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1. Introduction 
Discrimination measures are used in measuring the distance or affinity among finite number of probability 

distributions (both discrete and continuous). Actually, these are for quantifying the dissimilarity among probability 

distributions.Some researchers, like: Csiszar (1966), Bregman (1967), Burbea- Rao (1982), Lin- Wong (1995) and 

Jain- Saraswat’s (2013) etc. took a deep study on functional discrimination measures. After putting a fitting work in 

these functional discrimination measures, a few popular discrimination measures can be gotten, like: Kullback 

Leibler discrimination measure, J- discrimination measure, Arithmetic geometric mean discrimination measure, 

Jensen Shannon mean discrimination measure, Bhattacharya discrimination measure and many more. 

As of late, discrimination measures are being utilized in a few areas, like: science [36], guess of likelihood 

conveyances [14, 4], fetched- delicate classification for therapeutic conclusion [39], choice making [29], color 

picture division [37], 3D picture division and word arrangement [41], financial matters and political science [5, 43], 

attractive reverberation picture investigation [44], turbulence stream [7], examination of possibility tables [35], 

design acknowledgment [30] etc. 

Let    *  (               )      ∑   
       +,     be the set of all complete finite discrete 

probability distributions. If we take      for some             , then we have to suppose that   ( )  
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  .
 

 
/     

Csiszar presented a functional discrimination measure [1, 9], which is brodly utilized due to its compact nature, it 

is given by  

   (   )  ∑   
      (

  

  
)  (1) 

 where   (   )    (set of real no.) is real, continuous, and convex function and   (            )   
(            )    , where    and    are probability mass functions. 

Essentially, Jain and Saraswat gave the taking after functional discrimination measure [27],  

   (   )  ∑   
      (

     

   
)  (2) 

   (   )  and   (   )  are common separate measures from a genuine likelihood dissemination   to an 

subjective likelihood dissemination  . Really   speaks to perceptions, though   speaks to an guess of  . 

Numerous separation measures can be gotten by employing an appropriate convex function in   (   ) and 

  (   ). The properties of   (   ) and their proofs can be seen in literature [27] and several information 

inequalities on   (   ) and their applications can be seen in the articles [8] and ([17]- [23]).  

Definition 1.1  Convex function: A function  ( ) is said to be convex over an interval (   ) if for every 

      (   ) and      , we have  

  ,    (   )  -    (  )  (   ) (  )  (3) 

 

 and said to be strictly convex if equality does not hold only if     or    .  

 In generalized way, we can write  

  [∑   
       ]  ∑   

      (  )  

 

for all    (   ) and      with ∑   
         

In hypothesis of imbalances, Convex functions play an imperative part. In case disparity (3) holds in reversed 

direction at that point,   is said to be concave. Convex functions have wide applications in immaculate and 

connected science, material science and other characteristic sciences. As of late numerous generalizations and 

expansions have been made for the convexity, like s- convexity [3], strong convexity [45], preinvexity [31], GA- 

convexity [46], GG- convexity [32], and others.  

Definition 1.2  L- Lipschitzian function: A function   is called L- Lipschitzian over a set   with respect to a 

norm ‖ ‖ if for all      , we have  

 | ( )   ( )|   ‖   ‖  

 

Some people will equivalently say   is Lipschitzian continuous with Lipschitzian constant  . Intuitively,   is a 

measure of how fast the function can change.  

 

2. A New Inequality on Functional Discrimination   (   ) 
 In this segment, we’ll determine a original information inequality on functional discrimination measure 

  (   ) by taking into thought L- Lipschitzian functions. We first start with the following theorem, given by [11].  

Theorem 2.1  Let     be two normed linear spaces with the norms ‖ ‖ and | | respectively. If       is 

L- Lipschitzian, then            with ∑   
                     , we have  



Praphull Chhabra, Journal of Science and Technology Vol. 13 No. 2 (2021) p. 54-66 

 
 

56 

 

 | (∑   
       )  ∑   

      (  )|   ∑   
     (    )∑     

   ‖   ‖  (4) 

 

 where             is the forward difference.  

 By utilizing the inequality (4), a new inequality on   (   ) can be inferred in terms of the well known 

Hellinger discrimination and Bhattacharya discrimination.  

Theorem 2.2  Let   ,   -  (   )  (    ) be L- Lipschitzian and differentiable convex function with 

bounded derivative, defined on ,   - with              . For       , we have  

 

   (   )  [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1    

  ,   -
|  ( )|  (5) 

 where  

  (   )  ∑   
   

(√   √  )
 

 
 (6) 

 

 is the Hellinger Discrimination or Kolmogorov’s discrimination [15] and  

 

  (   )  ∑   
   √     (7) 

 

 is the Bhattacharya discrimination [6] and   (   ) is defined in equation (2).  

