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1. Introduction 
In a real-life data analysis nowadays the use of parametric models for survival data analysis has been 

increasing in the last few decades in response to more refined statistical tools to be able to analyze complex data 
structures and parameters. The most standard existing techniques employed methods for estimating and 
analyzing survival data include, the Cox proportional hazard models, the Kaplan-Meier method for estimating the 
survival and log-rank test for testing the comparison of survival function between two or more sample groups. It 
is also nonparametric test violating the normality assumptions for use when the data are right skewed and 
censored.  

We were motivated to proposed a new model called Beta Kumaraswamy Burr type X (Beta Kum-BX) 
distribution with six parameters proposed by Madaki, Bakar and Chakraborty (2016), due the highly efficient 
flexibility of these three confound models property which provides an enticing model fittings at different level 
and kinds of large datasets. It is also a very flexible and versatile model having some special sub models 
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distributions properties where its density function can be transformed as the so-called sub-model adopting some 
features and properties of Kumaraswamy Marshal-Olkin family of distributions Alizadeh, Cordeiro, Mansoor and 
Zubair (2015) and Kumaraswamy Burr type X model from the family of generated Kumaraswamy-G proposed 
by Cordeiro and Castro (2011). As a special case and modification to Burr type X model by I. W. Burr (1942) 
and Merovci, Khaleel, Ibrahim and Shitan (2016) Although, the BX model density and cumulative distribution 
functions have a simple close form and it’s also having a convenient and flexible feature in modeling censored 
(incomplete) data, unlike Gamma, Generalized Exponential and log-Gamma distributions respectively. 

 
1.1 Burr Type X Distribution 

The two-parameter BX has a monotonically increasing and decreasing hazard function features, which can 
be used for practical aspects in statistical distribution and modeling of applications by I. W. Burr (1942). The 
flexibility of its failure rate and the ease for estimation of its parameters, ever since it has been widely applied in 
modelling real-life data. One of the limitations in beta-Kumaraswamy Burr type X (Kum-BX) model is that its 
functions cannot be prove in a closed form, specifically when more covariates are considered, thus numerical 
approach that is the integration techniques are required to determine the parameter estimation of in the models 
with or without covariates by some authors like: Madaki and Bakar (2016) &  Madaki, Bakar, Ibrahim, Arasan 
and Hussein (2016) respectively.  

 
2. Cure Rate Models 

The cure fraction model Achcar, Barros and Mazucheli (2012), is usually called an extension to the survival 
cure models who might probably not experience the event. It can also be called a long-term survival model 
according to the kind of event is specified. The two most common cure models or long-term survivors are the 
standard parametric cure (mixture) and non-mixture models. In both formulations, it is introduced in the model 
for a parameter related to the cure fraction. There are some instances, especially with the advancements in 
modern medicine, in which a proportion of the population of interest is “cured” and will therefore never 
experience the event of interest. This situation motivates the incorporation of a cure fraction in a statistical model 
in order to analyze the ability of a certain treatment to cure a disease of interest. Once that model is defined, the 
next step is to develop procedures to fit the model to study datasets by utilizing popular statistical software. In the 
literature, an extensive volume of articles on modelling survival data including the cure models can be found 
refer to some of the authors like: Achcar, Barros and Mazucheli (2012) & Martinez, Achcar, Jacome and Santos 
(2013). On the other hand, Berkson and Gage (1952), also Boag (1949) proposed this vital used cure fraction 
models in survival analysis. The mixture cure rate model assumes that the studied population is a mixture of 
susceptible individuals, who experience the pϵ[0,1] which is the proportion of the uncured susceptible individuals 
in the cure population regarding the event of interest (0 < p < 1) and non-susceptible individuals that will never 
experience it (1 − p), The survival function for the entire population, denoted by S(t) for this model is given by: 
  

 
S(t) = p + (1 − p)So(t) = p + Fo(t), t > 0.         (1) 

 
where, So(t) is the standard parametric survival curve function for the susceptible individuals also Fo(t) is the 
improper cumulative distribution for the cured population. In estimating the” improper” survival function S(t), it 
is quite easy in the sense that S(∞) > 0 if p < 1. The mixture cure model in equation (1) has been discussed by 
other researchers in the literature, including: Madaki and Bakar (2016), proposed a comprehensive methodology 
using R-software and Winbugs which explains the frequentist methods in the inferential aspect of cure fraction 
models. Although, this model received well attention over the years but one of its shortcomings comes when the 
covariates were modelled using the proportion p which does not involve a proportional hazard (PH) model, as it 
is the property of survival model which corresponds to the models’ involving covariates. On the other hand, 
Martinez, Achcar, Jacome and Santos (2013), makes some observations in equation (1), as it provides an 
improper posterior result which includes the non-informative prior (uniform). It is actually the main reason for its 
drawback in the recent years which makes its tedious to apply the Bayesian technique with non-informative 
priors which is very common nowadays.  

It was recently Bayesian estimation based on the disadvantage using equation (1), was observe by Chen et al. 
(1999) based on the alternative model called the” non-mixture cure model” defines an asymptote for the 
cumulative hazard, and hence for the cure fraction Ibrahim, Taweab and Arasan (2014) explains about the cure of 
cancer study among patients. The survival function can be written as:  

 
S(t) = pFo(t) = exp(ln(p)Fo(t)).                                                    (2) 
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where, Fo(t) is the improper cumulative distribution. The non-mixture cure model, was also pointed out by 
Ibrahim et al. (2001) and Chen et al. (1999), making used of the Bayesian approach technique. They also 
observed that in equation (2), does not involve any proportional hazard (PH) models or structures, if the S(t) is 
modelled by the PH structure.  
         The drawback of the mixture model gave by Maller and Zhou (1996) is the idea on how to overcome with a 
great solution to incorporate the non-parametric Cox proportional hazard models with cure probability which can 
be written as:  
 

.                      (3) 
 
where, Λo(t) is the baseline hazard function for the improper survival function and” ω” is the covariate to be 
incorporated. When the baseline Λo(t) is considers, this implies 1−Fo(t), and the survival function for model in 
equation (3) gives,  
 

.    (4) 
 
          The improper PH model was investigated by Famoye et al. (2005), to solve the model based on the 
structure of model in equation (4). 

