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1. Introduction 
Modeling the population dynamics is one of the approaches in mathematics to deal with the prevalence of diseased 

individuals. It is commonly used to simulate many complex systems and predict the number of diseased individuals at a 
time. A system can be transformed into a mathematical model by understanding the process of the system and 
proposing some assumptions. Studies using mathematical models are continuously expanding with the availability of 
computer software, new methodologies, and new hospitalized data. Generally, a mathematical model represents a 
complex phenomenon into mathematical equations with some parameters. In a mathematical model, the entire 
population is divided into compartments (or states) based on the individuals' status. Hence, the number of individuals in 
a compartment can be tracked. The individuals may jump into another compartment which is often described by an 
epidemiological parameter, and they can stay in one compartment only at one time [1]. Other than the human 
population, the compartmental model has also been applied to study the dynamics of a cell population in cancer 
phenomenon [2, 3, 4]. 

Glucose is the primary source of energy for the human body's cells. The glucose levels are regulated by insulin 
produced by the pancreatic beta-cells. Without insulin, the body's cells cannot absorb glucose and use it as energy—
consequently, the glucose levels in the body increase. The common causes of high glucose levels are either the 
pancreatic beta-cells failing to produce enough insulin or the body's cells resisting the insulin or both [5].  

Diabetes is a condition of having high blood glucose levels. The threshold value for an individual categorized as a 
person with diabetes is ≥ 7.0 mmol/L for a fasting-glucose level and ≥ 11.1 mmol/L for a 2-hour post-prandial. Type-2 
diabetes is the primary type in the population, highly related to lifestyle choices. Diabetes can cause many 
complications. Some are fatal, such as heart attack and stroke. There are approximately 463 million diabetics 
worldwide [5, 6], and this number keeps growing every year. If the total number of people with diabetes keeps 
increasing every year, many resources will need to be allocated, particularly for the management of diabetes and the 
treatment of its complications.  

Abstract: This paper studies an optimal control problem to describe the population dynamics of diabetes in the 
presence of intervention effects. We propose two control variables representing the interventions to reduce the 
incidence of diabetes, and the interventions to reduce the incidence of complications. By applying the optimal 
control theory, we seek to minimize the relative cost associated with the intervention efforts and to reduce the total 
number of people with diabetes. The solution to the optimality system is approximated by using the Forward-
Backward Sweep Method. The numerical simulations show that the number of diabetics who develop 
complications can be reduced by adopting optimal control strategies.  
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Diabetes complex processes come together with atherosclerosis-related inflammation that may affect the cell lining 
of blood vessels. The immune system's reaction leads to atherosclerosis, where the immune cells mistakenly recognize 
that plaque as intruders. The immune cells attack, cause inflammation, cause the plaque to swell or rupture, and then 
block blood flow. In addition, diabetes increases the production of free radicals, high reactive molecules that damage 
the essential components of cells such as DNA. Even its exact related inflammation is not fully understood; past studies 
had shown that much CVDs mortality is from a condition of being diabetes, and CVDs are the major causes of 
diabetes-induced death.  

Type 2 diabetes develops very gradually. Someone's sugar level will be in the condition of pre-diabetes, and after 
no preventive action is taken, persistent hyperglycemia occurs. Individuals with impaired glucose tolerance are already 
at increased risks of cardiovascular diseases. The excess blood sugar will reduce the blood vessel's elasticity and 
become narrow and impeding the blood flow. It increases the risk of high blood pressure and damages the small and 
prominent blood vessels (micro and macrovascular diseases). In others, diabetes causes the reduced ability for wound 
healing or infection, loss of sensation, vision loss, and metabolic problems, including diabetic ketoacidosis, 
hyperosmolar hyperglycemia, and mental health problems. Diabetes needs continuous medical treatment and self-
management by diabetic individuals in order to prevent or delay diabetes complications. Unlike CVDs, modeling the 
diabetes progression at the population level has been studied many times [6]. 

In this work, we study an optimal control problem of a diabetic population model. The primary purpose is to 
minimize the relative cost of implementing the intervention efforts and minimize the total number of people with 
diabetes, prioritizing people with diabetes with complications. In section 2, we discuss the population model of diabetes 
mellitus with optimal control. In section 3, we discuss the characterization of optimal control and its numerical 
simulations. Lastly, a brief conclusion is given in section 4. 

 
2. Mathematical Model 

Recently, Nasir and Mat Daud [6] suggested three compartments of the diabetes population consisting of the 
diabetics without and never experienced any complications, diabetics with complications, and post-treatment diabetics 
(see figure 1).  
 
 
 
 
 
 
 

Fig. 1 - State variables introduced by Nasir and Mat Daud [6] 
 
 
If we transform the dynamics presented in fig. 1 into mathematical equations, we obtain a system of ordinary 

differential equations, as follows: 
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where D(t) represents the number of diabetics without and never experienced any complications at time t, Dc(t) 
represents the number of diabetics with complications at time t, and Dp(t) represents the number post-treatment 
diabetics at time t. Moreover, the parameter I is the incidence of diabetes assuming without complication, α is the rate 
of incidence of the first complication, γ is the rate of completing treatment and recover, η is the incidence rate of a 
recurring complication event, μ is the non-diabetes-related death rate, and μi (i =1,2,3) is the death due to diabetes. The 
primary purpose is to investigate the control strategy using model (1). 

