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1. Introduction 

The standard deviation (SD), calculated as the square root of the variance of a population, is a measure of the 

amount of variation or dispersion in a data : a low SD indicates that the values tend to be close to the mean of the data 

whereas a high one indicates that the values are spread out over a wider range. It has been widely applied in various 

fields by many authors e.g. Singh et al., 2004; Huang & Chen, 2005; Bonett, 2006; Maravelakis & Castagliola, 2009. 

Mead (1966) first presented a quick method of estimating the SD, while an estimator selection for the SD of a normal 

distribution was later provided by Freund (1987). Tatum (1997) suggested a new approach for the robust estimation of 

the process SD, while Tsai & Wu (2008) proposed a heuristic method based on an adjusted weighted SD for 

constructing an R chart for a skewed process. A new confidence interval for the SD of non-normal distributions was 

proposed by Niwitpong & Kirdwichai (2008), and Frost et al. (2013) proposed the interval estimation of the SD of a 

gamma population. Last, Niwitpong (2015) presented confidence intervals for the SD and the difference between SDs 

of normal distributions with known coefficients of variation.  

Examples of related works on population variance are as follows. Tate & Klett (1959) proposed optimal 

confidence intervals for the variance of a normal distribution, while Levy & Narula (1974) derived the shortest 

confidence interval for the ratio of two variances in normal distributions. Shorrock (1990) later constructed confidence 

intervals for normal variance that depend on the sample mean and have the same length as the shortest interval 

depending only on the sample variance. Goutis & Casella (1991) discussed confidence intervals for the variance of a 

normal distribution with an unknown mean that offered an improvement on the usual short interval based on the sample 
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variance alone. Cojbasic & Tomovic (2007) suggested confidence intervals for the population variance and the 

difference in the variances of two populations based on the ordinary t-statistic combined with a bootstrap method, while 

the generalized confidence interval for the difference between the variances of normal populations were constructed by 

Phonyiem & Niwitpong (2012). Last, Mahmoudi & Mahmoudi (2013) proposed the confidence interval for the ratio of 

variances in two independent populations based on the asymptotic distribution for the ratio of sample variances. 

Measuring the variables of interest for some phenomenon can either be too expensive or not easy perform (or 

both), whereas it is easy to rank them. Ranked set sampling (RSS), which can be used to estimate the population mean 

and SD, is a powerful sampling alternative to simple random sampling (SRS) in these situations. Estimating the 

population mean using RSS instead of SRS was first introduced by McIntyre (1952). Later, Takahashi & Wakimoto 

(1968) proposed the idea using mathematical theory to support their concept. The sample mean obtained from RSS is 

unbiased and has smaller variance compared with that obtained from SRS using the same sample size (Takahashi & 

Wakimoto, 1968, see Dell & Clutter (1972), Samawi & Muttlak (1996), and Samawi (1999) for discussions on this). 

Stokes (1980) constructed an estimator for the variance of ranked set sample data that is asymptotically unbiased and 

asymptotically more efficient than using SRS with the same number of observations. MacEachern et al. (2002) 

presented an alternative estimator for the variance that is unbiased and more efficient than Stokes’ (1980) estimator 

(although asymptotically equivalent to it) when the underlying distribution is non-normal and the ranking of the 

elements is not perfect; the variance estimator performed very well for small to moderate sample sizes. In addition, 

Albatineh et al. (2017) showed that RSS instead of SRS improved the performance of confidence intervals for the 

signal-to-noise ratio as measured by the coverage probability. 

In this study, improving the confidence interval for the difference between SDs of normal distributions using the 

estimators of the population means and SDs via RSS instead of SRS. Because a theoretical comparison is not possible, 

a simulation study was conducted to compare the performance of these confidence intervals based on RSS and SRS to 

discover which one was closet to the nominal confidence level and had the shortest average length. 

The rest of the paper is organized as follows. Estimating the population mean and SD using RSS is discussed in 

Section 2. Confidence intervals for the SD of a normal distribution are reviewed in Section 3. Section 4 contains the 

proposed confidence intervals for the difference between the SDs of normal distributions based on RSS. Simulation 

study details and a discussion of the results is presented in Section 5. 

 

2. Estimators of the Population Mean and Standard Deviation Using RSS 

Performing RSS to obtain sample size n  from a population is of interest. First, SRS is used to select a sample k  

observations and rank them in order on the attribute of interest. The smallest observation [1]1X  is retained and the 

remaining 1k   units are discards. A second SRS sample of size k  is selected from the population and ranked in 

exactly the same way; the second smallest observation [2]1X  is selected and the rest discarded. This process is 

continued for [3]1 [4]1 [ ]1, ,..., ,kX X X  and so [1]1 [2]1 [ ]1, ,..., kX X X  represents the first balanced RS sample of size .k  To 

obtain a balanced RSS of size ,n km  we repeat the process for m  independent cycles, thereby yielding the balanced 

RSS of size n  reported in Table 1. 