 Proof: First replace    with    for             in inequality (4), we have  

 

 | (∑   
       )  ∑   

      (  )|   ∑   
     (    )∑     

   |       |. 

 

Now put    
     

   
 and by considering ∑   

      ∑   
       , we have  

 

 | ( )  ∑   
      (

     

   
)|   [  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1  

 

If function   is normalized, p.e.,  ( )    and also has bounded derivative in interval ,   -, then by the 

definition of 1.2, we have  

 

 |   (   )|     
  ,   -

|  ( )| 0∑   
   

     

 
 ∑   

     
 1 0∑     

   |
    

    
 

  

  
|1  

 

    (   )     
  ,   -

|  ( )|[ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1  

Which is a required result. 

Since  
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 ∑   
   

     

 
 ∑   

     
  ∑   

   
         

 

 
 ∑   

   
       √      √        

 

 
 

 

  ∑   
   

(√   √  )
 

 
 ∑   

   √     ∑   
     

  

 

   (   )   (   )  ∑   
     

  

 

Note: The later applications of the Hellinger discrimination (in information examination) and Bhattacharya 

discrimination (in space reconnaissance) can be cited within the articles [2] and [16], individually.  

 

3. Main Results 
 By utilizing the determined inequality (5), presently we’ll assess a few extraordinary results among distinctive 

discriminations.  

 

Result 3.1  For        and              , we have 

 

a.   If      , then  

  (   )  [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 0

     

     |
     

      |1  (8) 

 

 b.   If    , then  

  (   )   [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 .

    

  /  (9) 

 

 where  (   ),  (   ) are characterized in conditions (6) and (7) separately and  (   ) is characterized 

underneath within the confirmation.  

 

 Proof: Let  

  ( )  
(   ) 

 
       ( )      ( )  

    

            ( )  
 

    

 
Since    ( )            and  ( )   , so  ( ) is strictly convex and normalized function respectively. 

For this function, from equation (2), we have  

 

   (   )  
 

 
∑   

   
(     ) 

     
 

 

 
 (   )  (10) 

 

 where  (   ) is the famous Triangular discrimination [10]. 

Now, let  ( )  |  ( )|  |
    

  |  {
 

    

           

    

           
  and 

  ( )  

{
 

  
 

  
         

 

  
         

  

 

It is clear that   ( )    in (   ) and    in (   ), p.e.,  ( ) is strictly decreasing in (   ) and strictly 

increasing in (   ), so  
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  ,   -

|  ( )|     
  ,   -

 ( )  {
   ,|  ( )| |  ( )|-  

|  ( )| |  ( )| ||  ( )| |  ( )||

 
         

|  ( )|        
 

 

  {

 

 
0
     

     |
     

      |1          

(   )(   )

         
  (11) 

 

 The results (8) and (9) can be gotten by putting the values from the equations (10) and (11) into the inequality (5).  

 

Result 3.2  For        and              , we have  

 

  (   )  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1  (12) 

 

 where  (   ) is defined below in the proof.  

 Proof: Let  

 

  ( )              ( )      ( )   
 

 
          ( )  

 

    

 
Since    ( )            and  ( )   , so  ( ) is strictly convex and normalized function respectively. 

For this function, from equation (2), we have  

 

   (   )  ∑   
        (

   

     
)   (   )  (13) 

 

 where  (   ) is the adjoint of the Relative JS discrimination  (   ) [40]. 

 

Now, let  ( )  |  ( )|  | 
 

 
|  

 

 
, and   ( )   

 

    . 

We can clearly see that  ( ) is always strictly decreasing in (   ), so  

    
  ,   -

|  ( )|     
  ,   -

 ( )   ( )  
 

 
  (14) 

 

 The result (12) can be obtained by putting the values of the equations (13) and (14) into the inequality (5).  

Result 3.3  For        and              , we have 

 

a.   If     
 

 
, then  

  (   )  [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 [   √

 

 
 |     √  |]  (15) 

 

 b.   If 
 

 
    , then  

  (   )  [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 (      )  (16) 

 

 where  (   ) is characterized underneath within the proof.  

 

 Proof: Let  

  ( )              ( )      ( )                  ( )  
 

 
  

Since    ( )            and  ( )   , so  ( ) is strictly convex and normalized function respectively. 