 
3. Related Work 

A cure rate model based on the beta-Weibull distribution was proposed by Cordeiro et al. (2011), the 
techniques of estimating the cure rates when there are partially observed the missing covariates. Based on the 
long-term survival models that the usefulness of beta-Weibull distribution for modeling censored survival data 
from a German breast cancer research was investigated by Madaki and Bakar (2016). It has been found out 
recently that the extension of the beta Weibull distribution was proposed by Cordeiro et al. (2013). A generalized 
modified Weibull distribution by Wahed et al. (2009), is also a generalization of the Weibull distribution by 
Wallodi Weibull (1951), due to its flexibility in accommodating different forms of the risk function seems to be 
an important family that can be used in a variety of problems in modeling survival data. A Bayesian formulation 
of the cure fraction model is given by several authors like: Achcar and Santos (2013) and Martinez, Achcar, 
Jacome and Santos (2013). We have the cure rate model which is the mixture or standard parametric cure model 
for the survival function of the cure and uncured patients contribute comprehensively by Martinez et al. (2013).  

 The cure rate model was proposed by Achcar and Coelho (2012), with some other researchers like: Maller 
and Zhou (1996), Wahed et al. (2009), Madaki and Bakar (2016). contributed their quotas in the literature of 
statistical modelling. The second one is the non-mixture model which was proposed by Berkson and Gage 
(1952), also Boag (1949) as an asymptote alternative to the long-term survival model for maintaining the 
proportional hazard form and also making it easy for interpretations of the effect of covariates on the cure 
probability by Achcar and Coelho (2012). These two models received a quite lot of attention in the recent years 
and gas been motivated by many health cancer researchers (medical mechanism).  
 
4. Methods 
4.1. Model Specification 

 
Let T be a random variable representing the time until the occurrence of the event of interest, and let t,0 be 

an observation from T. We refer to the model in equation (1), the survival function in the standard (” mixture”) 
cure model proposed by Berkson and Gage (1952), also Boag (1949, the probability that the time-to-event is 
larger than that some specified t and p the proportion of cure fraction (” long-term survivors”). Therefore, the 
cumulative distribution function of T is given as:  

 
F(t) = P(T ≥ t) = 1 − S(t) = (1 − p)[1 − So(t)] = (1 − p)Fo(t).     (5) 

 
Therefore, the limt→∞Fo(t) = 1 implies that limt→∞Fo(t) = 1 − p. The prob- ability density function for T is:  
 

,                 (6) 
where fo(t) is the baseline probability density function for the susceptible individuals. Let us assume right 
censored data and non-informative censoring. Considering a random sample (ti, δi) of size n, i=1,….,n, the 
contribution of the ith subject for the likelihood function given by:  
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Li = [f(ti)]δi[S(ti)]1−δi = [(1 − p)fo(ti)]δi[p + (1 − p)So(ti)]1−δi,              (7) 

 
where δi is the censoring indicator variable, denoting δi = 1 for an observed lifetime and δi = 0 for a censored 
lifetime.  
         Alternatively, the non-mixture model formulation suggested by Berkson and Gage (1952), is defined as an 
asymptote for the cumulative hazard, and hence for the cure fraction. The survival function can be referred to 
equation (2), for the non-mixture model respectively.  
 
where, Fo(t) = 1−So(t), we should take note that limt→∞Fo(t) = 1 simply implies that limt→∞S(t) = p. Assuming this 
model, the contribution of the ith subject for the likelihood function is given as:  

 
Li = [h(ti)]δiS(ti) = [−(lnp)fo(ti)]δi exp[ln(p)Fo(ti)],    (8) 

 
where the hazard function  can be interpreted as the risk of an event immediate after time t conditional 
on surviving up until time t.  
 

                     (9)  
 
            On these, we denote Go(t) as the cumulative distribution function (cdf) of a random variable T, which 
has a generalized class of distribution defined by:  
 

 

 

where, , as , is the beta function, while as , is a gamma 

function and BGo(t)(m,n) is the incomplete beta function. If Go(t) in (10) is taken to be a cdf of a normal 
distribution with mean µ and variance σ2, we have beta-normal distribution by Eugene et al. (2002). A model 
based on the CDF of the Kumaraswamy Burr X distribution Madaki et al (2018) with shape parameters β,γ,ϑ 
and scale parameter λ assumes:  
 

 
 
where, from (10), we have the CDF of Beta Kumaraswamy Burr X distribution with five shape parameters m, n, 
β,γ,ϑ and one scale parameter λ assumes:  
 

 

 
           In the context of survival analysis, the baseline survival function or standard parametric survival curve 
function for the susceptible individuals is given by:  
 

  
 
 
4.2. Beta Kumaraswamy Burr X Model Formulation  
 

   We observed that the function cannot be expressed in a closed form reference to the limitation propose by 
Cordeiro et al (2011). The baseline probability density function of the Beta Kumaraswamy Burr X distribution 
with six parameters by Madaki et al (2018), is written as follows:  
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       (14)  
  

We denote ( )
( )12  1  Di e t
α

λ
−

 
 = − − and ( )( )2  1 1Ri e t

ϑα
λ 

 
= − −


−  respectively.  

 
where, m,n,α,β,ϑ,λ > 0. The corresponding hazard function is given by:  
 

   .    (15)  
 
4.3. Beta Kumaraswamy Burr X Model Without Cure Fraction  
 
        The likelihood function for Beta Kum-BX Model without cure fraction: θ = (m, n, α,β,ϑ,λ) is given by:  
 

 
 
       Their corresponding log-likelihood of Beta Kumaraswamy Burr X model distribution without cure fraction: 
is:  
 

  
 

4.4. A Bayesian Analysis for the Beta Kumaraswamy Burr X Model 
 

  We consider the Beta Kumaraswamy Burr X model with density function in equation (7) above and a non-
informative joint prior distribution for the θ = (m, n, α,β,ϑ,λ) given by:        

 

    

 
where, m,n,α,β,ϑ,λ > 0. The joint posterior distribution for these parameters can be written as:  
  

  
 

and  respectively.  