 
Table 1 - Balanced RSS with m  cycles and set size .k  

Cycle 1 [1]1X  [2]1X  [3]1X   [ ]1kX  

Cycle 2 [1]2X  [2]2X  [3]2X   [ ]2kX  

Cycle 3 [1]3X  [2]3X  [3]3X   [ ]3kX  

      

Cycle m  [1]mX  [2]mX  [3]mX   [ ]k mX  

 

The complete balanced RSS with set size k  for m  cycles can be expressed as  [ ] : 1,2,..., ;r iX r k  1,2,..., .i m  

The term [ ]r iX  is the thr  judgment order statistic from the 
thi  cycle, which is the observation determined as the thr  

order statistic from one of the k  sets in the 
thi  cycle. Assuming that the underlying distribution has a finite mean 

x  

and variance 
2 ,x  the estimator of 2

x  proposed by Stokes (1980) is written as 

2 2

[ ]

1 1

1
ˆ ˆ( ) ,

1

m k

x r i x

i r

X
km

 
 

 

  

where [ ]

1 1

1
ˆ .

m k

x r i

i r

X
km


 

   This is a biased estimator of 
2 ,x  but it is asymptotically unbiased as either k  or m  get 

larger. In addition, he showed that the RSS estimator ̂  has more precision than the sample mean X  obtained using 
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SRS because of the independence of the order statistics composing the ranked set sample and also showed that 

ˆ( ) ( ).xVar X Var   

A balanced RSS was applied in the present study. The estimator of the variance of an RSS presented by 

MacEachern et al. (2002) (an improvement on the one proposed by Stokes (1980)) was adopted in the simulation 

studies because it performs very well for small and large ranked set samples. It is given by 

 2 1
ˆ ( 1) ( 1) ,

1
x k MST mk k MSE

km
     


 

where MST  and MSE  are the mean square treatment and mean square error, respectively, from an analysis of 

variance performed on the ranked set sample data with a judgment class used as the factor given by 

2 2

[ ] [ ] [ ].

1 1 1 1

1 1
ˆ( ) ( ) ,

1 1

m k m k

r i x r i r

i r i r

MST X X X
k k


   

   
 
   2

[ ] [ ].

1 1

1
( ) ,

( 1)

k m

r i r

r i

MSE X X
k m  

 

  

where [ ]. [ ]

1

1
.

m

r r i

i

X X
m 

   Thus, the improved estimator of the population SD is  

  
1

ˆ ( 1) ( 1) .
1

x k MST mk k MSE
km

      


     (1) 

 

3. The Confidence Interval for the SD of a Normal Distribution 

Let 1,..., nX X  be a random sample of size n  from a normal distribution with mean 
x  and variance 

2

x  and 

1,..., mY Y  be a random sample of size m  from a normal distribution with mean y  and variance 2.y  In this section, the 

confidence interval for the SD of a normal distribution is reviewed. The (1 )100%  confidence interval for the SD 

x  of a normal distribution based on the chi-squared statistic is given by 

 
2 2

0 2 2

1 / 2, 1 / 2, 1

( 1) ( 1)
, ,x x

n n

n S n S
CI

    

  
 
 
 

      (2) 

where 2

/ 2, 1n 
 and 2

1 / 2, 1n  
 are the ( / 2)100th  and (1 / 2)100th  percentiles of a chi-square distribution with 

1n   degrees of freedom, respectively. 

 

4. Confidence Intervals for the Difference Between the SDs of Normal Distributions 

In this section, the method of variance estimates recovery (MOVER) approach is used to construct the confidence 

intervals for the difference between the SDs of normal distributions. It is based on estimating the confidence interval 

for the functions of parameters in the form of 1 2   and 1 2/ .   This method was introduced by Donner & Zou )2012( 

and was applied to construct confidence interval by Newcombe )2016(, Sangnawakij & Niwitpong )2017(, and 

Thangjai & Niwitpong )2019(. The idea of this approach is to find the separate confidence intervals for two single 

parameters and then recover the variance estimates from the confidence intervals afterward to form the confidence 

interval for the function of parameters. 

The MOVER method is based on the central limit theorem (CLT) to find the confidence interval for 
1 2.   

Therefore, the general form of a two-sided confidence interval under the assumption of independence between 

estimators 1̂  and 2̂  is given by 

  1 2 1 / 2 1 2
ˆ ˆ ˆ ˆ, ( ) ( ) ( ) ,L U Z Var Var   

   
  

 

where 1
ˆ( )Var   and 2

ˆ( )Var   are the unknown variances of 1̂  and 2
ˆ ,  respectively. Zou et al. (2009) assumed that 

 ,i il u  are the (1 )100%  confidence intervals for ,i  1,2.i   Furthermore, they pointed out that the value of 1 2l l  

is similar to L  and 1 2u u  is similar to .U  To estimate ˆ( )iVar   using the CLT and under the conditions 1 1l   and 

2 2 ,l   the estimated variances recovered from il  to obtain L  can be derived as 
2

2

1 / 2

ˆ( )ˆ( ) .i i
i

l
Var

Z 







  On the other 

side, under the conditions 1 1u   and 2 2 ,u   the estimated variances recovered from iu  to obtain U  can be derived 

as 

2

2

1 / 2

ˆ( )ˆ( ) .i i
i

u
Var

Z 







  Thus, we can obtain the (1 )100%  confidence interval for 1 2   by replacing the 

corresponding estimated variances into the confidence interval  , .L U  Similarly, the confidence interval for the 
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difference between the parameters can be developed by changing 
1 2   into the form 

1 2( )    and then recovering 

the variance estimates by following the above approach. 