For this function, from equation (2), we have  

 

   (   )  ∑   
   

     

 
   (

     

   
)   (   )  (17) 
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 where  (   ) is the adjoint of the Relative AG discrimination  (   ) [42]. 

 

Now, let  ( )  |  ( )|  |      |  {
               

 

 

          
 

 
    

  and  

  ( )  

{
 

  
 

 
        

 

 
 

 
    

 

 
    

  

 

Since   ( )    in .  
 

 
/  and    in .

 

 
  / , p.e.,  ( )  is strictly decreasing in .  

 

 
/  and strictly 

increasing in .
 

 
  /, therefore  

 

    
  ,   -

|  ( )|     
  ,   -

 ( )   

 
 

 {
   ,|  ( )| |  ( )|-  [   √

 

 
 |     √  |]         

 

 

|  ( )|            
 

 
     

 (18) 

 

 The results (15) and (16) can be gotten by putting the values of the equations (17) and (18) into the inequality (5). 

In a comparative way, we get the taking after results for diverse convex functions. Subtle elements are excluded.  

 

Result 3.4  For  ( )  (   )    ,        and              , we have 

a.   If      , then  

 

   (   )   [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 [   √

 

 
 

   

   
 |

   

   
     √  |]  (19) 

 

b.   If    , then  

 

   (   )   [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 .      

 

 
/  (20) 

 

 where  

 

   (   )  
 

 
∑   

   (     )   (
     

   
)  

 

 
  (   )  (21) 

 

   (   ) is known as the Relative J- discrimination [12].  

 

  

Result 3.5  For  ( )  (   ) ,        and              , we have 

 

a.   If      , then  

   (   )   [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 ,(   )  |  (   )|-  (22) 

 

b.   If    , then  

 

   (   )   [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 (   )  (23) 
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 where  

 

   (   )  
 

 
∑   

   
(     ) 

  
 

 

 
  (   )  (24) 

 

   (   ) is designated as the Chi- square discrimination or Pearson discrimination [38].  

  

Result 3.6  For  ( )  |   |,        and              , we have  

  (   )  [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1  (25) 

 

 where  

 

   (   )  
 

 
∑   

   |     |  
 

 
 (   )  (26) 

 

  (   ) is the Variational distance [33].  

  

Result 3.7  For  ( )  
(   ) 

√ 
,        and              , we have 

 

a.   If      , then  

 

   (   )  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 [

(   )(    )

 
 
 

]  (27) 

 

b.   If    , then  

   (   )  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 [

(   )(    )

 
 
 

]  (28) 

 

 where  

 

   (   )  
 

 
∑   

   
(     )

 

√   (     )
   (   )  (29) 

 

   (   ) is a discrimination measure taken from [24].  

 

Result 3.8  For  ( )  .
   

 
/    .

   

  
/,        and              , we have 

 

a.   If      , then  

   (   )  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 0

 

 
    

  

   
1  (30) 

 

 b.   If    , then  

   (   )  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 0   

   

  
 

 

 
1  (31) 

 

 where  

   (   )  ∑   
   .

      

 
/    [

      

 (     )
]    (   )  (32) 

 

   (   ) is a discrimination measure taken from [21].  

  

Remark 3.1 Following inequality can be cited from the article [25].  

   
 (   )    

 (   )   (   )  (33) 
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 Following inequality can be cited from the article [26].  

   (   )  
 

 
 (   )    (   )  (34) 

 

 Following two inequalities can be seen from the article [24], for              .  

 
 

  
.  

 

   
  

    
  

    
  

 / (   )    (   )  (35) 

 

  

 
        

   
 
 

  (   )    (   )  (36) 

 

 Similarly following inequality can be seen from the article [21].  

 
 

 
, (   )   (   )-    (   )  (37) 

 

 Now we can have some new relations among discriminations. These are as follows: 

By taking (8), (9) and (33) together, we have 

 

a.   If      , then  

   
 (   )    

 (   )   (   ) 

 

  [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 0

     

     |
     

      |1  (38) 

 

 b.   If    , then  

   
 (   )    

 (   )   (   )   [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 .

    

  /  (39) 

  

By taking (22), (23) and (34) together, we have 

a.   If      , then  

b.  

   (   )  
 

 
 (   )    (   ) 

 
 

   [ (   )   (   )  ∑   
     

 ] 0∑     
   |

    

    
 

  

  
|1 ,(   )  |  (   )|-  (40) 

 

 b.   If    , then  

   (   )  
 

 
 (   )    (   )   [ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 (   )  (41) 

  

By taking (27), (28) and (35) together, we have 

a.   If      , then  

 
 

  
.  

