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Abstract: In statistical models for censored survival data which includes a proportion of individuals who are
not subject to the event of interest under study are known as the long-term survival cured models. It has two
most adopted and common models used in estimating the cure fraction namely: the mixture (standard cure)
and the non-mixture models. In this research work, we introduce a Bayesian approach using the two models
for survival data based on the Beta Kumaraswamy Burr Type X distribution with six parameters and
compared with two existing models: beta-Weibull and beta-generalized exponential distributions in
analyzing a real-life dataset. The proposed approach allows the inclusion of covariates in the model. The
parameter estimation was obtained by maximum likelihood and Bayesian analysis methods. The win Bugs
and MCMC pack library in R softwares were employed for the Gibbs sampling algorithm in other to obtain
the posterior summaries of interest and also the trace plots by the applying of real data sets and a simulation
study was done based on cure models to compare the performance of both models relating to actual sense of
motivation and novelty which clarifies the usefulness of the proposed methodologies.

Keywords: Bayesian analysis, Beta Kumaraswamy Burr Type X distribution, cure fraction models, survival
analysis, maximum likelihood estimation

1. Introduction

In a real-life data analysis nowadays the use of parametric models for survival data analysis has been
increasing in the last few decades in response to more refined statistical tools to be able to analyze complex data
structures and parameters. The most standard existing techniques employed methods for estimating and
analyzing survival data include, the Cox proportional hazard models, the Kaplan-Meier method for estimating the
survival and log-rank test for testing the comparison of survival function between two or more sample groups. It
is also nonparametric test violating the normality assumptions for use when the data are right skewed and
censored.

We were motivated to proposed a new model called Beta Kumaraswamy Burr type X (Beta Kum-BX)
distribution with six parameters proposed by Madaki, Bakar and Chakraborty (2016), due the highly efficient
flexibility of these three confound models property which provides an enticing model fittings at different level
and kinds of large datasets. It is also a very flexible and versatile model having some special sub models
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distributions properties where its density function can be transformed as the so-called sub-model adopting some
features and properties of Kumaraswamy Marshal-Olkin family of distributions Alizadeh, Cordeiro, Mansoor and
Zubair (2015) and Kumaraswamy Burr type X model from the family of generated Kumaraswamy-G proposed
by Cordeiro and Castro (2011). As a special case and modification to Burr type X model by I. W. Burr (1942)
and Merovci, Khaleel, Ibrahim and Shitan (2016) Although, the BX model density and cumulative distribution
functions have a simple close form and it’s also having a convenient and flexible feature in modeling censored
(incomplete) data, unlike Gamma, Generalized Exponential and log-Gamma distributions respectively.

1.1 Burr Type X Distribution

The two-parameter BX has a monotonically increasing and decreasing hazard function features, which can
be used for practical aspects in statistical distribution and modeling of applications by I. W. Burr (1942). The
flexibility of its failure rate and the ease for estimation of its parameters, ever since it has been widely applied in
modelling real-life data. One of the limitations in beta-Kumaraswamy Burr type X (Kum-BX) model is that its
functions cannot be prove in a closed form, specifically when more covariates are considered, thus numerical
approach that is the integration techniques are required to determine the parameter estimation of in the models
with or without covariates by some authors like: Madaki and Bakar (2016) & Madaki, Bakar, Ibrahim, Arasan
and Hussein (2016) respectively.

2. Cure Rate Models

The cure fraction model Achcar, Barros and Mazucheli (2012), is usually called an extension to the survival
cure models who might probably not experience the event. It can also be called a long-term survival model
according to the kind of event is specified. The two most common cure models or long-term survivors are the
standard parametric cure (mixture) and non-mixture models. In both formulations, it is introduced in the model
for a parameter related to the cure fraction. There are some instances, especially with the advancements in
modern medicine, in which a proportion of the population of interest is “cured” and will therefore never
experience the event of interest. This situation motivates the incorporation of a cure fraction in a statistical model
in order to analyze the ability of a certain treatment to cure a disease of interest. Once that model is defined, the
next step is to develop procedures to fit the model to study datasets by utilizing popular statistical software. In the
literature, an extensive volume of articles on modelling survival data including the cure models can be found
refer to some of the authors like: Achcar, Barros and Mazucheli (2012) & Martinez, Achcar, Jacome and Santos
(2013). On the other hand, Berkson and Gage (1952), also Boag (1949) proposed this vital used cure fraction
models in survival analysis. The mixture cure rate model assumes that the studied population is a mixture of
susceptible individuals, who experience the pe[0, 1] which is the proportion of the uncured susceptible individuals
in the cure population regarding the event of interest (0 < p < 1) and non-susceptible individuals that will never
experience it (1 — p), The survival function for the entire population, denoted by S(¢) for this model is given by:

SO =p+(1-p)So(t)=p+Fu1), 1> 0. (1)

where, So(?) is the standard parametric survival curve function for the susceptible individuals also F,(f) is the
improper cumulative distribution for the cured population. In estimating the” improper” survival function S(), it
is quite easy in the sense that S(e0) > 0 if p < 1. The mixture cure model in equation (1) has been discussed by
other researchers in the literature, including: Madaki and Bakar (2016), proposed a comprehensive methodology
using R-software and Winbugs which explains the frequentist methods in the inferential aspect of cure fraction
models. Although, this model received well attention over the years but one of its shortcomings comes when the
covariates were modelled using the proportion p which does not involve a proportional hazard (PH) model, as it
is the property of survival model which corresponds to the models’ involving covariates. On the other hand,
Martinez, Achcar, Jacome and Santos (2013), makes some observations in equation (1), as it provides an
improper posterior result which includes the non-informative prior (uniform). It is actually the main reason for its
drawback in the recent years which makes its tedious to apply the Bayesian technique with non-informative
priors which is very common nowadays.

It was recently Bayesian estimation based on the disadvantage using equation (1), was observe by Chen et al.
(1999) based on the alternative model called the” non-mixture cure model” defines an asymptote for the
cumulative hazard, and hence for the cure fraction Ibrahim, Taweab and Arasan (2014) explains about the cure of
cancer study among patients. The survival function can be written as:

S(t) = p"*'= exp(In(p)Fo(?)). @)
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where, F,(f) is the improper cumulative distribution. The non-mixture cure model, was also pointed out by
Ibrahim et al. (2001) and Chen et al. (1999), making used of the Bayesian approach technique. They also
observed that in equation (2), does not involve any proportional hazard (PH) models or structures, if the S(¢) is
modelled by the PH structure.

The drawback of the mixture model gave by Maller and Zhou (1996) is the idea on how to overcome with a
great solution to incorporate the non-parametric Cox proportional hazard models with cure probability which can
be written as:

A(D) = A(t) exp (wTr) ©)

where, A,(?) is the baseline hazard function for the improper survival function and” ®” is the covariate to be
incorporated. When the baseline A,(¢) is considers, this implies 1—F,(¢), and the survival function for model in
equation (3) gives,

S(t) = (1 - Fo(t)) exp('wTU)_ (4)

The improper PH model was investigated by Famoye et al. (2005), to solve the model based on the
structure of model in equation (4).