Following the concept of Donner and Zou (2012), the (1 )100%  confidence interval for the difference between 

SDs x y   of normal distributions based on the MOVER approach is given by 

2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) , ( ) ( ) ( ) ,x y x x y y x y x x y yCI l u u l                   
 

where  ,x xl u  and ,y yl u    are the (1 )100%  confidence intervals for 
x  and y  shown in Equation (2), 

respectively. In this study, the two confidence intervals for the difference between the SDs x y   based on the 

sampling methods SRS and RSS are as follows: 

1) The (1 )100%  confidence interval for x y   of normal distributions based on SRS is  

 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) , ( ) ( ) ( ) ,SRS x y x x y y x y x x y yCI l u u l                   
   (3) 

where ˆ
x n xc S   and ˆ

y m yc S   are the unbiased estimators of 
x  and ,y  respectively, 

1 2

1

( 1) ( ) ,
n

x i

i

S n X X



    1 2

1

( 1) ( ) ,
m

y i

i

S m Y Y



     

2 1
,

2 21
n

n n
c

n

     
      

     
 

2 1
,

2 21
m

m m
c

m

     
      

     
 

 
2 2

2 2

1 / 2, 1 / 2, 1

( 1) ( 1)
, , ,x x

x x

n n

n S n S
l u

    

  
  
  

 and 

2 2

2 2

1 / 2, 1 / 2, 1

( 1) ( 1)
, , .

y y

y y

m m

m S m S
l u

    

  
    
  

 

2) The (1 )100%  confidence interval for x y   of normal distributions based on RSS is  

 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) , ( ) ( ) ( ) ,RSS x y x x y y x y x x y yCI l u u l                              (4) 

where ˆ
x   and ˆ

y   are the improved estimators of the SD based on RSS calculated using the Equation (1). 

 

5. Simulation Study 

In this study, a confidence interval based on using RSS is derived for the difference between the SDs of normal 

distributions. Because a theoretical comparison between it and  the standard one based on SRS is not possible, a Monte 

Carlo simulation study was designed using R version 3.6.2 statistical software (Ihaka and Gentleman, 1996) and 

conducted to compare the performances of the proposed and standard confidence intervals (the code for the simulation 

study is included in Appendix A). The confidence intervals were compared in terms of their coverage probabilities and 

the average lengths of their performances. Two sets of normal data were generated with means 10x y    and SDs 

( , )x y   (1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (5,1), (5,3), and (5,5). To observe the behavior of small, moderate, and 

large sample sizes, ( , )n m   (10,10), (20,20), (30,30), (50,50) and (100,100) were used, and the number of simulations 

was fixed at 10,000. The nominal confidence level 1   was varied as 0.90, 0.95 and 0.99.  

The results of the study are reported in Tables 2-4. The confidence interval based on SRS, ,SRSCI  had empirical 

coverage probabilities close to the nominal confidence levels for all situations. However, the empirical coverage 

probabilities of the confidence interval based on RSS, ,RSSCI  were better than the nominal confidence levels, meaning 

that it can cover the true parameter values better and so is a more reasonable approach. Additionally, the empirical 

coverage probabilities of both confidence intervals were independent of the values of the sample sizes and the SDs. 

Regarding the average length comparisons, the average lengths of RSSCI  were shorter than those of SRSCI  for all 

scenarios. In addition, the average lengths of both confidence intervals became shorter when the sample sizes increased. 

On the other hand, those of both confidence intervals increased according to the values of the difference between the 

SDs. The use of RSS compared to SRS improved the average length in the range of 1-10% depending on the sample 

size and the value of the SD. 

 

6. A Real Data Example 

The birth weight of babies in grams were used to illustrate the application of the confidence intervals proposed in 

the previous section. The first data-set comprising the birth weights of 189 babies was obtained from a book written by 

Hosmer and Lemeshow (2000) (https://rdrr.io/cran/TRSbook/man/BIRTH.WEIGHT.html). The second data-set 

comprising the birth weights of 107 babies was obtained from Secher et al. (1987) (https://rdrr.io/cran/ISwR/man/ 

secher.html). 
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The sample mean and SD of the first and second data-set were 2,944.66 and 729.022, and 2,739.09 and 690.307, 

respectively. The coefficients of skewness and kurtosis of the first and second data-sets were -0.2102 and -0.0814, and -

0.0882 and 0.3982, respectively. Histograms, density plots, box-and-whisker plots and normal quantile-quantile plots 

for both data-sets are displayed in Fig. 1 and 2, respectively. Fig. 3 shows the results of the Shapiro-Wilk normality test 

using R. It was found that both data-sets were in excellent agreement with a normal distribution. Samples of sizes 

(25,25) and (50,50) were randomly selected from each data sets using SRS and RSS. The 95% confidence intervals for 

the difference between the SDs were calculated and are reported in Table 5. Similar to the simulation results, the 

confidence interval based on RSS was more efficient than that based on SRS in terms of average length. 

