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1. Introduction 

Airfoil, in aerodynamic terms, is a structure with curved surfaces designed to give the most favorable ratio of lift to 

drag in flight used as the basic form or the wings, fins, and horizontal stabilizer of most aircraft (Fig. 1) [1]. An airfoil-

shaped body moving through a fluid produces an aerodynamic force [2]. The component of this force perpendicular to 

the direction of motion is called lift [3].  

 

 
Fig. 1 - Airfoil nomenclature from Anderson [1] 

 

Abstract: The equation of airfoil and its complex potential function can be produced from the Joukowsky 

transformation. The airfoil will call Joukowsky airfoil because it comes from the transformation. Using Wolfram 

Mathematica as a software simulator, this transformation produce airfoil with any variant graph and position, also 

mean camber line and position of trailing edge of airfoil. The complex potential function can also produce equation 

and graph of equipotential & streamlines. 
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Joukowsky transformation, in pure and applied mathematics, is a conformal map historically used to understand 

some principle of airfoil design [1]. There are basic form and other differentiation of this transformation [4], for this 

paper the transformation is  

 

𝑤(𝑧) = 𝑧 +
𝑏2

𝑧
, (1.1) 

 

where 𝑏 as constant with 𝑏 ∈ ℝ and 𝑏 > 0.  

The last researches find that the airfoil will come from a circle as a domain [5] and another find that this 

transformation is as three function composition [6]. Munoz, et al. [7] have shown the element between pure complex 

analysis and fluid dynamics and present the application in theory of laminar and turbulent flows. 

With assumption from [8] with complex analysis in pure mathematics, this paper will explain about airfoil equation 

and fluid flow around of airfoil with equipotential lines and streamlines line from harmonic function, consist of velocity 

potential function 𝜙 and stream function 𝜓 are equals to constant. The complex potential function of fluid flow is in form 

𝑓 = 𝜙 + 𝑖𝜓. 

 

2. Equation of Airfoil 

The following theorem shows the equation of airfoil from Joukowsky transformation with the variation called 

“Joukowsky airfoil” from the perspective of pure mathematics. 

 

Theorem 1 

 

Assume 𝑤 = 𝑓(𝑧) is Joukowsky transformation. If 𝑆 ⊂ ℂ is a circle with center (𝑥𝑐 , 𝑦𝑐), radius 𝑟 ≠ 0, and 𝑏 = −𝑥𝑐 +

√𝑟2 − 𝑦𝑐
2 > 0, with 𝑥𝑐 , 𝑦𝑐 ≠ 0, then 𝑓(𝑆) is Joukowsky airfoil asymmetric at 𝑢-axis on 𝑤-plane. 

 

Proof 

 

If 𝑆 ⊂ ℂ is a circle, then the equation is 

 

𝑧 = (𝑥𝑐 + 𝑖𝑦𝑐) + 𝑟𝑒
𝑖𝜃. (2.1) 

 

Substitute the value of 𝑧 from (2.1) and 𝑏 to (1.1) to the form 𝑤 = 𝑢 + 𝑖𝑣, then 

 

𝑤(𝑧) = (𝑟 cos 𝜃 + 𝑥𝑐 +
(−𝑥𝑐 +√𝑟

2 − 𝑦𝑐
2)
2
(𝑟 cos 𝜃 + 𝑥𝑐)

(𝑟 cos 𝜃 + 𝑥𝑐)
2 + (𝑟 sin 𝜃 + 𝑦𝑐)

2
)

+ 𝑖 (𝑟 sin 𝜃 + 𝑦𝑐 −
(−𝑥𝑐 +√𝑟

2 − 𝑦𝑐
2)
2
(𝑟 cos 𝜃 + 𝑥𝑐)

(𝑟 cos 𝜃 + 𝑥𝑐)
2 + (𝑟 sin 𝜃 + 𝑦𝑐)

2
). 

(2.2) 

If 𝑅 = √(𝑟 cos 𝜃 + 𝑥𝑐)
2 + (𝑟 sin 𝜃 + 𝑦𝑐)

2 at (2.2), then  

 

𝑢 = (1 +
(−𝑥𝑐 +√𝑟

2 − 𝑦𝑐
2)
2

𝑅2
)(𝑟 cos 𝜃 + 𝑥𝑐)  (2.3) 

and 

𝑣 = (1 +
(−𝑥𝑐 +√𝑟

2 − 𝑦𝑐
2)
2

𝑅2
)(𝑟 sin 𝜃 + 𝑦𝑐).  (2.4) 