3. Related Work

A cure rate model based on the beta-Weibull distribution was proposed by Cordeiro et al. (2011), the
techniques of estimating the cure rates when there are partially observed the missing covariates. Based on the
long-term survival models that the usefulness of beta-Weibull distribution for modeling censored survival data
from a German breast cancer research was investigated by Madaki and Bakar (2016). It has been found out
recently that the extension of the beta Weibull distribution was proposed by Cordeiro et al. (2013). A generalized
modified Weibull distribution by Wahed et al. (2009), is also a generalization of the Weibull distribution by
Wallodi Weibull (1951), due to its flexibility in accommodating different forms of the risk function seems to be
an important family that can be used in a variety of problems in modeling survival data. A Bayesian formulation
of the cure fraction model is given by several authors like: Achcar and Santos (2013) and Martinez, Achcar,
Jacome and Santos (2013). We have the cure rate model which is the mixture or standard parametric cure model
for the survival function of the cure and uncured patients contribute comprehensively by Martinez et al. (2013).

The cure rate model was proposed by Achcar and Coelho (2012), with some other researchers like: Maller
and Zhou (1996), Wahed et al. (2009), Madaki and Bakar (2016). contributed their quotas in the literature of
statistical modelling. The second one is the non-mixture model which was proposed by Berkson and Gage
(1952), also Boag (1949) as an asymptote alternative to the long-term survival model for maintaining the
proportional hazard form and also making it easy for interpretations of the effect of covariates on the cure
probability by Achcar and Coelho (2012). These two models received a quite lot of attention in the recent years
and gas been motivated by many health cancer researchers (medical mechanism).

4. Methods
4.1. Model Specification

Let 7 be a random variable representing the time until the occurrence of the event of interest, and let t,0 be
an observation from 7. We refer to the model in equation (1), the survival function in the standard (”” mixture”)
cure model proposed by Berkson and Gage (1952), also Boag (1949, the probability that the time-to-event is
larger than that some specified ¢ and p the proportion of cure fraction ( long-term survivors”). Therefore, the
cumulative distribution function of 7'is given as:

FO)=P(T=0)=1-8®=1—-p)[1 =Su(5)] = (1 — p)F(2). )
Therefore, the lim«F,(t) = 1 implies that lim,-Fo(f) = 1 — p. The prob- ability density function for Tis:

dF(t) .
t) = =(1—p)f.(t
£ = =5~ = 1=n)(0) ©
where f,(#) is the baseline probability density function for the susceptible individuals. Let us assume right
censored data and non-informative censoring. Considering a random sample (#, ;) of size n, i=1,....,n, the

contribution of the i subject for the likelihood function given by:
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Li= [An)TS@]"'= [(1 = p)fo(t)Tp + (1 = p)Solt)] 7, (7

where J; is the censoring indicator variable, denoting J;= 1 for an observed lifetime and ;= 0 for a censored
lifetime.

Alternatively, the non-mixture model formulation suggested by Berkson and Gage (1952), is defined as an
asymptote for the cumulative hazard, and hence for the cure fraction. The survival function can be referred to
equation (2), for the non-mixture model respectively.

where, Fo(f) = 1-S,(¢), we should take note that /im,—.F,(f) = 1 simply implies that /im,.S(f) = p. Assuming this
model, the contribution of the i subject for the likelihood function is given as:

Li= [h()]"S(t:) = [~(Inp)fo(t))” explIn(p)Fo(t)], ®)

L)
s

t
(@ can be interpreted as the risk of an event immediate after time t conditional

where the hazard function h(t) =
on surviving up until time t.

) = L= Pe(t)
hit) = Pt (L—p)S.(0) ©

On these, we denote Go(t) as the cumulative distribution function (cdf) of a random variable T, which
has a generalized class of distribution defined by:

B y(m,n)

B(m,n) a0

F,() = IG“(t)(man) =

where, B(m,n) :@, asm>0,n>0, is the beta function, while as l(_m) = Iz(”’_l’ezdz; l(_m) is a gamma

(m,n) 0

function and BGo(t)(m,n) is the incomplete beta function. If Go(t) in (10) is taken to be a cdf of a normal
distribution with mean p and variance o?, we have beta-normal distribution by Eugene et al. (2002). A model
based on the CDF of the Kumaraswamy Burr X distribution Madaki et al (2018) with shape parameters B,y,9
and scale parameter A assumes:

G,(1)=1-(1 —e—(ar)’) ", ¢ >0 (11)

where, from (10), we have the CDF of Beta Kumaraswamy Burr X distribution with five shape parameters m, n,
B,v,9 and one scale parameter A assumes:

F,(¢) =1—{(1—e—(,1t)2)9m}(m). (12)

In the context of survival analysis, the baseline survival function or standard parametric survival curve
function for the susceptible individuals is given by:

5,(1) = 1-£,(1). (13)

4.2. Beta Kumaraswamy Burr X Model Formulation

We observed that the function cannot be expressed in a closed form reference to the limitation propose by
Cordeiro et al (2011). The baseline probability density function of the Beta Kumaraswamy Burr X distribution
with six parameters by Madaki et al (2018), is written as follows:
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(1’;3’{9)‘2{87()\”2Df[R;’]'Hnil[l _ [Ri]ﬁ]mfl?t >0

/U({) = B(?T?,, n) (14)

We denote p; - [1_ e_(ﬂt)z}(m)and Ri — 1—[(1—@—(/11)2)91 respectively.
where, m,n,a,,9,A > 0. The corresponding hazard function is given by:

— 2 2, —(At)? Bgn—1 181m—1
holt) = S, (t)B(m,n) apuAte Dil] L= ] . (15)

4.3. Beta Kumaraswamy Burr X Model Without Cure Fraction
The likelihood function for Beta Kum-BX Model without cure fraction: 6 = (m, n, a,,9,A) is given by:

2(1 —p)no’v‘)\
B(m,n)

LBetaR’rr'm—BX (9) - H {

i=1

—(AL) D-,:[R,:]H”_l[l - [Ri],ﬁ](m,—l)}'
(16)

Their corresponding log-likelihood of Beta Kumaraswamy Burr X model distribution without cure fraction:
is:

[2( 1 — p)apBur?

B(m, n) ] +rin(t) — r(At)* + Z D; + (Bn —1)

i=1

lBe:tu.]\'u‘rn,—BX ((9) =rln
”

x > [Ri]+ (m—1) 2[1 — (17)

i=1 i=1

4.4. A Bayesian Analysis for the Beta Kumaraswamy Burr X Model

We consider the Beta Kumaraswamy Burr X model with density function in equation (7) above and a non-
informative joint prior distribution for the 6 = (m, n, a,3,9,1) given by:

1

G A)or——————
7, (.0, .5, )Ocm,n,a,ﬂ,&/l

(18)

where, m,n,a,,9,A > 0. The joint posterior distribution for these parameters can be written as:
=mw(m,n,a, 3,9, Alt) o« mo(m, n, o, 5,9, \) exp [r In(v) + ryln(y) — rIn(B(m, n))

+Zlnt’ T D 4 (Bn — 1)lel[n]+ m—l)Zln[l— **]. (19)
i=1
Where B(m,n)=InT'(m+n)—InT(m)—InT(n)
. N2 (a—l) . N2 Sa
Di= |:1 —e—(;tl‘l) } and Ri = 1- (1— e—(ﬂ,tl) ) respectively.