 

Table 2 - Empirical coverage probabilities and average lengths of 90% confidence intervals for the difference 

between the SDs of normal distributions 

( , )n m  ( , )x y   
Coverage Probabilities  Average Lengths 

SRSCI  
RSSCI   SRSCI  

RSSCI  

(10,10) (1,1) 0.9152 0.9420  1.3988 1.2612 

 (1,3) 0.9068 0.9404  2.9576 2.6933 

 (1,5) 0.9052 0.9325  4.6399 4.2533 

 (3,1) 0.9060 0.9405  2.9595 2.6969 

 (3,3) 0.9123 0.9452  4.2036 3.7964 

 (3,5) 0.9104 0.9448  5.6675 5.1186 

 (5,1) 0.9066 0.9382  4.6619 4.2497 

 (5,3) 0.9105 0.9432  5.6673 5.1257 

 (5,5) 0.9090 0.9433  7.0056 6.2977 

(20,20) (1,1) 0.9068 0.9384  0.8502 0.8115 

 (1,3) 0.9053 0.9400  1.8425 1.7682 

 (1,5) 0.9021 0.9346  2.9287 2.8292 

 (3,1) 0.9028 0.9352  1.8396 1.7698 

 (3,3) 0.9059 0.9447  2.5488 2.4320 

 (3,5) 0.9094 0.9417  3.4720 3.3281 

 (5,1) 0.8957 0.9394  2.9350 2.8223 

 (5,3) 0.9061 0.9417  3.4754 3.3201 

 (5,5) 0.9014 0.9394  4.2529 4.0624 

(30,30) (1,1) 0.9038 0.9372  0.6615 0.6416 

 (1,3) 0.8989 0.9415  1.4433 1.4113 

 (1,5) 0.8998 0.9417  2.3128 2.2586 

 (3,1) 0.8987 0.9363  1.4444 1.4105 

 (3,3) 0.9100 0.9368  1.9881 1.9234 

 (3,5) 0.9031 0.9381  2.7042 2.6256 

 (5,1) 0.9011 0.9386  2.3094 2.2567 

 (5,3) 0.9040 0.9380  2.7050 2.6292 

 (5,5) 0.9042 0.9409  3.3086 3.2079 

(50,50) (1,1) 0.8962 0.9379  0.4931 0.4837 

 (1,3) 0.8974 0.9382  1.0852 1.0699 

 (1,5) 0.8977 0.9369  1.7413 1.7196 

 (3,1) 0.9003 0.9371  1.0871 1.0710 

 (3,3) 0.9014 0.9394  1.4798 1.4510 

 (3,5) 0.9019 0.9384  2.0233 1.9895 

 (5,1) 0.8966 0.9391  1.7422 1.7196 

 (5,3) 0.9025 0.9380  2.0222 1.9899 

 (5,5) 0.8998 0.9398  2.4648 2.4191 

(100,100) (1,1) 0.8914 0.9352  0.3383 0.3353 

 (1,3) 0.8959 0.9326  0.7519 0.7459 

 (1,5) 0.8928 0.9281  1.2088 1.1995 

 (3,1) 0.8991 0.9338  0.7513 0.7459 

 (3,3) 0.8976 0.9322  1.0155 1.0068 

 (3,5) 0.8931 0.9336  1.3938 1.3814 

 (5,1) 0.8988 0.9366  1.2087 1.2002 

 (5,3) 0.8956 0.9328  1.3923 1.3811 

 (5,5) 0.9019 0.9360  1.6934 1.6783 
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Table 3 - Empirical coverage probabilities and average lengths of 95% confidence intervals for the difference 