 
4.5. Beta Kumaraswamy Burr X model with Cure Fraction for the Mixture Model  
 
        Assuming the mixture model, the likelihood function for θ = (m,n,α,β,ϑ,λ,p) is given by:  

 

( ) ( )1, , , , ,                                       18
, , , , ,o m n

m n
π α β ϑ λ

α β ϑ λ
∝

( )
( )12 1 Di e ti
α

λ
−

 
 = − − ( )( )2  1 1  Ri e ti

ϑα
λ 

 
= − −


−
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Their corresponding log-likelihood of mixture model is:  

 

 
( )

( )

( )( )

12

2

  1  

  1 1

Di e t

Ri e t

α

ϑα

λ

λ

−
 



= −

=

 


−

− − 
 

−
 

.  
4.6. Beta Kumaraswamy Burr X Model with Cure Fraction for the Non-mixture Model 
 
         Moreover, assuming the non-mixture model, the likelihood function for θ = (m,n,α,β,ϑ,λ,p) is given by:  
 

       (22)  
 
Their corresponding log-likelihood of non-mixture model is:  
 
 
 
 
 
 
 
 

                 (23)  
 
 
4.7. Beta-Weibull Model Formulation  
 
         Similarly, the survival and hazard functions cannot be expressed in a closed form. The baseline probability 
density function of the beta-Weibull model with four parameters is written as follows:  
 

   .    (24)  
 
 
 
 
 
 



Umar Yusuf Madaki et al., J. of Science and Technology Vol. 14 No. 1 (2022) p. 1-22 

 7 

Where, α,β,γ and λ > 0. The corresponding hazard function is given by:  
 

   .    (25)  
 
4.8. Beta-Weibull Model Without Cure Fraction 
 
        The likelihood function for beta-Weibull model without cure fraction:  θ= (α,β,γ,λ) is given by:  
 

   .    (26)  
 
Their corresponding log-likelihood of beta-Weibull distribution without cure fraction is: 
  

   .    (27)  
 
4.9. A Bayesian Analysis for the Beta-Weibull Model  
 
       We consider the BW model with density function in equation (17) above and a non-informative joint prior 
distribution for the θ = (α,β,γ,λ) given by:  
  

    
( ) ( )1, , ,                                       28

, , ,oπ α β γ λ
α β γ λ

∝  

 
where, α,β,γ,λ>0. The joint posterior distribution for these parameters can be written as:  
 

  
 

4.10. Beta-Weibull model with Cure Fraction for the Mixture Model 
 
           Assuming the mixture model, the likelihood function for θ = (α,β,γ,λ,p) is given by:  
 

         (30)  
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Their corresponding log-likelihood of mixture model is:  
 

  
  (31)  

 
4.11. Beta-Weibull Model with Cure Fraction for the Non-mixture Model 
 
            The likelihood function for non-mixture model θ = (α,β,γ,λ,p) is given by: 
  

  
and the corresponding log-likelihood of non-mixture model is:  
 

 (33) 
 
4.12. Beta Generalized Exponential Model Formulation  
 
           The baseline probability density function of the beta generalized exponential (BGE) model with four 
parameters by Barreto, Santos and Cordeiro (2010), is written as follows:  
 

. (34) 
 
where m,n, α,λ > 0. The corresponding hazard function is given by:  
 

. (35)  
 
4.13. Beta Generalized Exponential Model without Cure Fraction  
 
            The likelihood function for beta generalized exponential model without cure fraction:  
 

θ = (m, n, α,λ) is given by:  

.  
(36)  
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Their corresponding log-likelihood of beta generalized exponential distribution without cure fraction is:  
 

(37)  
 

4.14. A Bayesian Analysis for the Beta Generalized Exponential Model  
 
          We consider the BGE model with density function in equation (27) above and a non-informative joint prior 
distribution for the θ = (m,n,α,λ) given by:  
 

( ) ( )1, , ,                                       38
, , ,o m n

m n
π α λ

α λ
∝  

 
where, m,n,α,λ>0. The joint posterior distribution for these parameters can be written as  
 

  
 
4.15. Beta Generalized Exponential Model with Cure Fraction for the Mixture  

Model 
 

           Assuming the mixture model, the likelihood function for θ = (m, n, α,λ,p) is given by:  
 

. 
 
Their corresponding log-likelihood of mixture model is:  
 

  (41)  
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4.16. Beta Generalized Exponential Model with Cure Fraction for the Non-mixture 
Model  

 
           The likelihood function for the non-mixture model θ = (m, n, α,λ,p) is given by:  
 

.  
and the corresponding log-likelihood of non-mixture model is:  
 

.  
4.17. Incorporating Covariates  

 
           Due to the intricacy and complexity case of all the joint log-likelihood functions,  

a.  

b.  

c.  

d.  

e.  

f.  
 
the estimation of the parameter by maximization or direct method will be extremely a difficult task. In order to 
overcome in dealing with this type of problem, we consider the use of Bayesian inference based on (MCMC) 
methods. We can probably also take in the incorporate a vector of covariates yi that may be closely related and 
associated with the proportion p of cure rate fraction models by replacing p in the log-likelihood functions above 
by:  
 

     (44)  
      

5. Bayesian Analysis  
For a Bayesian analysis of the long-term survival models without considering covariates Achcar et al 2013, on 

the other hand we also presume the beta prior for the given probability of proportion p of cure models which is 
denoted by p∼Beta(m,n) where m and n are known hyper parameters. We also assume a gamma prior distribution 
for the parameters θ =(m,n,α,β,θ,λ) by Achcar et al 2013. That is, m ∼ Gamma(cmdm), n ∼ Gamma(cndn), α ∼ 
Gamma(cαdα), β∼Gamma(cβdβ), θ∼Gamma(cϑdϑ), λ∼Gamma(cλdλ), where cm,dm,cn,dn,cα,dα,cβ,dβ,cϑ,dϑ ,cλ 
and dλ are known hyper parameters and Gamma(c,d) denotes a gamma distribution with mean 

. In all cases the joint prior distribution is then establish by assuming prior independence 
between the parameters, or say,  

( ) ,Beta Kum BX mixturel θ−

( ) ,Beta Kum BX non mixturel θ− −

( ) ,BW mixturel θ

( ) ,BW non mixturel θ−

( ) ,BGE mixturel θ

( ).BGE non mixturel θ−
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for models incorporating the following covariates, the prior distribution for the unknown parameters is assumed: 
m ∼ Gamma(cmdm), n ∼ Gamma(cndn), 
 α ∼ Gamma(cαdα), β ∼ Gamma(cβdβ), θ ∼ Gamma(cϑdϑ), λ ∼ Gamma(cλdλ),ζj ∼ N(cζj,d2ζj), j= 0,1,...,J and 
ηk ∼ N(cηk,dη2k), k = 0,1,...,K.  
 
where N (c, d2) denotes a normal distribution with mean c and variance d2. are hyper parameters. In this situation 
we should focus on the independence between the prior distributions denotes a normal distribution with mean c 
and variance d2 for the hyper parameters.  
           In all process we generated 3,500 Gibbs samples taking every 10th sample after a “burn-in-sample” of size 
2,000 to eliminate the initial values used in the Gibbs sampling iterations. All the simulations were done using 
the Winbugs and R softwares to obtain the posterior summaries. The posterior convergence of the sampling 
algorithm was confirmed by trace plots in Figure 3, of the simulated results.  
 