4.5. Beta Kumaraswamy Burr X model with Cure Fraction for the Mixture Model

Assuming the mixture model, the likelihood function for 6 = (m,n,a,3,9,A,p) is given by:
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2(1 p)adﬂA - 2 n— Bim— &
Lipetakum—BXmiztare () = H [ Blm, n) te” AT D; R — [Ri)7] l}
i=1

< [L+ (1 — St (20)
i=1

Their corresponding log-likelihood of mixture model is:
. 2 (a-1)
Di = [1— e—(ﬂ,t) J

Ri = 1_[(1-(3-(4;)2)‘”}
_ 39324 " r r r
In [%] Z(Si + ;m(m =Y S+ (Bn—1) ;(x In[R;]

i=1 i=1

lBP,t{L Kum—BXizture (H)

d)Inp+ (1 —p)S,(t;)]

+(m—-1) Z(S.; In[1 — [R]] + Zﬁ.,; In(D;) + Z (1-
1=1 i=1
(21)
4.6. Beta Kumaraswamy Burr X Model with Cure Fraction for the Non-mixture Model

Moreover, assuming the non-mixture model, the likelihood function for 6 = (m,n,0,,3,A,p) is given by

- In(p))ax B _ 83— Bim—1]%
LBf:tuKu'm,—BX““.,L_-,,H;;:;_u-,-,; (9) - H [ (JB()(+H) € (At D’: [Ri-}fj ‘ 1[1 - [Rf]g] ) l]
i=1

[1 [r’ (AL] (04 'I)]

X exp [ Bim, n) Z ] w™ (1 — u‘)”’ldw]. )

Their corresponding log-likelihood of non-mixture model is:

2(In(p (113’0)\2] i 25 In(t d ()\?‘)2 +(fn—1)
-1

<

IBetakK um—BXnon mizture(0) =1 { Blm.n) 1
'l

X Z(S, In(R;) + (m—1) Z() In[1 — Z In(D
i=1

O

In(p) B .
§11 1 — w)" w.
B(m,n) ; w1 —w)" " du @3

4.7. Beta-Weibull Model Formulation

Similarly, the survival and hazard functions cannot be expressed in a closed form. The baseline probability
density function of the beta-Weibull model with four parameters is written as follows:

folt) = Bt = exp(—() )] fexp(~( ) 11> 0 o
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Where, a,B,y and A > 0. The corresponding hazard function is given by:

fot) A1 — exp(—(At)")]}* L exp —(At)?
so(t) 1—exp[—(At)7]
B(a, 3) i w1 (1 — w)?~dw
d . 25)

ho(t) =

4.8. Beta-Weibull Model Without Cure Fraction

The likelihood function for beta-Weibull model without cure fraction: 6= (a,B,y,A) is given by:

r

471 )
Lpw(0) = H [M#[l — exp(—(At;)7)]* [CXP(—(M:‘)”];{]

L Bla,B) (26)
Their corresponding log-likelihood of beta-Weibull distribution without cure fraction is:
lpw(0) =rln {B"(’:d)} +(y—1) i:ln ti+(a—1)
o i=1
e i:ln[l —exp(—(At;)")] + ,Biln[cxp(f(/\t.,-)“’)]
i=1 i=1 . (27)

4.9. A Bayesian Analysis for the Beta-Weibull Model

We consider the BW model with density function in equation (17) above and a non-informative joint prior
distribution for the 6 = (a,B,y,A) given by:

1

/’L -
7, (a, By, A) < R

(28)
where, a,f,y,A>0. The joint posterior distribution for these parameters can be written as:
=7(ex, B, v, Alt) o< 7o (v, B, v, A) exp |:'r In(~) + ryIn(N) — rIn(B(«, 3))
+(y = DD Int; + (0 — 1) > In(1 — exp(—At;)7) — BAY Zt?]. (29)

i=1 i=1 i=1

Where B(a,3)=InI'(e+ 3) —InI'(a) — InT'(3).

4.10. Beta-Weibull model with Cure Fraction for the Mixture Model

Assuming the mixture model, the likelihood function for 6 = (a,B,y,A,p) is given by:

r

Lt (0) = [ [P G2 = expl- )" eso(~(30) )]

d;
i=1

<] TTlp+ (@ = p)So(t)) =
i=1 (30)
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Their corresponding log-likelihood of mixture model is:

(1 =pIAT ] = . .
LBW piminre (7) =100 {%} Z 8+ (y—1) Zci,; In(t;) + (o — 1) Z(‘).,- In[1 — exp(—(At)")]

+ ﬂZ(Slnexp —(At))? ]+Zl—d )In[p + (1 — p)S,(t)].
i=1

(3D
4.11. Beta-Weibull Model with Cure Fraction for the Non-mixture Model

The likelihood function for non-mixture model 6 = (a,f,y,A,p) is given by:

Lew,. . (0)= H [_ %[1 - CXP(—()\t)")}ﬂfl[cxp(—(/\t)ﬁf)w} 8

1—exp(—(At)7)

X exp [Blzl(gp’l)g) i ] w1 (1 — ,w)ﬁ—]dw} '

=1

(32)
and the corresponding log-likelihood of non-mixture model is:
—(In( r
13- s (0) = I |~ E e } 2 i+ (7-1) za In(t;) + (1) 3 & nft — exp(—()")]
=1
- | - 1—exp(—(At)7)
+ ,‘525.5 Infexp(—(At)7)] + le(gp?g) z f w1 (1 —w)?dw.
=1 i=1 0 (33)

4.12. Beta Generalized Exponential Model Formulation

The baseline probability density function of the beta generalized exponential (BGE) model with four
parameters by Barreto, Santos and Cordeiro (2010), is written as follows:

al

fo(t) —(m) exp(—(A1)[1 — exp(—(A1)]"*~V[1 — (1 — exp(—(At))*) "~V 1 > 0' G4

where m,n, a,A > 0. The corresponding hazard function is given by:

folt) _ adexp(~=(A))[1 — exp(~(A)*=D[1 — (1 — exp(~(A)*)] "~V

ho) =5 = 1=exp[~(A0)7]

B(m,n) i w1 — w)r—ldw
b . (35)

4.13. Beta Generalized Exponential Model without Cure Fraction
The likelihood function for beta generalized exponential model without cure fraction:

6 = (m, n, a,A) is given by:

Loce(0) =[] { (ﬁ;\m)) [exp(—(Aa)[1 = exp(—(xt)] V(L - (1 oxp(—(xm)“)l(“”]}

(36)'
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Their corresponding log-likelihood of beta generalized exponential distribution without cure fraction is:

lgge(f) =rln (%) — -r)\th + (ma —1) Zln[l — exp(—(At;))]

+(n—-1) Zln[l — (1 —exp(—(M;))™M)].
i=1 37)

4.14. A Bayesian Analysis for the Beta Generalized Exponential Model

We consider the BGE model with density function in equation (27) above and a non-informative joint prior
distribution for the 6 = (m,n,0,A) given by:
1

7, (m,n,o, A)oc ——

(38)
where, m,n,a,A>0. The joint posterior distribution for these parameters can be written as
-
=m(m, n, a,A|t) < m,(m, n, a,\)exp [r In(y) + ryIn(y) — rIn(B(m,n)) + A Zti

+ (ma —1) Zln[l —exp(—(A;))] + (n—1) Zln[l —(1- exp(—()\t,'_))ﬂ)] .

i=1

(39)

4.15. Beta Generalized Exponential Model with Cure Fraction for the Mixture
Model

Assuming the mixture model, the likelihood function for 6 = (m, n, a,A,p) is given by:

B S Ta(l —p)A v 1
LBGE?)IL?‘TH?'{‘ (9) = ,];E [m Cxp(—()\lz)[l — (‘Xp(—()\fq))]( )

8; r (1-63)
o 0 IR I [p+ a p)s(,(n:)]

(40)

Their corresponding log-likelihood of mixture model is:

IBGE miniure (0) = In ( B(m n) )Z(ﬁ 7/\20 ti + (ma — 1)25 In[1 — exp(—(At;))]

+(n—1) Z&; In[1 — (1 — exp(—(At;))“)] + Z(l — ;) In[p + (1 — p)Sa(t:)] a
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4.16. Beta Generalized Exponential Model with Cure Fraction for the Non-mixture
Model

The likelihood function for the non-mixture model 6 = (m, n, a,A,p) is given by:

r

Lpg Enon—mizture (9) = H

i=1

a(In(p))A
(* B(m,n) ) exp(—(A)[1 — exp(—(At))) e

1—exp[—(At)*]

&i r .
x[1—(1- (3X].)(—()\t))“)](”_l)] exp [ n(p) Z / w™ (1 - u;)”_ldw]

B(m,n) & .
= 0
(42)
and the corresponding log-likelihood of non-mixture model is:
B a(ln(p))A] « ' .
LBGE o mimiare (0) =10 { Bm.n) ] ;511 (At) ;61 Int;
() <& 1—exp[—(At)*]
n{p apy—1 _ ayyn—1 s
+ (ma — 1) Z;éi In[1 — exp(—(At))] + [m Z; f w1 — w) du,]
1= 1= 0
(43)

4.17. Incorporating Covariates

Due to the intricacy and complexity case of all the joint log-likelihood functions,

lBeta Kum—BX mixture (9) s

[N () &

¢ Ly e (0)

SR () §
[—(()

£ Lyge sonmisure 0)-

the estimation of the parameter by maximization or direct method will be extremely a difficult task. In order to
overcome in dealing with this type of problem, we consider the use of Bayesian inference based on (MCMC)
methods. We can probably also take in the incorporate a vector of covariates yi that may be closely related and
associated with the proportion p of cure rate fraction models by replacing p in the log-likelihood functions above
by:

exp(yin)
pi(y) = T T
1+ exp(yin) (44)

5. Bayesian Analysis

For a Bayesian analysis of the long-term survival models without considering covariates Achcar et al 2013, on
the other hand we also presume the beta prior for the given probability of proportion p of cure models which is
denoted by p~Beta(m,n) where m and n are known hyper parameters. We also assume a gamma prior distribution
for the parameters 6 =(m,n,a,3,0,A) by Achcar et al 2013. That is, m ~ Gamma(cmdm), n ~ Gamma(cndn), o, ~
Gamma(cada), p~Gamma(cpdp), 6~Gamma(c3dd), A~Gamma(cAdr), where cm,dm,cn,dn,ca,da,cB,dp,c9,dd ,ch
and d\A are known hyper parameters and Gamma(c,d) denotes a gamma distribution with mean
4 and variance dLz In all cases the joint prior distribution is then establish by assuming prior independence
between the parameters, or say,

10
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7(0) = w(m). 7w(n), w(a), 7(3), 7(¥), m(A) oc m™ Ipen a1 gei—lged =1 \eA=l

m n o 1) Y A

o e = "_117 d—1 45
x ETP( dm dn do dg  dy  dy )p (1-p) (45)

for models incorporating the following covariates, the prior distribution for the unknown parameters is assumed:
m ~ Gamma(cmdm), n ~ Gamma(cndn),

a ~ Gamma(cada), B ~ Gamma(cfdp), 6 ~ Gamma(c3dd), A ~ Gamma(crdr), ~ N(cgj,d2§)), j=0,1,...,J and
nk ~ N(enk,dn2k), k=0,1,....K.

where N (c, d%) denotes a normal distribution with mean ¢ and variance d°. are hyper parameters. In this situation
we should focus on the independence between the prior distributions denotes a normal distribution with mean ¢
and variance d? for the hyper parameters.

In all process we generated 3,500 Gibbs samples taking every 10th sample after a “burn-in-sample” of size
2,000 to eliminate the initial values used in the Gibbs sampling iterations. All the simulations were done using
the Winbugs and R softwares to obtain the posterior summaries. The posterior convergence of the sampling
algorithm was confirmed by trace plots in Figure 3, of the simulated results.

5.1. The Gibbs Sampler

We wish to obtain a sample from the multivariate distribution (1,...,d). We shall call this distribution the
target distribution. In Bayesian statistics, the target distribution is the joint posterior distribution. The Gibbs
sampler obtains a sample from (1,...,d) this simulation step is usually straightforward [34]. The algorithm is as
follows:

. Initialize with. 6 = (8\"”, ..., 8\")
. Simulate 95“ from the conditional distribution. 7r(91|9g}): 9&0)1 9((}0))
. Simulate ol from the conditional distribution (4| 9%').‘ 9&033 » 9((;)))
. Continue saglmpling....
. o't . (6 ‘9“) pit) gt )
. Simulate”< from the conditional distribution”™\¥d¥1 »¥2 -2 Yq—1 ],
. Iterate this procedure.
6. Model Selection

Several criterions have been employed to select the best model based on the type used to compare with the
existing models. Here we consider the log Pseudo marginal likelihood measure (LPML) where it considers the
large value as the best model selection.

6.1. Log Pseudo Maximum Likelihood

Comparison of the two cure models assuming different distributions will be accessed using log Pseudo marginal
likelihood measure and the Pseudo factor. The LPML is derived from the conditional predictive ordinate (CPO).
For the i observation, the CPO); is given by:

f(Difyu) = ./'f(Df/(-Jf((-JIDﬂ)d@_ (46)

where O is the incomplete vector of parameters, Di is each instance of the full data
o . f(6/Dy)

D, DJ[i] is D without the current observation i and

An MCMC approximation of CPOi is given by:

is the posterior density of ® given DJ[i], i = 1,...,r.