between the SDs of a normal distributions 

( , )n m  ( , )x y   
Coverage Probabilities  Average Lengths 

SRSCI  
RSSCI   SRSCI  

RSSCI  

(10,10) (1,1) 0.9594 0.9749  1.7611 1.5882 

 (1,3) 0.9526 0.9757  3.7047 3.3717 

 (1,5) 0.9565 0.9751  5.8053 5.3262 

 (3,1) 0.9584 0.9747  3.6949 3.3834 

 (3,3) 0.9567 0.9790  5.2699 4.7745 

 (3,5) 0.9571 0.9768  7.1340 6.4453 

 (5,1) 0.9524 0.9750  5.7938 5.3063 

 (5,3) 0.9594 0.9755  7.1148 6.4619 

 (5,5) 0.9611 0.9779  8.7820 7.9520 

(20,20) (1,1) 0.9532 0.9766  1.0401 0.9952 

 (1,3) 0.9536 0.9740  2.2442 2.1567 

 (1,5) 0.9501 0.9722  3.5629 3.4386 

 (3,1) 0.9471 0.9723  2.2404 2.1542 

 (3,3) 0.9577 0.9790  3.1203 2.9813 

 (3,5) 0.9543 0.9759  4.2338 4.0589 

 (5,1) 0.9489 0.9703  3.5533 3.4274 

 (5,3) 0.9558 0.9744  4.2510 4.0652 

 (5,5) 0.9559 0.9765  5.1944 4.9682 

(30,30) (1,1) 0.9503 0.9767  0.8025 0.7783 

 (1,3) 0.9520 0.9747  1.7460 1.7042 

 (1,5) 0.9477 0.9718  2.7885 2.7258 

 (3,1) 0.9513 0.9750  1.7448 1.7062 

 (3,3) 0.9537 0.9748  2.4068 2.3385 

 (3,5) 0.9506 0.9738  3.2740 3.1871 

 (5,1) 0.9483 0.9756  2.7891 2.7219 

 (5,3) 0.9566 0.9727  3.2769 3.1872 

 (5,5) 0.9505 0.9747  4.0133 3.8940 

(50,50) (1,1) 0.9553 0.9741  0.5925 0.5830 

 (1,3) 0.9487 0.9739  1.3050 1.2866 

 (1,5) 0.9484 0.9714  2.0930 2.0661 

 (3,1) 0.9518 0.9758  1.3046 1.2859 

 (3,3) 0.9479 0.9738  1.7814 1.7505 

 (3,5) 0.9478 0.9761  2.4337 2.3941 

 (5,1) 0.9499 0.9750  2.0923 2.0645 

 (5,3) 0.9452 0.9724  2.4342 2.3919 

 (5,5) 0.9518 0.9747  2.9666 2.9145 

(100,100) (1,1) 0.9488 0.9724  0.4055 0.4020 

 (1,3) 0.9494 0.9699  0.8972 0.8926 

 (1,5) 0.9493 0.9690  1.4467 1.4349 

 (3,1) 0.9493 0.9719  0.8991 0.8935 

 (3,3) 0.9500 0.9751  1.2178 1.2051 

 (3,5) 0.9506 0.9684  1.6670 1.6542 

 (5,1) 0.9459 0.9725  1.4459 1.4350 

 (5,3) 0.9494 0.9708  1.6680 1.6537 

 (5,5) 0.9508 0.9711  2.0281 2.0104 
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Table 4 - Empirical coverage probabilities and average lengths of 99% confidence intervals for the difference 

between the SDs of a normal distributions 

( , )n m  ( , )x y   
Coverage Probabilities  Average Lengths 

SRSCI  
RSSCI   SRSCI  

RSSCI  

(10,10) (1,1) 0.9926 0.9971  2.6396 2.4026 

 (1,3) 0.9903 0.9972  5.4942 5.0164 

 (1,5) 0.9916 0.9971  8.5279 7.8068 

 (3,1) 0.9918 0.9967  5.5012 4.9990 

 (3,3) 0.9928 0.9972  7.9076 7.2005 

 (3,5) 0.9918 0.9957  10.6531 9.6665 

 (5,1) 0.9911 0.9967  8.4697 7.8409 

 (5,3) 0.9917 0.9965  10.6694 9.6947 

 (5,5) 0.9924 0.9965  13.2283 11.9991 

(20,20) (1,1) 0.9918 0.9966  1.4597 1.3938 

 (1,3) 0.9911 0.9969  3.1238 2.9964 

 (1,5) 0.9924 0.9956  4.9314 4.7579 

 (3,1) 0.9914 0.9961  3.1191 2.9923 

 (3,3) 0.9907 0.9967  4.3777 4.1803 

 (3,5) 0.9904 0.9959  5.9381 5.6825 

 (5,1) 0.9898 0.9967  4.9280 4.7602 

 (5,3) 0.9908 0.9975  5.9230 5.6858 

 (5,5) 0.9921 0.9975  7.2928 6.9911 

(30,30) (1,1) 0.9907 0.9966  1.1004 1.0694 

 (1,3) 0.9910 0.9961  2.3806 2.3227 

 (1,5) 0.9896 0.9958  3.7882 3.7048 

 (3,1) 0.9890 0.9972  2.3818 2.3244 

 (3,3) 0.9914 0.9950  3.3033 3.2083 

 (3,5) 0.9884 0.9966  4.4858 4.3663 

 (5,1) 0.9905 0.9966  3.7917 3.6946 

 (5,3) 0.9913 0.9962  4.4923 4.3678 

 (5,5) 0.9899 0.9965  5.5063 5.3429 

(50,50) (1,1) 0.9893 0.9967  0.8001 0.7865 

 (1,3) 0.9883 0.9961  1.7518 1.7271 

 (1,5) 0.9891 0.9957  2.8060 2.7652 

 (3,1) 0.9907 0.9963  1.7513 1.7278 

 (3,3) 0.9894 0.9965  2.4009 2.3600 

 (3,5) 0.9907 0.9963  3.2751 3.2230 

 (5,1) 0.9901 0.9981  2.8017 2.7642 

 (5,3) 0.9890 0.9962  3.2795 3.2241 

 (5,5) 0.9899 0.9973  4.0011 3.9373 

(100,100) (1,1) 0.9893 0.9961  0.5402 0.5351 

 (1,3) 0.9897 0.9961  1.1930 1.1850 

 (1,5) 0.9899 0.9960  1.9156 1.9074 

 (3,1) 0.9879 0.9965  1.1944 1.1863 

 (3,3) 0.9900 0.9946  1.6195 1.6047 

 (3,5) 0.9901 0.9963  2.2163 2.1990 

 (5,1) 0.9901 0.9960  1.9194 1.9062 

 (5,3) 0.9881 0.9965  2.2186 2.1998 

 (5,5) 0.9903 0.9960  2.6991 2.6761 
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Fig. 1 - (a) Histogram, (b) density plot, (c) Box-and-Whisker plot and (d) normal quantile-quantile plot of the birth 