5.1. The Gibbs Sampler  
       We wish to obtain a sample from the multivariate distribution (1,...,d). We shall call this distribution the 
target distribution. In Bayesian statistics, the target distribution is the joint posterior distribution. The Gibbs 
sampler obtains a sample from (1,...,d) this simulation step is usually straightforward [34]. The algorithm is as 
follows:  

 
• Initialize with.  
• Simulate         from the conditional distribution.  
• Simulate         from the conditional distribution 
• Continue sampling....  

• Simulate  from the conditional distribution .  
• Iterate this procedure. 
 
6. Model Selection 
Several criterions have been employed to select the best model based on the type used to compare with the 
existing models. Here we consider the log Pseudo marginal likelihood measure (LPML) where it considers the 
large value as the best model selection.  
 
6.1. Log Pseudo Maximum Likelihood 

Comparison of the two cure models assuming different distributions will be accessed using log Pseudo marginal 
likelihood measure and the Pseudo factor. The LPML is derived from the conditional predictive ordinate (CPO). 
For the ith observation, the CPOi is given by:  
 

 .    (46) 
 
where Θ is the incomplete vector of parameters, Di is each instance of the full data  

D, D[i] is D without the current observation i and  is the posterior density of Θ given D[i], i = 1,...,r. 
An MCMC approximation of CPOi is given by:  
 

      (47)  
where B is the number of iterations during the implementation of the MCMC procedure after the burn-in-period 
and Θb is vector of the samples that will be obtained at the 4th to 5th iterations Gelfand et al. (1992). For a given 
model, the LPML value is given by:  

r  
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   LPMLd = XlogCPOd i.   (48)  
i=1  

The larger the value of LPML, the better is fit of the model by Gelfand et al. (1992). Alternatively, the Pseudo 
Bayes factor (PMF) for comparing models b and b’ is:  
 

      .      (49)  
 
6.2. Highest Probability Density (HPD) Interval  
        We also obtained the highest probability density (HPD) intervals for parameters of interest Geweke et al 
(1991). A 100(1−ω)% HPD interval for a generic parameter θ is a subset of the parameter space CΘ given by 
C={θ:π(θ|D)≥k} where π(θ|D) is the posterior distribution for θ given the data D and k is the largest number such 
that Rπ(θ|D)≥k π(θ|D) =1−ω .  
 
7.    Application Censored Data  
7.1. AIDS Clinical Trials Group Study Data  
        “AIDS Clinical Trials Group Study Data by Hosmer et al. (2008). This data contains the placebo-controlled 
trial that compared the three-drug regimen of indinavir (IDV), open label zidovudine (ZDV) or stavudine (d4T) 
and lamivudine (3TC) with the two-drug regimen of zidovudine or stavudine and lamivudine in HIV-infected 
patients”. We consider the time-to-event of each patient denoted by ”ti” and also the censoring indicator ”δi”, 
where ”δi = 1” meaning death was observed or ”δi=0” censored count of the patient probably lost to follow-up or 
missing . 
 
7.2 Results 

Table 1 - The posterior summaries for The Beta Kum-BX, BW and BGE models based on AIDS clinical 
trials group study data 

Model Parameter MLE Bayes 90%HPDa 95%HPDa LPMLb 
HWc 
p 
value 

Geweke’s 
p value 

Beta 
Kum-
BX 

m 
n  
α 

0.8008 
0.9308 
1.0910 

0.8108 
0.9505 
1.0110 

(0.5123,1.9603) 
(0.0871,2.8578) 
(0.4335,1.1979) 

(1.0601,1.2922) 
(1.1189,2.3834) 
(1.3125,2.3629) 148 

0.618 
0.099 
0.314 

0.307 
0.223 
0.112 

 β 1.0420 1.0520 (0.0117,1.0890) (0.0186,0.2481)  0.392 0.251 
 ϑ 0.4664 0.4564 (0.2922,0.4662) (0.6625,1.2972)  0.348 0.277 
 λ 0.7084 0.7184 (0.0855,1.0423) (1.1376,1.3364)  0.099 0.223 

BW 
α  
β 

1.8016 
0.6706 

1.8116 
0.6806 

(0.4878,1.6794) 
(0.0089,0.0197) 

(1.5214,2.1259) 
(0.0156,0.2218) 145 

0.314 
0.372 

0.112 
0.251 

 γ 0.9184 0.9084 (0.0132,1.0781) (0.5411,1.2922)  0.614 0.307 
  λ        2.3076    2.3126   (0.2747,0.4612)   (1.1845,1.3524)      0.012  0.223 

BGE 
m 
n 

1.3529 
0.8640 

1.3499 
0.8590 

(0.2934,0.4921) 
(0.0661,0.2384) 

(1.0664,1.2017) 
(0.0250,0.1167) 141 

0.463 
0.214 

0.334 
0.772 

 α 0.6606 0.6806 (0.0212,0.1024) (0.0266,0.3657)  0.392 0.251 
 λ 2.2778 2.2978 (0.2864,0.4601) (1.0235,1.1308)  0.399 0.394 
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Table 2a - The posterior summaries for The Beta Kum-BX, BW and BGE models with mixture models 
based on AIDS clinical trials group study data 

Model Parameter MLE Bayes 95%HPDa LPMLb HWc p 
value 

Geweke’s 
p value 

Beta 
Kum-
BX 

 
m 
n  
α  
β 

0.9022 
1.4225 
1.8013 
0.8236 

0.9122 
1.4165 
1.8123 
0.8526 

(0.5281,1.2922) 
(0.1376,1.3364) 
(0.5334,1.7329) 
(0.0166,0.2681) 147 

0.618 
0.099 
0.314 
0.392 

0.327 
0.263 
0.112 
0.251 

 ϑ 0.4424 0.4654 (0.6675,0.8072)  0.349 0.287 
 λ 1.3213 1.3346 (1.1736,2.3743)  0.129 0.239 
 p 0.8543 0.8786 (0.0134,0.2123)  0.472 0.351 

BW 

α  
β  
γ 

1.7235 
0.9703 
0.9274 

1.7134 
0.9806 
0.9134 

(1.5214,2.6545) 
(0.0145,0.2671) 
(0.5370,1.2922) 143 

0.345 
0.374 
0.623 

0.176 
0.265 
0.367 

 λ 2.4376 2.4526 (1.1086,1.1344)  0.659 0.243 
 p 0.5176 0.5236 (0.0187,0.5234)  0.392 0.031 