— 1< 1 -1

where B is the number of iterations during the implementation of the MCMC procedure after the burn-in-period
and OD is vector of the samples that will be obtained at the 4th to 5th iterations Gelfand et al. (1992). For a given
model, the LPML value is given by:

r

11
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LPMLd = XlogCPOd i.
i=1
The larger the value of LPML, the better is fit of the model by Gelfand et al. (1992). Alternatively, the Pseudo
Bayes factor (PMF) for comparing models b and b’ is:

(48)

PBFEyy — e;z:p(LPii?Lb — LPMLY
. (49)

6.2. Highest Probability Density (HPD) Interval

We also obtained the highest probability density (HPD) intervals for parameters of interest Geweke et al
(1991). A 100(1-®)% HPD interval for a generic parameter 0 is a subset of the parameter space C® given by
C={0:m1(6|D)=k} where n(0|D) is the posterior distribution for 6 given the data D and k is the largest number such
that Rn(0|D)>k n(6|D) =1-w .

7. Application Censored Data

7.1. AIDS Clinical Trials Group Study Data

“AIDS Clinical Trials Group Study Data by Hosmer et al. (2008). This data contains the placebo-controlled
trial that compared the three-drug regimen of indinavir (IDV), open label zidovudine (ZDV) or stavudine (d4T)
and lamivudine (3TC) with the two-drug regimen of zidovudine or stavudine and lamivudine in HIV-infected
patients”. We consider the time-to-event of each patient denoted by ”ti” and also the censoring indicator 3i”,
where 781 = 1” meaning death was observed or ”3i=0" censored count of the patient probably lost to follow-up or

missing .

7.2 Results

Table 1 - The posterior summaries for The Beta Kum-BX, BW and BGE models based on AIDS clinical

trials group study data

HWc

Model Parameter MLE Bayes 90%HPDa  95%HPDa  LPMLb p G?:lek: s
value pvalu
Beta ™ 0.8008 0.8108 (0.5123,1.9603) (1.0601,1.2922) 0.618 0.307
Kum- 1 0.9308 0.9505 (0.0871,2.8578) (1.1189,2.3834) 0.099 0.223
BX o« 1.0910 1.0110 (0.4335,1.1979) (1.3125,2.3629) 148 0314 0.112
B 1.0420 1.0520 (0.0117,1.0890) (0.0186,0.2481) 0392 0251
9 0.4664 0.4564 (0.2922,0.4662) (0.6625,1.2972) 0.348 0.277
A 0.7084 0.7184 (0.0855,1.0423) (1.1376,1.3364) 0.099 0.223
a 1.8016 1.8116 (0.4878,1.6794) (1.5214,2.1259) 0314 0.112
BW B 0.6706 0.6806 (0.0089,0.0197) (0.0156,0.2218) 145 0372 0.251
y 0.9184 0.9084 (0.0132,1.0781) (0.5411,1.2922) 0.614 0307
A 23076 2.3126 (0.2747,0.4612) (1.1845,1.3524) 0.012 0.223
m 1.3529 13499 (0.2934,0.4921) (1.0664,1.2017) 0463 0.334
BGE n 0.8640 0.8590 (0.0661,0.2384) (0.0250,0.1167) 141 0214 0.772
a 0.6606 0.6806 (0.0212,0.1024) (0.0266,0.3657) 0392 0.251
A 2.2778 2.2978 (0.2864,0.4601) (1.0235,1.1308) 0.399 0.394
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Table 2a - The posterior summaries for The Beta Kum-BX, BW and BGE models with mixture models
based on AIDS clinical trials group study data

» HW*p Geweke’s
value p value

Model Parameter MLE Bayes 95%HPD* LPML

m 0.9022 0.9122 (0.5281,1.2922) 0.618 0.327
Beta n 1.4225 1.4165 (0.1376,1.3364) 0.099 0.263
Kum- « 1.8013 1.8123 (0.5334,1.7329) 0.314 0.112
BX B 0.8236 0.8526 (0.0166,0.2681) 147 0.392 0.251
4 0.4424 0.4654 (0.6675,0.8072) 0.349 0.287
A 1.3213 1.3346 (1.1736,2.3743) 0.129 0.239
p 0.8543 0.8786 (0.0134,0.2123) 0.472 0.351
a 1.7235 1.7134 (1.5214,2.6545) 0.345 0.176
B 0.9703 0.9806 (0.0145,0.2671) 0.374 0.265
BW 7 0.9274 0.9134 (0.5370,1.2922) 143 0.623 0.367
A 2.4376 2.4526 (1.1086,1.1344) 0.659 0.243
p 0.5176 0.5236 (0.0187,0.5234) 0.392 0.031
m 1.3521 1.3499 (1.4324,2.2017) 0.463 0.334
n 0.6480 0.6590 (0.0250,0.1167) 0.818 0.772
BGE « 0.7775 0.7865 (0.2317,1.8654) 138 0.109 0.231
A 2.5083 2.4978 (1.2235,4.1378) 0.699 0.394
p 0.8536 0.8811 (0.0236,0.2161) 0.392 0.435

Table 2b - The posterior summaries for The Beta Kum-BX, BW and BGE models with non-mixture
models based on AIDS clinical trials group study data

LPML HW‘p Geweke’

Model Parameter MLE Bayes 95%HPD* b value s p value
m 0.9227 09012 (0.5511,1.2082) 0.618 0.347
Beta n 1.3453  1.3546 (1.1076,2.3154) 0.069 0.232
Kum- « 1.5356  1.5416 (1.5334,2.7675) 0.321 0.102
BX b 0.9109 09123 (0.0376,0.2431) 147  0.392 0.251
3 0.9218 0.9344 (0.5431,1.2922) 0.618 0.307
A 0.5234 0.5426 (1.1566,2.1364) 0.057 0.167
p 0.77846 0.7906 (0.0126,0.2761) 0.438 0.522
a 1.8108 1.8116 (1.5334,1.7349) 0.314 0.112
B 0.8217 0.8306 (0.0326,0.2321) 0.352  0.431
BW 7 0.9217 09384 (0.2711,1.2982) 145  0.764 0.507
A 2.2178  2.3126 (1.1076,1.3364) 0.099 0.223
p 0.6039 0.6082 (0.1536,0.2681) 0.392 0.241
m 1.3532  1.3499 (1.9544,2.2117) 0.463 0.334
n 0.9543  0.9590 (0.0220,0.1267) 0.818 0.772
BGE a 0.5638 0.5434 (1.2235,2.1247) 138  0.187 0.134
A 2.3843  2.3978 (1.2435,1.4378) 0.699 0.394

p 0.8386 0.8306 (0.0226,0.1351) 0392  0.234
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8.1. Remarks on Table 1 and Table 2a and Table 2b