weight of babies in the first data-set. 
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Fig. 2 - (a) Histogram, (b) density plot, (c) Box-and-Whisker plot and (d) normal quantile-quantile plot of the birth 

weight of babies in the second data-set. 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - Shapiro-Wilk normality test for normality of the birth weight data of babies from the first and the second data-

sets. 

 

 

 

 

Shapiro-Wilk normality test 

data:  BW1  

W = 0.99247, p-value = 0.4383 

 

Shapiro-Wilk normality test 

data:  BW2  

W = 0.98412, p-value = 0.2329 
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Table 5 – 95% confidence intervals and corresponding widths using both intervals of the difference between the 

SDs 

( , )n m   
SRSCI  

RSSCI  

(25,25) Confidence interval (-105.27, 517.63) (-463.32, 101.21) 

 Width 622.90 564.53 

(50,50) Confidence interval (-102.11, 339.73) (-162.03, 247.10) 

 Width 441.84 409.13 

 

 

7. Conclusions 

In this study, the confidence interval for the difference between the SDs of normal distributions was derived using 

MOVER. It was improved using the estimators of the population SDs via RSS instead of SRS. Since a theoretical 

comparison is not possible, a simulation study was conducted to compare the performance of these confidence 

intervals. The empirical coverage probabilities and the average lengths of the confidence intervals based on RSS and 

SRS were compared as the criteria to find the best confidence interval. Based on the simulation results, the proposed 

confidence interval based on RSS performed more efficient than the existing one based on SRS in terms of these 

criteria. In addition, the empirical coverage probabilities of both confidence intervals are independent of the values of 

the sample sizes and the SD. On the other hand, the average lengths of both confidence intervals are dependent on both 

of these. In addition, simulation results indicate that the average length of both confidence intervals increased as the 

difference between the SDs increased but decreased as the sample size increased. Overall, our proposed method based 

on RSS instead of SRS improved the coverage probability and provided shorter width confidence intervals. 
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Appendix A: The R code 
sigma.ci <- function(sdx,n,alpha){ 

 k1 <- qchisq(alpha/2,df=n-1) 

 k2 <- qchisq(1-alpha/2,df=n-1) 

s2 <- sdx^2 

 lower <- sqrt(((n-1)*s2)/k2) 

 upper <- sqrt(((n-1)*s2)/k1) 

 output <- cbind(lower,upper) 

 return(output) } 

 

diff.sigma.ci.1 <- function(sdx,sdy,n,m,alpha){ 

cn <- sqrt(2/(n-1))*(gamma(n/2)/gamma((n-1)/2))   

cm <- sqrt(2/(m-1))*(gamma(m/2)/gamma((m-1)/2))   

theta1.hat <- cn*sdx 

theta2.hat <- cm*sdy 

sigma.ci.1 <- sigma.ci(sdx,n,alpha) 

sigma.ci.2 <- sigma.ci(sdy,m,alpha) 

l1 <- sigma.ci.1[1] 

u1 <- sigma.ci.1[2] 

l2 <- sigma.ci.2[1] 

u2 <- sigma.ci.2[2] 

L <- (theta1.hat-theta2.hat)-sqrt(((theta1.hat-l1)^2)+((u2-theta2.hat)^2)) 

U <- (theta1.hat-theta2.hat)+sqrt(((u1-theta1.hat)^2)+((theta2.hat-l2)^2)) 

output <- cbind(L,U) 

return(output) } 

 

diff.sigma.ci.2 <- function(sdx,sdy,n,m,alpha) { 

theta1.hat <- sdx 

theta2.hat <- sdy 

sigma.ci.1 <- sigma.ci(sdx,n,alpha) 

sigma.ci.2 <- sigma.ci(sdy,m,alpha) 

l1 <- sigma.ci.1[1] 

u1 <- sigma.ci.1[2] 

l2 <- sigma.ci.2[1] 

u2 <- sigma.ci.2[2] 

L <- (theta1.hat-theta2.hat)-sqrt(((theta1.hat-l1)^2)+((u2-theta2.hat)^2)) 

U <- (theta1.hat-theta2.hat)+sqrt(((u1-theta1.hat)^2)+((theta2.hat-l2)^2)) 

output <- cbind(L,U) 
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return(output) } 

 

SRS.sampling <- function(X,k,nc) { 

SRSsamp <- sample(X,(k*nc),replace=TRUE) 

SRSstdev <- sd(SRSsamp) 

return(SRSstdev) } 

 