 

   
  

    
  

    
  

 / (   )    (   ) 

 

  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 [

(   )(    )

 
 
 

]  (42) 

 

 b.   If    , then  

 
 

  
.  

 

   
  

    
  

    
  

 / (   )    (   ) 

 

  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 [

(   )(    )

 
 
 

]  (43) 
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 By taking (27), (28) and (36) together, we have 

a.   If      , then  

 
        

   
 
 

  (   )    (   ) 

 
 

  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 [

(   )(    )

 
 
 

]  (44) 

 

 b.   If    , then  

 
        

   
 
 

  (   )    (   ) 

 

  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 [

(   )(    )

 
 
 

]  (45) 

 

 By taking (30), (31) and (37) together, we have 

a.   If      , then  

 

 
 

 
, (   )   (   )-    (   ) 

 

  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 0

 

 
    

  

   
1  (46) 

 

b.   If    , then  

 

 
 

 
, (   )   (   )-    (   ) 

 
 

  
 

 
[ (   )   (   )  ∑   

     
 ] 0∑     

   |
    

    
 

  

  
|1 0   

   

  
 

 

 
1  (47) 

 Where  

   
 (   )  ∑   

   
(     )

  

(     )
       

(     )
 

(     )
              

 
are Jain and Saraswat discriminations [28],  

  (   )  ∑   
   

(     )
 
(     )

    
 

is the Symmetric Chi- square Discrimination [13] and  

 

  (   )  ∑   
        

  

  
 

 
is the Relative information or Kullback- Leibler discrimination or Directed discrimination or Information gain [34].  

  

4. Mathematical Validation of the Obtained Results 
Presently, we’ll confirm scientifically a few gotten results and relations, like: (8), (19), (22), (25), (30) and (40).  

For this, let   be the binomial probability distribution (Real data) with parameters (          ) (  is 

the total finite trials and   is the probability of the success of one trial) and   be a Poisson probability distribution 

(approximated data) with parameter (      ) for the random variable  , then we have  

 

Table 1 - (                ) 
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     0 1 2 3 4 5 6 7 8 9 10 

     .0000059 .000137 .00144 .009 .036 .102 .200 .266 .233 .121 .0282 

     .000911 .00638  

.022 

.052 .091 .177 .199 .149 .130 .101 .0709 

 
     

   
  

.503 .510 .532 .586 .697 .788 1.002 1.392 1.396 1.099 .698 

  

By using Table, we have  

  (     )  
     

   
  (      )  (48) 

  

  (   )  ∑    
   

(     ) 

     
        (49) 

  

   (   )  ∑    
   

(     )
 

  
        (50) 

  

  (   )  ∑    
   |     |         (51) 

  

  (   )  ∑    
   

(√   √  )
 

 
           (52) 

  

  (   )  ∑    
   √               (53) 

  

  (   )  ∑    
   

(     )
 
(     )

    
         (54) 

  

   (   )  ∑    
   (     )   (

     

   
)         (55) 

  

   (   )  ∑    
   .

      

 
/    [

      

 (     )
]            (56) 

 

Now put the approximated numerical values from equations (48) to (56) into results (8), (19), (22), (25), (30) and 

(40). We have  

 

       (  (   ))  [         (  (   ))           (  (   ))         ( ∑    
     

 )] 

 

  0        . ∑    
   |

    

    
 

  

  
|/1           

 

                          
 

                    
hence validated the result (8).  

 

       (   (   ))                                     
 

hence validated the result (19).  

 

       (   (   ))                                 

 
hence validated the result (22).  
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       (  (   ))           

 
hence validated the result (25).  

 

          (   (   ))  
 

 
                                    

 
hence validated the result (30).  

 

.         
 

 
       / (   (   )  

 

 
 (   ))        (   (   ))                  

 

                          
 

hence validated the result (40). 

 

So also, other results can be confirmed. Too, approval of all the over results can be done by utilizing distinctive 

values of   and   and for other discrete likelihood dispersions as well, like: Negative binomial, Geometric, 

uniform etc.  

 

5. Conclusion 
 Since discrimination measures have wide applications in a few areas, so it is continuously curiously and critical 

to discover modern disparities and results in numerical shapes as well, so that these can be connected as an 

applications in numeric shapes. Since results are very unique, way better and compact to the past discoveries, 

subsequently these can moreover be connected within the disciplines said in the introduction section. Motivation of 

this work is to discover the unused realtions among the well known separation measures with Bhattachrya and 

Hellinger discriminations by employing a determined disparity on Jain- saraswat’s functional discrimination degree. 

The results are unique to the leading of author’s information. 
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