BGE 

m 
n 
α 

1.3521 
0.6480 
0.7775 

1.3499 
0.6590 
0.7865 

(1.4324,2.2017) 
(0.0250,0.1167) 
(0.2317,1.8654) 138 

0.463 
0.818 
0.109 

0.334 
0.772 
0.231 

 λ 2.5083 2.4978 (1.2235,4.1378)  0.699 0.394 
 p 0.8536 0.8811 (0.0236,0.2161)  0.392 0.435 

 
Table 2b - The posterior summaries for The Beta Kum-BX, BW and BGE models with non-mixture 

models based on AIDS clinical trials group study data 

Beta 
Kum-
BX 

m 
n  
α  
β 

0.9227 
1.3453 
1.5356 
0.9109 

0.9012 
1.3546 
1.5416 
0.9123 

(0.5511,1.2082) 
(1.1076,2.3154) 
(1.5334,2.7675) 
(0.0376,0.2431) 147 

0.618 
0.069 
0.321 
0.392 

0.347 
0.232 
0.102 
0.251 

 ϑ 0.9218 0.9344 (0.5431,1.2922)  0.618 0.307 
 λ 0.5234 0.5426 (1.1566,2.1364)  0.057 0.167 
 p 0.77846 0.7906 (0.0126,0.2761)  0.438 0.522 

BW 

α  
β 
 γ 

1.8108 
0.8217 
0.9217 

1.8116 
0.8306 
0.9384 

(1.5334,1.7349) 
(0.0326,0.2321) 
(0.2711,1.2982) 145 

0.314 
0.352 
0.764 

0.112 
0.431 
0.507 

 λ 2.2178 2.3126 (1.1076,1.3364)  0.099 0.223 
 p 0.6039 0.6082 (0.1536,0.2681)  0.392 0.241 

BGE 

m 
n  
α 

1.3532 
0.9543 
0.5638 

1.3499 
0.9590 
0.5434 

(1.9544,2.2117) 
(0.0220,0.1267) 
(1.2235,2.1247) 138 

0.463 
0.818 
0.187 

0.334 
0.772 
0.134 

 λ 2.3843 2.3978 (1.2435,1.4378)  0.699 0.394 
                      p                  0.8386   0.8306    (0.0226,0.1351)             0.392       0.234 

 
 
 

Model Parameter MLE Bayes 95%HPDa LPML
b 

HWc p 
value 

Geweke’
s p value 
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8.1. Remarks on Table 1 and Table 2a and Table 2b  
 

    From the Table 1, we observed that the convergence of the MCMC algorithm was partially obtained even 
when using a very large burn-in-period for the algorithm. These results were shown in Table 1, considering the 
Beta Kum BX, BW and BGE distributions respectively. Also, we noted that all p-values from (HW) Heidelberger 
and Welch convergence diagnostics criteria do not reject the null hypothesis of stationary of the chains, since 
they are all larger or equal than 0.05 level of significance. While the Geweke’s p-values also suggest 
convergence, on the other hand these results shows that, among all the models considered BGE distribution has 
the least (LPML) Log pseudo marginal likelihood value, while Beta Kum-BX and BW distributions have similar 
LPML values, where strong evidence shows that these models are better fitted by the data than, From Table 2a 
and Table 2b, for each run, the convergence was assessed by monitoring the trace plots and using Heidelberger 
and Welch (HW) and Geweke’s convergence diagnostics. The model based on the Beta Kum-BX and other 
existing models in the presence of cure fraction for the using the MCMC estimation as we demonstrate that the 
use of this Bayesian methodology is quite suitable to get the posterior inferences for the parameters of the model. 
We also showed that the model estimation in using cure fraction results in more precise inferences of the result 
based on the two models at all levels shows that the mixture models fit well better than the non-mixture models.  

 
Fig. 1 - Survival functions estimated by Kaplan-Meier method 

 
Fig. 1 shows the plots of the survival functions estimated by Kaplan-Meier method and from the models based on 
Time to AIDS diagnosis or death and the event indicator for AIDS defining diagnosis or death, based on AIDS 
clinical trials group study data. 
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Fig. 2 - Kaplan-Meier estimates for the survival function 

 
          Fig. 2 shows the of the Kaplan-Meier estimates for the survival function versus the respective predict 
values obtained from the parametric mixture models for each probability distribution of interest: (a) Beta Kum-
BX, (b) BW, (c) BGE distributions AIDS clinical trials group (ACTG) Study. The diagonal straight lines 
represent a perfect agreement between Kaplan-Meier estimates and predicted values as its clear shows how 
perfect our new model fits the AIDS clinical trials group study data. 

 

 
Fig. 3 - Plots of the convergence diagnostics and output analysis (coda) 

 
          Fig. 3 shows some of the trace plots of the new model Beta Kum-BX showing that the priori distribution 
is well calibrated which is indicated the parameters having sufficient state changes as the MCMC algorithm runs 
based on AIDS clinical trials group study data. Plots of the convergence diagnostics and output analysis (coda) 
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object were estimated with a bit close estimation but non-mixture models with covariates fits better than the 
mixture model having the highest (LPML) log pseudo marginal likelihood based on the weakness of the mixture 
cure model pointed out in the literature this actually validate the assumptions. Also, the 95% credible intervals 
for all the parameters and covariates. We can obtain Bayesian estimates for the cure fractions of each risk group 
considering the simulated samples for the covariates η0 = age at enrollment, η1= sex and η2= race. The 
Heidelberger and Welch (HW) convergence diagnostics calculates a test statistic based on stationary distribution 
and Geweke’s convergence diagnostics, is based on the test for equality of the means of two nonoverlapping 
parts of a Markov chain process. It was considered in Bayesian survival analysis for the estimated results 
obtained for the cure fractions of the patients classified as Beta Kum-BX and BW fits better having highest 
probability intervals than the so-called BGE model with the least LPML values as shown above respectively.  
 