RSS.sampling <- function(X,k,nc) { 

n <- k*nc 

samp    <- vector(length=k) 

ssamp   <- vector(length=k) 

rsobs   <- vector(length=k) 

rscycle <- matrix(nrow=nc,ncol=k) 

 

for(j in c(1:nc)){ 

for(i in c(1:k)){ 

samp <- sample(X,k,replace=TRUE) 

ssamp <- sort(samp) 

rsobs[i] <- ssamp[i] } 

rscycle[j,] <- rsobs 

} 

ID <- seq(1,n,by=1) 

RSdata <- data.frame(ID) 

a <- 1 

for (i in c(1:nc)){ 

for (j in c(1:k)){ 

RSdata$factor[a] <- i 

RSdata$data[a] <- rscycle[i,j] 

a <- a+1 

}} 

# Create a linear model, run a one-way ANOVA, and pull the MST and MSE values 

LinModel <-lm(RSdata$data~RSdata$factor) 

MSE <-anova(LinModel)["Residuals","Mean Sq"] 

MST <-anova(LinModel)["RSdata$factor","Mean Sq"] 

# Calculate Ranked Set Sample Variance and Standard Deviation 

RSSstdev <- sqrt(((k-1)*MST+(k*nc-k+1)*MSE)/(k*nc)) 

 return(RSSstdev) } 

 

main.diff.sigma <- function(M,alpha) { 

n <- c(10,20,30,50,100) 

m <- n 

mux <- 10 

muy <- 10 

sigmax <- c(1,3,5) 

sigmay <- c(1,3,5)  

k <- 5 

temp1 <- rep(0,M) 

temp2 <- rep(0,M) 

len1 <- rep(0,M) 

len2 <- rep(0,M) 

cat("n",'\t',"m",'\t',"sigmaX",'\t',"sigmaY",'\t',"CP1",'\t',"CP2",'\t',"AW1",'\t',"AW2",'\n') 

 for (p in 1:length(n)) { 

  nc <- n[p]/k 

 for (j in 1:length(sigmax)) { 

 for (h in 1:length(sigmay)) { 

  D <- sigmax[j]-sigmay[h] 

 for (i in 1:M) { 

  X <- rnorm(5000,mux,sigmax[j]) 

  Y <- rnorm(5000,muy,sigmay[h]) 

  sd.x.srs  <- SRS.sampling(X,k,nc) 

  sd.y.srs  <- SRS.sampling(Y,k,nc) 

  sd.x.rss  <- RSS.sampling(X,k,nc) 

  sd.y.rss  <- RSS.sampling(Y,k,nc) 

  

# compute CI based on SRS 

ci.1 <- diff.sigma.ci.1(sd.x.srs,sd.y.srs,n[p],m[p],alpha) 

# compute CI based RSS 

  ci.2 <- diff.sigma.ci.2(sd.x.rss,sd.y.rss,n[p],m[p],alpha) 

  low.ci1 <- ci.1[1] 

  up.ci1  <- ci.1[2] 

  low.ci2 <- ci.2[1] 

  up.ci2  <- ci.2[2] 

  if ((D>=low.ci1) & (D<=up.ci1)) {temp1[i] <- 1} 

  else { temp1[i] <- 0} 

  if ((D>=low.ci2) & (D<=up.ci2)) {temp2[i] <- 1} 

  else { temp2[i] <- 0} 



Wararit Panichkitkosolkul, J. Sci and Tech Vol. 12 No. 1 (2020) p. 29-40 

 

 

 39 

  len1[i] <- up.ci1-low.ci1 

  len2[i] <- up.ci2-low.ci2 

 }  

cov1 <- mean(temp1) 

cov2 <- mean(temp2) 

avlen1 <- mean(len1) 

avlen2 <- mean(len2) 

cat(n[p],'\t',m[p],'\t',sigmax[j],'\t',sigmay[h],'\t',cov1,'\t',cov2,'\t',avlen1,'\t',avlen2, 

'\n') 

 }  

 }  

 }  

} 

# This is an example that will run the function 

main.diff.sigma(10000,0.05) 

References 

Albatineh, A. N., Boubakari, I., & Kibria, B. G. (2017). New confidence interval estimator of the signal-to-noise ratio 

based on asymptotic sampling distribution. Communications in Statistics-Theory and Methods, 46(2), 574-590. 

Bonett, D. G. (2006). Approximate confidence interval for standard deviation of nonnormal 

distributions. Computational Statistics & Data Analysis, 50(3), 775-782. 

Cojbasic, V., & Tomovic, A. (2007). Nonparametric confidence intervals for population variance of one sample and the 

difference of variances of two samples. Computational Statistics & Data Analysis, 51(12), 5562-5578. 

Dell, T. R., & Clutter, J. L. (1972). Ranked set sampling theory with order statistics background. Biometrics, 28(2), 

545-555. 

Donner, A., & Zou, G. Y. (2012). Closed-form confidence intervals for functions of the normal mean and standard 

deviation. Statistical Methods in Medical Research, 21(4), 347-359. 

Freund, D. E. (1987). Selecting estimators for the standard deviation of a normal distribution. The American 

Mathematical Monthly, 94(10), 971-975. 