Suppose t∈ [0, tf] is the time interval of applying the optimal control strategies. Fig. 2 shows the compartmental 
diagram in the presence of optimal controls associated with system (1). 
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Fig. 2 - Population dynamics of diabetes mellitus with two control variables, u(t) and v(t) 
 
 
Then, the associated diabetic population model with optimal control problem is given by: 
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The control u(t) represents the intervention efforts on non-diabetic individuals, while the control v(t) represents the 
intervention efforts on diabetic individuals. The parameter [0,1]iξ ∈ , i =1,2,3, represents the adherence level or the 
effectiveness of the intervention efforts.  
 

For convenience, the admissible control set is W = U × V, where U and V are defined as 
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We also assumed (u, v) = (u0, v0) is the minimal intervention efforts, while (u, v) = (1, 1) is the maximal intervention 
efforts. The objective functional is 
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where Ai ≥ 0, i = 1, 2, 3, and Bj > 0, j = 1, 2, are the weight factors. The goal, therefore, is to characterize an optimal 
control pair (u*, v*) such that:  

(i) the total number of diabetics over the interval [0, tf] is minimized, and  
(ii) the relative cost of applying the control strategies in the same interval is also minimized.  

 
3. Results and Discussion 

The existence of (u*, v*) follows directly from [7]. Then, by using the Pontryagin Maximum principle [8], we 
obtain the following theorem. 

 
Theorem 1 Let ( D , cD , pD ) be the optimal solution of state system (2) with an optimal control pair (u*, v*), there exist 
adjoint variables (λ1, λ2, λ3) satisfying  
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with the transversality condition λi(tf) = 0, i=1,2,3. Moreover, u*=min{max{u0, u}, 1} and v*= min{max{v0, v}, 1}, 
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Proof. The Hamiltonian equation is given by 
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Then, we find the adjoint function for every variable (D(t), Dc(t), Dp(t)) with zero transversality. We obtain 
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Next, we find the characterization of the optimal control variables u* and v*. We obtain 
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Using bounds on the controls (the sets given in (3)), we obtain the following characterization equations: 
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The proof is complete.           □ 
 

The optimality system for the optimal control problem consists of the state system (2) and the adjoint system (5). 
Then, the uniqueness of this optimality system can be shown by the standard approach (see [8, 9]). 

To illustrate the reliability of the controlled system, the optimality system is solved numerically using the Forward-
Backward Sweep Method [8, 10], with the Runge-Kutta-fourth order iterative scheme. The algorithm is roughly based 
on the following steps: 
Step 1: Set initial guesses for u* and v* over the interval [0, ]ft t∈  and the tolerance value. 
Step 2: Compute the variables D(t), Dc(t), and Dp(t) of system (2) forward in time with the Runge-Kutta-fourth order 

iterative scheme. 
Step 3: Compute the adjoint variables λ1(t), λ2(t), and λ3(t) of system (5) backward in time with the Runge-Kutta-

fourth order iterative scheme. 
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Step 4: Compute the optimal control characterizations, u* and v*. 
Step 5: Calculate the errors of variables D(t), Dc(t), Dp(t), λ1(t), λ2(t), λ3(t), u*, and v* between the current and previous 

values. If at least one of the errors is greater than the tolerance value, return to Step 2. Otherwise, the current 
values are the outputs. 

 
For the simulation result presented in Fig. 3, we compare the dynamics of system (2), with and without optimal 

control using the following parameters set: 
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The selection of parameter values is challenging when dealing with model simulations. The parameter values in (6) 

were chosen randomly as an example of system (2). From fig. 3(a, b, c), the total numbers of all subpopulations of 
diabetes reduced after implementing the control strategies. From fig. 3(d), we can also observe that the control u* is 
given at a maximal level compared to v*. It suggests that prioritize should be given to controlling the non-diabetics 
from developing diabetes, while the intervention efforts to reduce the incidence of complications can be kept at a 
minimum level for about the first ten years. 

 
 

 
Fig. 3 - (a-c) The change of the number of diabetic individuals under the optimal control strategies; (d) The 

variation of optimal control strategies (u*, v*) 
 

 
4. Conclusion 

Several modeling studies of the diabetes population have been done with different explanations [6]. With such 
modelings, essential factors were interpreted, significance parameters were obtained, and predictions were made. By 
definition, mathematical models are greatly simplified representations of any complex system. This present work aims 
to reduce the total number of people with diabetes, especially the diabetics with complications utilizing the optimal 
control method. First, we introduced a controlled diabetics model. An objective function is proposed to minimize the 
total diabetics with the least relative cost. Then, some numerical simulations are illustrated, showing that complications 
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can be reduced effectively by implementing optimal control strategies. Furthermore, we obtained that a priority should 
be given to preventing the incidence of diabetes. 
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