Table 3a - The posterior summaries for The Beta Kum-BX, BW and BGE models with mixture models 
and covariates based on AIDS clinical trials group study data 

Model Parameter MLE Bayes 95%HPDa LPMLb HWc p 
value 

Geweke’s 
p value 

Beta Kum-
BX 

m 
n  
α  
β  
ϑ 

0.8946 
1.3206 
1.2676 
0.9643 
0.8413 

0.9056 
1.3426 
1.2816 
0.9706 
0.8674 

(0.5451,1.2922) 
(1.1376,2.3364) 
(1.5334,1.7089) 
(0.0166,0.2681) 
(0.545,1.2922) 147 

0.618 
0.099 
0.314 
0.392 
0.618 

0.677 
0.223 
0.112 
0.251 
0.323 

 λ 0.7712 0.7806 (0.0166,0.3961)  0.382 0.361 
 η0 0.8134 0.8337 (-1.1345,0.3965)  0.780 0.433 
 η1 0.5216 0.5433 (-0.3411,0.2922)  0.618 0.707 
 η2 0.6198 0.6040 (-1.7856,0.2374)  0.779 0.243 

BW 

Α 
 Β 
 γ 
 λ 

1.4619 
1.1512 
0.8211 
2.1609 

1.4729 
1.1532 
0.8381 
2.1816 

(0.3904,2.3249) 
(0.1107,1.2681) 
(0.5337,1.6854) 
(0.0266,0.2481) 

145 0.457 
0.224 
0.3648 
0.392 

0.659 
0.271 
0.727 
0.251 

 η0 0.6337 0.6337 (-1.1376,0.3364)  0.799 0.643 
 η1 0.7431 0.7843 (-0.2201,0.2922)  0.038 0.508 
 η2 0.9021 0.9124 (-1.1334,0.3744)  0.624 0.243 

BGE 

m 
n  
α  
λ 

1.0272 
0.5213 
0.5176 
2.2145 

1.0649 
0.5406 
0.5236 
2.2324 

(1.9664,2.2017) 
(0.0166,0.2761) 
(1.0972,2.7675) 
(0.1296,0.2344) 

140 0.483 
0.562 
0.216 
0.238 

0.147 
0.045 
0.654 
0.231 

 η0 0.7218 0.7365 (-0.1547,1.9864)  0.079 0.245 
 η1 0.5010 0.5053 (-1.5731,1.2832)  0.068 0.357 
 η2 0.9098 0.9234 (-1.1376,0.0324)  0.099 0.223 
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Table 3b - The posterior summaries for The Beta Kum-BX, BW and BGE models with non-mixture 
models and covariates based on AIDS clinical trials group study data 

Model Parameter MLE Bayes 95%HPDa LPMLb HWc p 
value 

Geweke’s 
p value 

Beta Kum-
BX 

m 
n  
α 
 β  
ϑ 

0.9014 
1.3226 
1.1087 
0.6043 
0.9114 

0.9112 
1.3215 
1.1236 
0.6176 
0.9084 

(0.5671,1.2752) 
(1.1376,1.3364) 
(1.5334,2.23189) 
(0.0446,0.2681) 
(0.5611,1.2922) 150 

0.623 
0.099 
0.314 
0.392 
0.618 

0.334 
0.223 
0.112 
0.251 
0.307 

 λ 0.7743 0.7806 (0.0166,0.2681)  0.392 0.251 
 η0 0.9421 0.9337 (-1.1376,0.3364)  0.799 0.343 
 η1 0.8653 0.8843 (-0.2611,0.2922)  0.618 0.707 
 η2 0.8125 0.8024 (-1.1976,0.3364)  0.779 0.243 

BW 

α  
β  
γ  
λ 

1.5012 
0.5032 
1.0415 
2.0215 

1.5129 
0.4932 
1.0121 
2.0706 

(0.3684,2.1799) 
(0.1507,1.2691) 
(0.5337,1.6854) 
(0.0166,0.2681) 

147 0.453 
0.244 
0.748 
0.352 

0.729 
0.261 
0.617 
0.261 

 η0 0.8216 0.8337 (-1.8976,0.3304)  0.799 0.343 
 η1 0.4732 0.4843 (-0.2611,0.2822)  0.618 0.707 
                                η2                      0.8321   0.8133  (0.1315,0.3764)         0.969      0.433 

BGE 

m 
n 
α 
λ 

1.5479 
0.3221 
0.8242 
2.3632 

1.5649 
0.3133 
0.8236 
2.3766 

(1.8664,2.1217) 
(1.3015,1.3764) 
(0.2174,1.6134) 
(0.0123,0.2651) 

144 0.129 
0.969 
0.125 
0.492 

0.157 
0.465 
0.154 
0.561 

   η0 0.81765 0.8065 (-0.1376,1.9864)  0.099 0.223 
  η1 0.4857 0.4753 (-1.4611,1.1922)  0.618 0.337 
  η2 0.7219 0.7146 (-1.2376,-0.0231)  0.019 0.213 

 
8.2. Remarks on Table 3a and Table 3b  
        From Table 3a and b, they are clearly shows that the inferences for the two models based on the of the 
Beta Kum-BX and other existing models. The two models were estimated with a bit close estimation but non-
mixture models with covariates fits better than the mixture model having the highest (LPML) log pseudo 
marginal likelihood based on the weakness of the mixture cure model pointed out in the literature this actually 
validate the assumptions. Also, the 95% credible intervals for η2= sex. We can obtain Bayesian estimates for 
the cure fractions of each risk group considering the simulated samples for the covariates η0 = age at 
enrollment, η1= sex and η2= race. The Heidelberger and Welch (HW) convergence diagnostics calculates a test 
statistic based on stationary distribution and Geweke’s convergence diagnostics, is based on the test for 
equality of the means of two non-overlapping parts of a Markov chain process. It was considered in Bayesian 
survival analysis for the estimated results obtained for the cure fractions of the patients classified as Beta 
Kum-BX and BW fits better having highest probability intervals than the so-called BGE model with the least 
LPML values as shown, respectively. 
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Table 4 - A simulation study comparison for the Beta Kum-BX and other existing models with long-
term survival models 