Frost, J., Keller, K., Lowe, J., Skeete, T., Walton, S., Castille, J., & Pal, N. (2013). A note on interval estimation of the 

standard deviation of a gamma population with applications to statistical quality control. Applied Mathematical 

Modelling, 37(4), 2580-2587. 

Goutis, C., & Casella, G. (1991). Improved invariant confidence intervals for a normal variance. The Annals of 

Statistics, 19(4), 2015-2031. 

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. New York: John Wiley & Sons. 

Huang, H. J., & Chen, F. L. (2005). A synthetic control chart for monitoring process dispersion with sample standard 

deviation. Computers & Industrial Engineering, 49(2), 221-240. 

Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and 

Graphical Statistics, 5(3), 299-314. 

Levy, K. J., & Narula, S. C. (1974). Shortest confidence intervals for the ratio of two normal variances. The Canadian 

Journal of Statistics, 2(1), 83-87. 

MacEachern, S. N., Öztürk, Ö., Wolfe, D. A., & Stark, G. V. (2002). A new ranked set sample estimator of 

variance. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(2), 177-188. 

Mahmoudi, M. R., & Mahmoudi, M. (2013). Inference on the ratio of variances of two independent populations. 

Journal of Mathematical Extension, 7(2), 83-91. 

Maravelakis, P. E., & Castagliola, P. (2009). An EWMA chart for monitoring the process standard deviation when 

parameters are estimated. Computational statistics & data analysis, 53(7), 2653-2664. 

McIntyre, G. A. (1952). A method for unbiased selective sampling, using ranked sets. Australian Journal of 

Agricultural Research, 3(4), 385-390. 

Mead, R. (1966). A quick method of estimating the standard deviation. Biometrika, 53(3-4), 559-564. 

Newcombe, R. G. )2016(. MOVER-R confidence intervals for ratios and products of two independently estimated 

quantities. Statistical Methods in Medical Research, 25)5(, 1774-1778. 

Niwitpong, S. (2015). Confidence interval for standard deviation of normal distribution with known coefficients of 

variation. International Journal of Mathematics Trends and Technology, 17(2), 111-118. 

Niwitpong, S., & Kirdwichai, P. (2008). Adjusted Bonett confidence interval for standard deviation of non-normal 

distributions. Thailand Statistician, 6(1), 1-6. 

Phonyiem, W., & Niwitpong, S. (2012). Generalized confidence interval for the difference between normal population 

variances, Far East Journal of Mathematical Sciences, 69(1), 99-110. 

Samawi, H. M. (1999). More efficient Monte Carlo methods obtained by using ranked set simulated 

samples. Communications in Statistics-Simulation and Computation, 28(3), 699-713. 

Samawi, H. M., & Muttlak, H. A. (1996). Estimation of ratio using rank set sampling. Biometrical Journal, 38(6), 753-

764. 



Wararit Panichkitkosolkul, J. of Sci. and Tech Vol. 12 No. 1 (2020) p. 29-40 

 

 

 40 

Sangnawakij, P., & Niwitpong, S. )2017(. Confidence intervals for coefficients of variation in two-parameter 

exponential distributions. Communications in Statistics-Simulation and Computation, 46)8(, 6618-6630. 

Secher, N. J., Djursing, H., Hansen, P. K., Lenstrup, C., Eriksen, P. S., Thomsen, B. L., & Keiding, N. (1987). 

Estimation of fetal weight in the third trimester by ultrasound. European Journal of Obstetrics & Gynecology and 

Reproductive Biology, 24(1), 1-11. 

Shorrock, G. (1990). Improved confidence intervals for a normal variance. The Annals of Statistics, 18(2), 972-980. 

Singh, H. P., Saxena, S., & Espejo, M. R. (2004). Estimation of standard deviation in normal parent by shrinkage 

towards an interval. Journal of Statistical Planning and Inference, 126(2), 479-493. 

Stokes, S. L. (1980). Estimation of variance using judgment ordered ranked set samples. Biometrics, 36(1), 35-42. 

Takahasi, K., & Wakimoto, K. (1968). On unbiased estimates of the population mean based on the sample stratified by 

means of ordering. Annals of the institute of statistical mathematics, 20(1), 1-31. 

Tate, R. F., & Klett, G. W. (1959). Optimal confidence intervals for the variance of a normal distribution. Journal of the 

American statistical Association, 54(287), 674-682. 

Tatum, L. G. (1997). Robust estimation of the process standard deviation for control charts. Technometrics, 39(2), 127-

141. 

Thangjai, W., & Niwitpong, S. )2019(. Confidence intervals for the signal-to-noise ratio and difference of signal-to-

noise ratios of log-normal distributions. Stats, 2)1(, 164-173. 

Tsai, T. R., & Wu, S. J. (2008). Adjusted weighted standard deviation R chart for skewed distributions. Brazilian 

Journal of Probability and Statistics, 22(1), 9-22. 

Zou, G. Y., Huang, W., & Zhang, X. )2009(. A note on confidence interval estimation for a linear function of binomial 

proportions. Computational Statistics & Data Analysis, 53)4(, 1080-1085. 

 

 

 

 