The graph of (2.3) and (2.4) is an airfoil on 𝑤-plane. The asymmetrical airfoil corresponding to 𝑢-axis is given by 

𝑣(−𝜃) ≠ −𝑣(𝜃).  ∎ 

 

The asymmetrical airfoil can be also produced with 𝑏 = 𝑥𝑐 +√𝑟
2 − 𝑦𝑐

2, which is a reflection from airfoil with    

𝑏 = −𝑥𝑐 +√𝑟
2 − 𝑦𝑐

2 coressponding to 𝑣-axis on 𝑤-plane. Secondly, airfoil with −𝑦𝑐 is a relection from airfoil with 𝑦𝑐 
coressponding to 𝑢-axis on 𝑤-plane. 
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Theorem 2 

 

Assume 𝑤 = 𝑓(𝑧) is Joukowsky transformation. If 𝑆 ⊂ ℂ is a circle with center (𝑥𝑐 , 0), radius 𝑟 ≠ 0, and 𝑏 = 𝑟 − 𝑥𝑐 >
0, with 𝑥𝑐 ≠ 0, then 𝑓(𝑆) is Joukowsky airfoil symmetric at 𝑢-axis on 𝑤-plane. 

 

Proof 

 

If 𝑆 ⊂ ℂ is a circle, then the equation of the circle is 

 

𝑧 = (𝑥𝑐 + 𝑖 ∙ 0) + 𝑟𝑒
𝑖𝜃 = 𝑥𝑐 + 𝑟𝑒

𝑖𝜃. (2.5) 

 

Then substitute the value of 𝑧 from (2.5) and 𝑏 to (1.1) to the form 𝑤 = 𝑢 + 𝑖𝑣, then 

 

𝑤(𝑧) = (𝑟 cos 𝜃 + 𝑥𝑐 +
(𝑟 − 𝑥𝑐)

2(𝑟 cos 𝜃 + 𝑥𝑐)

(𝑟 cos 𝜃 + 𝑥𝑐)
2 + (𝑟 sin 𝜃)2

) + 𝑖 (𝑟 sin 𝜃 −
(𝑟 − 𝑥𝑐)

2(𝑟 sin 𝜃)

(𝑟 cos 𝜃 + 𝑥𝑐)
2 + (𝑟 sin 𝜃)2

). (2.6) 

 

If 𝑅 = √(𝑟 cos 𝜃 + 𝑥𝑐)
2 + (𝑟 sin 𝜃)2 at (2.6), then  

 

𝑢 = (1 +
(𝑟 − 𝑥𝑐)

2

𝑅2
) (𝑟 cos 𝜃 + 𝑥𝑐) &  (2.7) 

and 

𝑣 = (1 +
(𝑟 − 𝑥𝑐)

2

𝑅2
) (𝑟 sin 𝜃).  (2.8) 

 

The graph of (2.7) & (2.8) is an airfoil on 𝑤-plane. The symmetrical airfoil corresponding to 𝑢-axis is given by 𝑣(−𝜃) =
−𝑣(𝜃).  ∎ 

 

There are points in domain of the circle  𝑆 ⊂ ℂ at Theorem 1 and Theorem 2, will be mapped by Joukowsky 

transformation to a singular point, because of the value of 𝑏 > 0. It called cups of airfoil graph, in aerodynamic terms 

called trailing edge. The location is at (±2𝑏, 0) on 𝑤-plane from (±𝑏, 0) on 𝑧-plane.  

 

For symmetrical airfoil from Theorem 2, chord line and mean camber line is coincident at 𝑢-axis on 𝑤-plane. For 

asymmetrical airfoil from Theorem 1, mean camber line can be approximated with added a same circle but with 𝑥𝑐 = 0 

on 𝑧-plane. Another cases from Theorem 1, for 0 < 𝑎 < 1, 0 < ℎ < 1 and ℎ ≠ 0, with 𝑏 = 1, 𝑥𝑐 = ℎ, 𝑦𝑐 = 𝑎, then take 

𝑟 = √(1 − 𝑥𝑐)
2 + 𝑦𝑐

2 for approximated mean camber line on the 𝑤-plane. 