From the Table 1, we observed that the convergence of the MCMC algorithm was partially obtained even
when using a very large burn-in-period for the algorithm. These results were shown in Table 1, considering the
Beta Kum BX, BW and BGE distributions respectively. Also, we noted that all p-values from (HW) Heidelberger
and Welch convergence diagnostics criteria do not reject the null hypothesis of stationary of the chains, since
they are all larger or equal than 0.05 level of significance. While the Geweke’s p-values also suggest
convergence, on the other hand these results shows that, among all the models considered BGE distribution has
the least (LPML) Log pseudo marginal likelihood value, while Beta Kum-BX and BW distributions have similar
LPML values, where strong evidence shows that these models are better fitted by the data than, From Table 2a
and Table 2b, for each run, the convergence was assessed by monitoring the trace plots and using Heidelberger
and Welch (HW) and Geweke’s convergence diagnostics. The model based on the Beta Kum-BX and other
existing models in the presence of cure fraction for the using the MCMC estimation as we demonstrate that the
use of this Bayesian methodology is quite suitable to get the posterior inferences for the parameters of the model.
We also showed that the model estimation in using cure fraction results in more precise inferences of the result
based on the two models at all levels shows that the mixture models fit well better than the non-mixture models.

1.00-
0.99-
W
=
c 0.98-
o |
73]
0.97- :
II
=
0.96- pobdh o
0 100 200 300
Time

Fig. 1 - Survival functions estimated by Kaplan-Meier method

Fig. 1 shows the plots of the survival functions estimated by Kaplan-Meier method and from the models based on
Time to AIDS diagnosis or death and the event indicator for AIDS defining diagnosis or death, based on AIDS
clinical trials group study data.
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Fig. 2 - Kaplan-Meier estimates for the survival function

Fig. 2 shows the of the Kaplan-Meier estimates for the survival function versus the respective predict
values obtained from the parametric mixture models for each probability distribution of interest: (a) Beta Kum-
BX, (b) BW, (c) BGE distributions AIDS clinical trials group (ACTG) Study. The diagonal straight lines
represent a perfect agreement between Kaplan-Meier estimates and predicted values as its clear shows how
perfect our new model fits the AIDS clinical trials group study data.

Trace Plots for Beta Kum-BX Convergence
4
=

g
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Cnger

a 1000 2000 3000 4000 5000 Q1000 2000 3000 4000 5000 Q1000 2000 3000 4000 5000
Onger Oroer Orger
Fig. 3 - Plots of the convergence diagnostics and output analysis (coda)
Fig. 3 shows some of the trace plots of the new model Beta Kum-BX showing that the priori distribution

is well calibrated which is indicated the parameters having sufficient state changes as the MCMC algorithm runs
based on AIDS clinical trials group study data. Plots of the convergence diagnostics and output analysis (coda)
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object were estimated with a bit close estimation but non-mixture models with covariates fits better than the
mixture model having the highest (LPML) log pseudo marginal likelihood based on the weakness of the mixture
cure model pointed out in the literature this actually validate the assumptions. Also, the 95% credible intervals
for all the parameters and covariates. We can obtain Bayesian estimates for the cure fractions of each risk group
considering the simulated samples for the covariates N0 = age at enrollment, n1= sex and n2= race. The
Heidelberger and Welch (HW) convergence diagnostics calculates a test statistic based on stationary distribution
and Geweke’s convergence diagnostics, is based on the test for equality of the means of two nonoverlapping
parts of a Markov chain process. It was considered in Bayesian survival analysis for the estimated results
obtained for the cure fractions of the patients classified as Beta Kum-BX and BW fits better having highest
probability intervals than the so-called BGE model with the least LPML values as shown above respectively.

Table 3a - The posterior summaries for The Beta Kum-BX, BW and BGE models with mixture models

16

and covariates based on AIDS clinical trials group study data

Model Parameter MLE Bayes 95%HPD*  LPML? 'VY’; ?:ep gi:l‘:ze,s
N 0.8946 0.9056 (0.5451,1.2922) 0.618  0.677
. 1.3206 1.3426 (1.1376,2.3364) 0.099  0.223
. 1.2676 1.2816 (1.5334,1.7089) 0314  0.112
Beta Kum-  j 0.9643 0.9706 (0.0166,0.2681) 0392 0.251
BX 9 0.8413 0.8674 (0.545,12922) 147  0.618  0.323
p 0.7712 0.7806 (0.0166,0.3961) 0382 0361
o 0.8134 0.8337 (-1.1345,0.3965) 0.780  0.433
m 0.5216 0.5433 (-0.3411,0.2922) 0.618  0.707
7 0.6198 0.6040 (-1.7856,0.2374) 0.779  0.243
A 14619 14729 (0.3904,2.3249) 145 0457  0.659
B 1.1512 1.1532 (0.1107,1.2681) 0224 0271
’ 0.8211 0.8381 (0.5337,1.6854) 03648 0.727
BW 2.1609 2.1816 (0.0266,0.2481) 0392 0.251
o 0.6337 0.6337 (-1.1376,0.3364) 0.799  0.643
m 0.7431 0.7843 (-0.2201,0.2922) 0.038  0.508
7 0.9021 0.9124 (-1.1334,0.3744) 0.624  0.243
m 1.0272 1.0649 (1.9664,2.2017) 140 0483  0.147
n 0.5213 0.5406 (0.0166,0.2761) 0562 0.045
a 0.5176 0.5236 (1.0972,2.7675) 0216  0.654
BGE A 22145 2.2324 (0.1296,0.2344) 0238 0231
o 0.7218 0.7365 (-0.1547,1.9864) 0079  0.245
m 0.5010 0.5053 (-1.5731,1.2832) 0.068  0.357
7 0.9098 0.9234 (-1.1376,0.0324) 0.099  0.223
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Table 3b - The posterior summaries for The Beta Kum-BX, BW and BGE models with non-mixture
models and covariates based on AIDS clinical trials group study data

HWp  Geweke’s

Model Parameter MLE Bayes 95%HPD* LPML®
value  p value
m 0.9014 09112 (0.5671,1.2752) 0.623 0.334
n 1.3226 1.3215 (1.1376,1.3364) 0.099 0.223
a 1.1087 1.1236 (1.5334,2.23189) 0.314 0.112
Beta Kum- s 0.6043 0.6176 (0.0446,0.2681) 0.392 0.251
BX 9 0.9114 0.9084 (0.5611,1.2922) 150 0.618 0.307
A 0.7743 0.7806 (0.0166,0.2681) 0.392 0.251
7o 0.9421 0.9337 (-1.1376,0.3364) 0.799 0.343
m 0.8653 0.8843 (-0.2611,0.2922) 0.618 0.707
n2 0.8125 0.8024 (-1.1976,0.3364) 0.779 0.243
a 1.5012 1.5129 (0.3684,2.1799) 147 0.453 0.729
B 0.5032 0.4932 (0.1507,1.2691) 0.244 0.261
7 1.0415 1.0121 (0.5337,1.6854) 0.748 0.617
BW 4 2.0215 2.0706 (0.0166,0.2681) 0.352 0.261
1o 0.8216 0.8337 (-1.8976,0.3304) 0.799 0.343
m 0.4732 0.4843 (-0.2611,0.2822) 0.618 0.707
n2 0.8321 0.8133 (0.1315,0.3764) 0.969 0.433
m 1.5479 1.5649  (1.8664,2.1217) 144 0.129  0.157
n 0.3221 0.3133  (1.3015,1.3764) 0.969  0.465
a 0.8242 0.8236  (0.2174,1.6134) 0.125  0.154
BGE A 2.3632 2.3766  (0.0123,0.2651) 0.492  0.561
no 0.81765 0.8065 (-0.1376,1.9864) 0.099  0.223
nl 0.4857 0.4753  (-1.4611,1.1922) 0.618  0.337
n2 0.7219 0.7146  (-1.2376,-0.0231) 0.019 0.213