     n=30   n=50   n=100  

Model Censoring 
rate 

Parameter True 
value 

Bias MSE CI Bias MSE CI Bias MSE CI 

mixture 
model 
Beta 
Kum-
BX 

slight 
U[0,20] 
20% 

m 
n  
α  
β 

1.0 
1.4 
1.8 
0.8 

0.673
4 
0.755
0 
0.931
6 
0.180
3 

0.486
2 
0.670
2 
0.194
1 
0.122
4 

96.
3 
93.
3 
92.
5 
92.
5 

0.64
21 
0.72
52 
0.91
37 
0.15
96 

0.444
8 
0.622
2 
0.143
7 
0.113
7 

95.7 
90.6 
91.6 
90.7 

0.545
3 
0.738
6 
0.833
4 
0.108
1 

0.224
0 
0.517
7 
0.075
4 
0.087
9 

87.0 
85.8 
84.2 
86.0 

  ϑ 0.5 0.229
0 

0.180
7 

93.
8 

0.20
46 

0.165
6 

91.8 0.166
5 

0.022
2 

84.6 

  λ 1.3 0.414
7 

0.674
3 

96.
5 

0.31
39 

0.425
1 

94.3 0.253
6 

0.043
2 

83.4 

  p 1.0 0.464
4 

0.153
0 

94.
2 

0.34
70 

0.150
5 

93.7 0.213
5 

0.101
8 

86.2 

 moderate m 1.0 0.630
6 

0.464
6 

92.
7 

0.60
36 

0.319
4 

91.8 0.552
8 

0.191
8 

87.4 

 U[0,7] n 1.4 0.658
5 

0.583
0 

96.
8 

0.62
87 

0.537
7 

94.2 0.577
9 

0.517
2 

89.0 

 50% α 1.8 0.923
6 

0.187
2 

95.
4 

0.88
37 

0.187
4 

94.4 0.813
3 

0.069
5 

90.0 

  β 0.8 0.156
2 

0.106
7 

91.
6 

0.12
81 

0.106
9 

90.3 0.137
3 

0.101
8 

84.4 

  ϑ 0.5 0.197
7 

0.032
1 

95.
6 

0.18
40 

0.142
9 

92.7 0.153
1 

0.020
7 

83.0 

  λ 1.3 0.374
2 

0.548
1 

92.
7 

0.31
06 

0.452
0 

90.8 0.163
2 

0.032
1 

89.0 

  p 1.0 0.349
0 

0.139
2 

95.
0 

0.24
59 

0.149
3 

92.8 0.201
4 

0.090
1 

85.1 

BW 

slight 
U[0,25] 
20% 

α  
β 
 γ 

1.7 
1.0 
1.0 

0.461
3 
0.285
6 
0.198
2 

0.375
7 
0.166
4 
0.132
8 

96.
3 
95.
8 
94.
4 

0.40
52 
0.25
02 
0.13
81 

0.203
8 
0.129
9 
0.102
8 

95.8 
92.3 
92.4 

0.341
7 
0.174
0 
0.080
4 

0.213
1 
0.105
7 
0.065
5 

83.2 
83.4 
89.4 

  λ 2.5 0.165
5 

0.140
7 

96.
3 

0.13
18 

0.097
5 

94.0 0.085
5 

0.066
6 

83.2 

  p 0.5 0.145
9 

0.138
5 

95.
8 

0.12
51 

0.097
5 

93.4 0.085
3 

0.043
0 

88.2 

 moderate α 1.7 0.423
8 

0.146
1 

94.
0 

0.38
39 

0.119
0 

91.7 0.334
9 

0.525
7 

88.8 

 U[0,8] β 1.0 0.290
3 

0.153
0 

94.
0 

0.24
29 

0.127
0 

92.6 0.141
4 

0.064
4 

90.8 

 50% γ 1.0 0.302
2 

0.290
5 

94.
0 

0.26
80 

0.242
9 

92.8 0.160
5 

0.176
4 

89.4 
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  λ 2.5 0.162
6 

0.128
4 

95.
7 

0.11
95 

0.087
9 

93.8 0.059
3 

0.031
2 

86.4 

  p 0.5 0.133
8 

0.112
3 

93.
0 

0.10
23 

0.079
1 

91.3 0.055
6 

0.027
1 

85.4 

BGE 

slight 
U[0,23] 
20% 

m 
n α 

1.3 
0.7 
0.8 

0.156
6 
0.309
2 
0.171
4 

0.138
4 
0.161
5 
0.207
0 

95.
4 
95.
5 
95.
6 

0.12
15 
0.26
35 
0.12
16 

0.077
3 
0.122
5 
0.157
3 

94.6 
93.8 
93.2 

0.087
6 
0.208
1 
0.081
8 

0.047
5 
0.078
5 
0.095
1 

89.4 
89.2 
84.4 

  λ 2.5 0.451
3 

0.319
1 

94.
3 

0.41
25 

0.294
5 

91.8 0.323
5 

0.229
8 

86.2 

  p 0.9 0.204
1 

0.166
7 

94.
7 

0.17
24 

0.136
0 

93.6 0.063
1 

0.053
1 

86.3 

 moderate m 1.3 0.126
5 

0.114
6 

92.
1 

0.10
63 

0.092
5 

90.4 0.052
7 

0.067
1 

84.8 

 U[0,6] n 0.7 0.320
9 

0.135
8 

93.
8 

0.00
67 

0.051
0 

90.4 0.497
0 

0.468
6 

85.0 

 50% α 0.8 0.143
0 

0.129
4 

91.
3 

0.09
93 

0.086
2 

89.6 0.051
4 

0.031
7 

78.0 

  λ 2.5 0.466
2 

0.251
7 

93.
2 

0.42
46 

0.253
8 

91.2 0.307
0 

0.216
3 

86.1 

  p 0.9 0.226
3 

0.180
7 

91.
6 

0.16
13 

0.128
3 

90.6 0.074
6 

0.059
3 

83.2 

non-
mixture 
model 

Beta 
Kum-
BX 

slight 
U[0,20] 
20% 

m 
n  
α 
 β 

1.0 
1.4 
1.8 
0.8 

0.652
8 
0.814
8 
0.914
9 
0.284
6 

0.377
1 
0.913
4 
0.344
1 
0.148
9 

94.
3 
93.
4 
93.
8 
94.
2 

0.61
06 
0.78
37 
0.88
22 
0.16
62 

0.480
5 
0.666
0 
0.288
1 
0.105
9 

93.7 
90.8 
90.5 
91.8 

0.541
7 
0.674
0 
0.740
4 
0.125
5 

0.213
1 
0.315
7 
0.149
5 
0.086
6 

86.2 
85.4 
86.4 
86.2 

  ϑ 0.5 0.338
5 

0.193
7 

93.
9 

0.29
52 

0.130
9 

90.3 0.145
3 

0.073
0 

83.2 

  λ 1.3 0.157
4 

0.184
9 

94.
7 

0.13
47 

0.126
3 

91.4 0.106
2 

0.073
5 

85.2 

  
 