 

3. Simulation of Fluid Flow Around of Airfoil 

To approximate the fluid flow around of airfoil, it will need flow variation theory from [2] and step by step 

Joukowsky transformation. For a complex potential function of fluid flow on 𝜁-plane (𝑠𝑡-plane) with constant speed 𝑉0 ∈
ℝ, angle 𝛼 = 0, and direction to positive 𝑠-axis, 

 

𝐹1(𝜁) = 𝑉0𝜁. (3.1) 

 

The outside of the circle 𝑆 ⊂ ℂ with center at (0,0) and radius 𝑎 on 𝑤-plane (𝑢𝑣-plane) is transformed by Joukowsky 

transformation with injective properties where the part with 𝑣 > 0 to 𝑡 > 0 and the part with 𝑣 < 0 to 𝑡 < 0. The 

codomain is all area on the 𝑤-plane. Using flow variation theorem, the complex potential function on 𝑤-plane around a 

circle with center (0,0) and radius 𝑎 is 

 

𝐹2(𝑤) = 𝑉0 (𝑤 +
𝑎2

𝑤
). (3.2) 
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If translation of Joukowsky transformation with vector 𝑧𝑐 = 𝑥𝑐 + 𝑖𝑦𝑐 at domain on 𝑤-plane (𝑢𝑣-plane) is 

 

𝑧 = (𝑤 + 𝑧𝑐) +
𝑏2

(𝑤 + 𝑧𝑐)
, (3.3) 

the inverse of (3.3) is 

𝑤 =
𝑧

2
± √(

𝑧

2
)
2

− 𝑏2 − 𝑧𝑐 . (3.4) 

The value of 𝑤 → 𝑧 when 𝑧 → ∞, then the positive root will be chosen. Based on Theorem 1, the asymmetric airfoil on 

𝑧-plane (𝑥𝑦-plane) is transformed to be a circle with radius 𝑎 and 𝑏 = 𝑥𝑐 +√𝑎
2 − 𝑦𝑐

2 on 𝑤-plane. Then substitute the 

value of 𝑤 from (3.4) to (3.2) and using flow variation theorem on 𝑧-plane, is 

 

𝐹3(𝑧) = 𝑉0

(

 
𝑧

2
+ √(

𝑧

2
)
2

− 𝑏2 − 𝑧𝑐 − 𝑖𝑦𝑐 +
𝑎2

𝑧
2
+ √(

𝑧
2
)
2

− 𝑏2 − 𝑧𝑐 − 𝑖𝑦𝑐)

 . (3.5) 

 

The value of Re(𝐹3(𝑧)) = 𝑐 = 𝜙  and Im(𝐹3(𝑧)) = 𝑘 = 𝜓 , where 𝑐  and 𝑘  is constant, is equipotential lines and 

streamlines lines, respectively. The velocity of fluid 𝑽(𝑥, 𝑦) arround asymmetrical airfoil is 

 

𝑽(𝑥, 𝑦) = 𝑉0

(

 
 
 
 
 
 

1

2
+

𝑧̅

4√−𝑏2 + (
𝑧̅
2
)
2
−

𝑎2

(

 1
2
+

𝑧̅

4√−𝑏2 + (
𝑧̅
2
)
2

)

 

(−𝑧𝑐̅ +
𝑧̅
2
√−𝑏2 + (

𝑧̅
2
)
2

)

2

)

 
 
 
 
 
 

. (3.6) 

For symmetric airfoil, use the value 𝑦𝑐 = 0, 𝑏 = 𝑟 + 𝑦𝑐 and 𝑟 = 𝑎. 

Using Wolfram Mathematica as a software simulator for value of with 𝑉0 = 1, 𝑥𝑐 = −0.1, 𝑦𝑐 = 0.2 and 𝑎 = 𝑟 =
1.5 given an airfoil and its equipotential & streamline (Fig. 2). 

 

 
 

(a) 

 

 
 

(b) 

 

Fig. 2 - Joukowsky airfoil with (a) equipotential lines and (b) streamlines lines 

 

4. Conclusion 

With 𝑤 = 𝑓(𝑧)  is Joukowsky transformation, the circle 𝑆 ⊂ ℂ  as a domain of the Joukowsky transformation 

produced Joukowsky airfoil 𝑓(𝑆)  where is asymmetrical (with 𝑥𝑐 , 𝑦𝑐 ≠ 0 ) or symmetrical (with 𝑥𝑐 ≠ 0 , 𝑦𝑐 = 0 ) 

corresponding to 𝑢-axis on 𝑤-plane. For simulation of the fluid flow around of airfoil, with tools from flow variation 

theory and Joukowsky transformation given the complex potential function with the velocity of fluid 𝑽(𝑥, 𝑦), equation 
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of equipotential lines 𝜙 = Re(𝐹3(𝑧)), and streamlines lines 𝜓 = Im(𝐹3(𝑧)). For next research will need deep attention 

for trailing edge, variation of 𝛼, and the force of lift.  
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