8.2. Remarks on Table 3a and Table 3b

From Table 3a and b, they are clearly shows that the inferences for the two models based on the of the
Beta Kum-BX and other existing models. The two models were estimated with a bit close estimation but non-
mixture models with covariates fits better than the mixture model having the highest (LPML) log pseudo
marginal likelihood based on the weakness of the mixture cure model pointed out in the literature this actually
validate the assumptions. Also, the 95% credible intervals for #,= sex. We can obtain Bayesian estimates for
the cure fractions of each risk group considering the simulated samples for the covariates 7o = age at
enrollment, #,= sex and 7= race. The Heidelberger and Welch (HW) convergence diagnostics calculates a test
statistic based on stationary distribution and Geweke’s convergence diagnostics, is based on the test for
equality of the means of two non-overlapping parts of a Markov chain process. It was considered in Bayesian
survival analysis for the estimated results obtained for the cure fractions of the patients classified as Beta
Kum-BX and BW fits better having highest probability intervals than the so-called BGE model with the least
LPML values as shown, respectively.
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Table 4 - A simulation study comparison for the Beta Kum-BX and other existing models with long-
term survival models

n=30 n=50 n=100
Model Censoring Parameter True Bias MSE CI Bias MSE CI Bias MSE CI
rate value
0.673 0.486 96. 0.64 0.444 0.545 0.224
4 2 3 21 8 3 0
0.755 0.670 93. 0.72 0.622 0.738 0.517
mixture 0 2 3 52 2 6 7
model m 1.0 0931 0.194 92. 0.91 0.143 95.7 0.833 0.075 87.0
Beta  slight n 14 6 1 5 37 7 90.6 4 4 85.8
Kum- U[0,20] « 1.8 0.180 0.122 92. 0.15 0.113 91.6 0.108 0.087 84.2
BX 20% p 0.8 3 4 5 9% 7 90.7 1 9 86.0
3 0.5 0.229 0.180 93. 0.20 0.165 91.8 0.166 0.022 84.6
0 7 8 46 6 5 2
A 1.3 0414 0.674 96. 0.31 0.425 94.3 0.253 0.043 834
7 3 5 39 1 6 2
p 1.0 0.464 0.153 94. 0.34 0.150 93.7 0.213 0.101 86.2
4 0 2 70 5 5 8
moderate m 1.0  0.630 0.464 92. 0.60 0.319 91.8 0.552 0.191 87.4
6 6 7 36 4 8 8
u[0,7] n 1.4 0.658 0.583 96. 0.62 0.537 94.2 0.577 0.517 89.0
5 0 8 87 7 9 2
50% a 1.8 0923 0.187 95. 0.88 0.187 94.4 0.813 0.069 90.0
6 2 4 37 4 3 5
p 0.8 0.156 0.106 91. 0.12 0.106 90.3 0.137 0.101 84.4
2 7 6 81 9 3 8
8 0.5 0.197 0.032 95. 0.18 0.142 92.7 0.153 0.020 83.0
7 1 6 40 9 1 7
A 1.3 0374 0.548 92. 0.31 0.452 90.8 0.163 0.032 89.0
2 1 7 06 0 2 1
p 1.0 0349 0.139 95. 0.24 0.149 92.8 0.201 0.090 85.1
0 2 0 59 3 4 1
0.461 0.375 96. 0.40 0.203 0.341 0.213
3 7 3 52 8 7 1
0.285 0.166 95. 0.25 0.129 0.174 0.105
slight o 1.7 6 4 8§ 02 9 95.8 ¢ 7 83.2
U[0,25] g 1.0 0.198 0.132 94. 0.13 0.102 92.3 0.080 0.065 83.4
BW  20% y 1.0 2 8 4 81 8 924 4 5 89.4
A 2.5 0.165 0.140 96. 0.13 0.097 94.0 0.085 0.066 83.2
5 7 3 18 5 5 6
p 0.5 0.145 0.138 95. 0.12 0.097 93.4 0.085 0.043 88.2
9 5 8 51 5 3 0
moderate a 1.7 0.423 0.146 94. 0.38 0.119 91.7 0.334 0.525 88.8
8 1 0 39 0 9 7
uU[0,8] p 1.0 0.290 0.153 94. 0.24 0.127 92.6 0.141 0.064 90.8
3 0 0 29 0 4 4
50% y 1.0 0302 0.290 94. 0.26 0.242 92.8 0.160 0.176 89.4
2 5 0 80 9 5 4
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! 25 0.162 0.128 95. 0.11 0.087 93.8 0.059 0.031 86.4
6 4 7 95 9 3 2
p 0.5 0.133 0.112 93. 0.10 0.079 91.3 0.055 0.027 85.4
8 3 0 23 1 6 1
0.156 0.138 95. 0.12 0.077 0.087 0.047
6 4 4 15 3 6 5
0.309 0.161 95. 0.26 0.122 0.208 0.078
slight 1.3 2 5 5 35 5 94.6 1 5 89.4
U[0,23] m 0.7 0.171 0.207 95. 0.12 0.157 93.8 0.081 0.095 89.2
BGE 20% na 0.8 4 0 6 16 3 932 8 1 84.4
! 25 0451 0319 94. 0.41 0.294 91.8 0.323 0.229 86.2
3 1 3 25 5 5 8
p 0.9 0.204 0.166 94. 0.17 0.136 93.6 0.063 0.053 86.3
1 7 7 24 0 1 1
moderate m 1.3 0.126 0.114 92. 0.10 0.092 90.4 0.052 0.067 84.8
5 6 1 63 5 7 1
U[0,6] n 0.7 0.320 0.135 93. 0.00 0.051 90.4 0.497 0.468 85.0
9 8 8 67 0 0 6
50% a 0.8 0.143 0.129 91. 0.09 0.086 89.6 0.051 0.031 78.0
0 4 3 93 2 4 7
! 2.5 0.466 0.251 93. 0.42 0.253 91.2 0.307 0.216 86.1
2 7 2 46 8 0 3
p 0.9 0.226 0.180 91. 0.16 0.128 90.6 0.074 0.059 83.2
3 7 6 13 3 6 3
0.652 0.377 94. 0.61 0.480 0.541 0.213
non- 8 1 3 06 5 7 1
mixture 0.814 0.913 93. 0.78 0.666 0.674 0.315
model 8 4 4 37 0 0 7
m LO 0914 0344 93. 0.88 0288 937 0.740 0.149 862
Beta slight n 1.4 o9 1 8§ 22 1 90.8 4 5 85.4
Kum- U[0,20] g 1.8 0.284 0.148 94. 0.16 0.105 90.5 0.125 0.086 86.4
BX 20% B 08 6 9 2 62 9 918 5 6 86.2
9 0.5 0.338 0.193 93. 0.29 0.130 90.3 0.145 0.073 83.2
5 7 9 52 9 3 0
yl 1.3 0.157 0.184 94. 0.13 0.126 91.4 0.106 0.073 85.2
4 9 7 47 3 2 5
p 1.0 0.138 0.051 95. 0.10 0.039 93.1 0.064 0.014 82.1
5 4 1 77 9 2 5
moderate m 1.0 0.633 0.446 95. 0.61 0.385 91.7 0.540 0.278 90.4
0 1 6 05 7 8 8
U[0,7] n 14 0.646 0.351 94. 0.59 0.253 92.7 0.462 0.104 87.6
3 1 3 57 5 7 4
50% a 1.8  0.903 0.187 94. 0.20 0.102 90.5 0.186 0.058 86.4
8 6 3 13 5 9 2
B 0.5 0.306 0.102 92. 0.23 0.230 96.4 0.174 0.127 84.2
3 7 6 90 0 8 2
9 0.9 0.233 0.170 93. 0.21 0.127 92.8 0.165 0.083 87.2
1 9 7 87 4 1 9
! 1.3 0.164 0.107 92. 0.12 0.080 90.9 0.075 0.045 83.8
6 6 6 8 3 1 4
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p 1.0 0.123 0.146 94. 0.09 0.119 92.9 0.043 0.063 84.4
8 1 5 32 0 9 2
0.430 0.109 93. 0.38 0.045 0.318 0.026
5 0 2 52 4 6 9
0.655 0.460 92. 0.62 0.109 0.510 0.311
slight o 1.7 7 8 4 11 5 90.3 7 3 86.2
U[0,25] g 1.0 0.191 0.127 94. 0.16 0.118 93.2 0.428 0.066 85.8
BW  20% y 1.0 6 2 2 04 0 96.1 0 5 85.8
! 2.5 0.205 0.171 94. 0.16 0.126 92.8 0.127 0.066 84.6
7 1 3 55 9 7 2
p 0.5 0.172 0.338 95. 0.13 0.256 94.3 0.078 0.204 82.4
0 9 0 55 9 3 0
moderate « 1.7 0.480 1.189 92. 0.14 0.480 90.3 0.108 0.320 80.0
1 1 4 34 2 5 3
U[0,8] B 1.0 0.668 0.558 90. 0.66 0.536 90.3 0.076 0.441 91.8
0 8 4 47 0 1 2
50% y 1.0 0.109 0.239 93. 0.15 0.105 89.3 0.093 0.079 84.6
3 4 2 90 4 8 7
yl 2.5 0.197 0.17595. 0.13 0.111 94.2 0.108 0.057 83.8
7 4 2 73 5 6 3
P 0.5 0.1373 0.2816 95.0 0.0984 0.1956 92.9 0.0461 0.1084 87.8
slight m 1.3 0.1496 0.1080.1145 91.5 0.064 0.0763 90.6
U[0,23] n 0.7  0.1778 93.38  0.1528 943 6 0.0893 82.8
20% a 0.8 0.1277 0.0980.0546 95.6 0.045 0.0123 95.0
0.1993 94.32 6
0.1243 0.073 0.031
BGE 0.1018 96.07 2
! 2.5 0.3454 0.2890.1172 90.2 0.237 0.0829 83.4
0.1430 91.36 2
p 0.9 0.2089 0.1580.1268 92.1 0.113 0.0932 84.2
0.1687 93.26 2
moderate m 1.3 0.1647 0.1200.1149 92.0 0.095 0.0575 89.4
0.1529 93.23 2
U[0,6] n 0.7 0.1409 93.80.1060.0810 90.4 0.067 0.0686 85.0
0.1158 7 0
50% a 0.8 0.5051 93.20.4550.2970 90.7 0.370 0.2320 84.0
yl 2.5 0.1136 90.38  0.5357 89.7 4 0.2380 73.0
p 0.9 02131 90.30.2450.0820 82.7 0.206 0.0616 74.6
0.3281 2 1
0.3024 0.137 0.085
0.1443 7 1

