions[20]. 

 

A quantity 𝑧𝑗 of equation (15) is known as a hidden unit and 𝛿 is the logistic sigmoid. Following equation (14) these 

values are again linearly combined to give output unit activations 𝑎𝑘 of equation (16). 

 

          𝑧𝑗 = 𝛿(𝑎𝑗)                                                                   (15) 

 

          𝑎𝑘 = ∑ 𝑤𝑘𝑗
(2)

. 𝑧𝑗 + 𝑤𝑘𝑜
(2)𝑁

𝑗=1                                           (16) 

 

Where 1,..., ,k K
 and K is the total number of outputs, 𝑤𝑘𝑗

(2)
 and 𝑤𝐾0

(2)
  are the weights and biases. This transformation 

matches to layer number two of the network. Lastly, the output functions  converted using a suitable triggering function 

to give a set of network outputs 𝑦𝑘  as follows [22]: 

 

𝑦𝑘 = 𝛿(𝑎𝑘)                                                                        (17) 

 

 

𝑦𝑘(𝑥, 𝑤) = 𝛿(∑ 𝑤1𝑗
(2)

ℎ (∑ 𝑤𝑗𝑖
(𝐼)

. 𝑥 + 𝑤𝑗𝑜
(𝐼)𝐷

𝑖=1 )𝑁
𝑗=1 + 𝑤𝐾0

(2)
)  (18) 
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Fig. 3 - feed-forward neural network 

3 Case Study 

3.1 Actual  System 

Data from 0.415kV/ 50Hz line supplying our department was obtained using PHA to capture data of voltage 

magnitudes, active and reactive powers. For the inability of PHA in frequency measurements, we deployed FDR to give 

the corresponding frequency dynamics. Fig. 4 and Fig. 5 illustrate the Measurement setup. In the data selection, we try 

to choose an interval in which the frequency variation satisfied the requirement of the Nigerian Electricity Regulatory 

Commission (NERC) which is between 49.75Hz to 50.25Hz [23, 24]. The line was feeding some IMs, Incandescent 

Lamps (ILs) Compact Fluorescent Lamps (CFLs), Personal Computers (PCs) Air Conditioners (ACs), Heaters, etc.  

 

 
Fig.4 - PHA measurements Setup Fig.5 - FDR measurements setup  

 

3.2 Test  System  

The proposed work was tested with data generated from 2-area 4- machine Kundur test system.  The network is 

rated 60Hz. A composite load was connected to the load bus of area 2 (L2) and simulated to obtain different data of 

interest. Fig. 6 shows a single line drawing of the famous 2-area 4-machine test system. 
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Fig. 6 - 2 –Area 4- Machine Kundur test system 

 

4 Results and Discussions  

Following data capturing and simulations studies carried out in Matlab (system identification and machine learning 

toolboxes), the following results were obtained:  

 

4.1 Measured Parameters 

The measurements obtained indicate significant dynamics and nonlinearity between different parameters of interest, 

as seen in Fig. 7 (a) and (b). Input voltage dynamics and frequency dynamics of the training data respectively. While Fig. 

8 (a) and (b) provides the input voltage and frequency dynamics of the testing set.  

 

 
(a) Voltage dynamics of trained Model 

 
(b) Frequency dynamic of the trained model  

 

Fig.7 - Input measurements used in model training 

 

 
(a) Voltage Dynamics of Model testing 

 
(b) Frequency Dynamic of Model testing 

Fig.8 - Input measurements used in model testing 
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4.2 Training Results 

FFNN with 4- layers and 40 neurons in each layer was designed and trained using the Levenberg-Marquardt 

backpropagation algorithm. Fig.9 (a),(b),(c), and (d) shows how the model was able to follow the training data set. It can 

be observed from the figures as well as Table 1 and Table 2 that, VD model performs better in active power with 14.7% 

error reduction and 0.66% fitness improvement as compared with V-FD.  While V-FD model performance was better in 

reactive power with 15.8% error reduction and 0.53% fitness improvement. 

 

 
(a) Active power response VD model  

(b) Reactive power response VD model 

 
(c) Active power response V-FD model 

 
(d) Reactive power response V-FD model 

 

Fig. 9 - Active and reactive power responses of VD and V-FD models of training 

Table 1 - Performance comparison of VD and V-FD models for the active power of training set 

Model MSE % Fitness 

VD 2.9 x 10-2 92.1 

V-FD 3.4x10-2 91.5 

Table 2 - Performance comparison of VD and V-FD models for reactive power of training set 

Model MSE % Fitness 

VD 1.9 x 10-3 94.8 

V-FD 1.6x10-3 95.3 

 

4.3 Testing  Results  

In an attempt to assess the validity of the trained model, new data generated from the 2-area 4 machine Kundur test 

network was presented to the model for testing. Fig. 10 (a), (b), (c) and (d) show the fitness of the models. Also, Table 3 

and 4 provides a performance comparison of the testing data. It can be seen that the VD model is better than the V-FD 

model in the active power with a 15.4% error reduction and 0.2% fitness improvement. While reverse is the case for 
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reactive power as the V-FD model wins the VD model with a 20% error reduction and 0.7% fitness improvement. The 

validity of the model was confirmed as the training data suggest the same with testing data.    

 

  
(a) Active power response VD model                                   (b) Reactive power response VD model 

 
       (c) Active power response V -FD model                               (d) Reactive power response V-FD model 

 

Fig. 10 - Active and reactive power responses of VD and V-FD testing models 

Table 3 - Performance comparison of VD and V-FD models for the active power of the testing set  

Model MSE % Fitness 

VD 1.1 x10-5 99.7 

V-FD 1.3 x10-5 99.5 

 

Table 4 - Performance comparison of VD and V-FD models for reactive power of the testing set  

Model MSE % Fitness 

VD 2.0 x 10-5 99.0 

V-FD 1.6x10-5 99.7 

 

5 Conclusion  

In this paper, power dependency on frequency dynamics was investigated. The results indicate that the VD model is 

better in active power formulation while the V-FD model is better in reactive power formulation. And therefore, the 

inclusion of frequency dynamics in load modeling depends on the intended application of the model. In the future, the 

performance of the models will be tested using other deep learning topologies and also, under different fault conditions 

for active distribution network. Additionally, frequency influence can also be checked under higher frequency dynamics.  
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