p 1.0 0.138
5 

0.051
4 

95.
1 

0.10
77 

0.039
9 

93.1 0.064
2 

0.014
5 

82.1 

 moderate m 1.0 0.633
0 

0.446
1 

95.
6 

0.61
05 

0.385
7 

91.7 0.540
8 

0.278
8 

90.4 

 U[0,7] n 1.4 0.646
3 

0.351
1 

94.
3 

0.59
57 

0.253
5 

92.7 0.462
7 

0.104
4 

87.6 

 50% α 1.8 0.903
8 

0.187
6 

94.
3 

0.20
13 

0.102
5 

90.5 0.186
9 

0.058
2 

86.4 

  β 0.5 0.306
3 

0.102
7 

92.
6 

0.23
90 

0.230
0 

96.4 0.174
8 

0.127
2 

84.2 

  ϑ 0.9 0.233
1 

0.170
9 

93.
7 

0.21
87 

0.127
4 

92.8 0.165
1 

0.083
9 

87.2 

  λ 1.3 0.164
6 

0.107
6 

92.
6 

0.12
89 

0.080
3 

90.9 0.075
1 

0.045
4 

83.8 
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  p 1.0 0.123
8 

0.146
1 

94.
5 

0.09
32 

0.119
0 

92.9 0.043
9 

0.063
2 

84.4 

BW 

slight 
U[0,25] 
20% 

α  
β  
γ 

1.7 
1.0 
1.0 

0.430
5 
0.655
7 
0.191
6 

0.109
0 
0.460
8 
0.127
2 

93.
2 
92.
4 
94.
2 

0.38
52 
0.62
11 
0.16
04 

0.045
4 
0.109
5 
0.118
0 

90.3 
93.2 
96.1 

0.318
6 
0.510
7 
0.428
0 

0.026
9 
0.311
3 
0.066
5 

86.2 
85.8 
85.8 

  λ 2.5 0.205
7 

0.171
1 

94.
3 

0.16
55 

0.126
9 

92.8 0.127
7 

0.066
2 

84.6 

  
 

p 0.5 0.172
0 

0.338
9 

95.
0 

0.13
55 

0.256
9 

94.3 0.078
3 

0.204
0 

82.4 

 moderate α 1.7 0.480
1 

1.189
1 

92.
4 

0.14
34 

0.480
2 

90.3 0.108
5 

0.320
3 

80.0 

 U[0,8] β 1.0 0.668
0 

0.558
8 

90.
4 

0.66
47 

0.536
0 

90.3 0.076
1 

0.441
2 

91.8 

 50% γ 1.0 0.109
3 

0.239
4 

93.
2 

0.15
90 

0.105
4 

89.3 0.093
8 

0.079
7 

84.6 

  λ 2.5 0.197
7 

0.175
4 

95.
2 

0.13
73 

0.111
5 

94.2 0.108
6 

0.057
3 

83.8 

                                       P                   0.5       0.1373 0.2816 95.0 0.0984   0.1956 92.9  0.0461 0.1084  87.8 

BGE  

slight 
U[0,23] 
20% 

m 
n  
α 

1.3 
0.7 
0.8 

0.1496
 0.1778 
0.1277
 0.1993 
0.1243
 0.1018 

 
93.3 
 
94.3 
 
96.0 

0.108
8 
0.098
2 
0.073
7 

0.1145 
0.1528 
0.0546 

91.5 
94.3 
95.6 

0.064
6 
0.045
6 
0.031
2 

0.0763 
0.0893 
0.0123 

90.6 
82.8 
95.0 

  λ 2.5 0.3454
 0.1430 

 
91.3 

0.289
6 

0.1172 90.2 0.237
2 

0.0829 83.4 

  p 0.9 0.2089
 0.1687 

 
93.2 

0.158
6 

0.1268 92.1 0.113
2 

0.0932 84.2 

 moderate m 1.3 0.1647
 0.1529 

 
93.2 

0.120
3 

0.1149 92.0 0.095
2 

0.0575 89.4 

 U[0,6] n 0.7 0.1409  
0.1158 

93.8 0.106
7 

0.0810 90.4 0.067
0 

0.0686 85.0 

 50% α  
λ  
p 

0.8 
2.5 
0.9 

0.5051  
0.1136  
0.2131  
0.3281 
0.3024  
0.1443 
  

93.2 
90.3 
90.3 

0.455
8 
0.245
2 
0.137
7 

0.2970 
0.5357 
0.0820 

90.7 
89.7 
82.7 

0.370
4 
0.206
1 
0.085
1 

0.2320 
0.2380 
0.0616 

84.0 
73.0 
74.6 

 

9. Simulation Study 
      The joint Beta Kum-BX, BW and BGE models, simulations with cure fraction were done, where the two-
parameter Kumaraswamy-model was used to generate the probability of cure. A uniform distribution, U[a,b], 
was used to generate censoring times, with constants a and b defined in order to give chosen censoring rates. The 
error distribution for the failure times of the uncured patients followed the two-parameter Weibull distribution. 
The Kumaraswamy Weibull data was generated in samples sizes of n = 30, 50 and 100 with 1000 replications. 
Also, 200 bootstrap samples were chosen for the simulation process due to the complexity of the models. 
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9.1. Discussion on (Simulation Study) Table 4 
        The results from the mixture model simulations show some similar outputs and trends for the non-mixture 
model of the Beta Kum-BX and BW.  Unlike the BGE at all levels of the comparison either the slight or 
moderate at different censoring rates using the uniform distribution to generate the censored data for the 
simulation as explain above value of show relatively small biases overall. Again, mean square error decreased 
with increasing sample size and increased with higher censoring rates. The confidence interval values were 
considered for the Bayesian methods for comparison. 
 
10. Conclusion 
       In the life time data analysis, we presented the cure fraction “p” and covariates “η0 = age at enrollment, η1= 
sex and η2= race”. A data with this structure can be appropriately analyzed using different parametric 
formulations, as a mixture and non-mixture models. In this paper, we showed that parametric models based on 
the Beta Kum-BX and other existing models can be useful to analyze medical data sets. We showed that the use 
of Bayesian methodology using MCMC methods is a suitable way to get the inferences for the parameters of the 
model as the ACTG censored study data was well fitted and accommodate by Beta Kum-BX which is three 
confounded models with many advantages and properties in modeling a very large population in medical and 
engineering aspects. These approaches allow the inclusion of covariates in the model. The parameter estimation 
was obtained by the classical frequentist approach known as the maximum likelihood method and Bayesian 
approach using the Markov chain Monte Carlo simulation methods using ACTG censored study data. The 
Winbugs software and MCMCpack library in R was applied for the Gibbs sampling algorithm to obtain the 
posterior summaries of interest. Finally, a simulation study was employed based on the cure models to compare 
the performance of both models relating to actual sense of motivation to clarify the usefulness of the proposed 
methodology. An advantage of Bayesian approach over the other methods is that it explicitly incorporates the 
expert prior opinion for the parameters. 
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