9. Simulation Study

The joint Beta Kum-BX, BW and BGE models, simulations with cure fraction were done, where the two-
parameter Kumaraswamy-model was used to generate the probability of cure. A uniform distribution, U[a,b],
was used to generate censoring times, with constants a and b defined in order to give chosen censoring rates. The
error distribution for the failure times of the uncured patients followed the two-parameter Weibull distribution.
The Kumaraswamy Weibull data was generated in samples sizes of » = 30, 50 and 100 with 1000 replications.
Also, 200 bootstrap samples were chosen for the simulation process due to the complexity of the models.
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9.1. Discussion on (Simulation Study) Table 4

The results from the mixture model simulations show some similar outputs and trends for the non-mixture
model of the Beta Kum-BX and BW. Unlike the BGE at all levels of the comparison either the slight or
moderate at different censoring rates using the uniform distribution to generate the censored data for the
simulation as explain above value of show relatively small biases overall. Again, mean square error decreased
with increasing sample size and increased with higher censoring rates. The confidence interval values were
considered for the Bayesian methods for comparison.

10. Conclusion

In the life time data analysis, we presented the cure fraction “p”” and covariates “n0 = age at enrollment, n1=
sex and n2= race”. A data with this structure can be appropriately analyzed using different parametric
formulations, as a mixture and non-mixture models. In this paper, we showed that parametric models based on
the Beta Kum-BX and other existing models can be useful to analyze medical data sets. We showed that the use
of Bayesian methodology using MCMC methods is a suitable way to get the inferences for the parameters of the
model as the ACTG censored study data was well fitted and accommodate by Beta Kum-BX which is three
confounded models with many advantages and properties in modeling a very large population in medical and
engineering aspects. These approaches allow the inclusion of covariates in the model. The parameter estimation
was obtained by the classical frequentist approach known as the maximum likelihood method and Bayesian
approach using the Markov chain Monte Carlo simulation methods using ACTG censored study data. The
Winbugs software and MCMCpack library in R was applied for the Gibbs sampling algorithm to obtain the
posterior summaries of interest. Finally, a simulation study was employed based on the cure models to compare
the performance of both models relating to actual sense of motivation to clarify the usefulness of the proposed
methodology. An advantage of Bayesian approach over the other methods is that it explicitly incorporates the
expert prior opinion for the parameters.
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