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Abstract 
Maximum shear stress intensity for nearly circular cracks subjected to equal and 
opposite shear stresses are considered. A hypersingular integral equation containing 
the crack opening displacement is formulated. Conformal mapping technique is 
employed to transform the obtained hypersingular equation into a similar equation 
over a circular crack. A suitable collocation points are chosen to reduce the 
hypersingular integral equation into a system of linear equations. Numerical solution 
of the linear equations and the corresponding maximum shear intensity is obtained 
and presented graphically. Our results seem to agree with the existing asymptotic 
solution.  
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1. INTRODUCTION 
 
The solution of plane cracks of arbitrary shape inside an isotropic elastic medium has 
become very interesting and important topic in fracture mechanic. Different 
approaches have been used by researchers in dealing with the plane crack problems.  
Mastrojannis et al. [1] formulated the plane crack problem to the solution of a system 
of two dimensional Fredholm integral equations and numerical solution for tensile 
mode stress intensity factor is obtained. Singh and Danyluk [2] extended Kassir’s 
work [3,4] in finding the stress intensity factor for coplanar rectangular shaped crack 
subject to normal loading. Ioakimidis [5] derived a hypersingular integral equation 
for a flat crack subject to tensile pressure.  Qin and Tang [6,7] derived a set of 
hypersingular integral equation for a flat crack subject to arbitrary loads in three 
dimensional elasticity using Somigliana formula and finite part integral while a 
complex hypersingular integral equation was suggested by Linkov and Mogilevskaya 
[8] to solve the elastic plane problem. Martin [9,10] applied the hypersingular 
integral equation to solve the crack problems subject to normal and shear loading, 
respectively and Chen el at. [11] used the hypersingular integral equation to solve the 
penny shaped crack problem. Theotokoglou [12] applied the hypersingular boundary 
integral equation method to solve the plane crack in infinite three dimensional bodies 
under shear loading.  
  
 Other approaches are perturbation method by Rice and Gao [13,14], variant 
formula by Borodachev [15,16] and Frechet derivative of some nonlinear operation 
[15].  In this study, the hypersingular integral equation approach is used to compute 
the maximum shear stress intensity for a nerly circular crack and we compare our 
computational result with Gao’s [17].  
 
 
2. PROBLEM FORMULATION 
 
Consider a three dimensional infinite, homogenous, elastic and isotropic solid body 
containing a flat circular crack,   located on the Cartesian coordinate ),,( zyx with 
origin O and   lies in the plane 0z . Let the radious of the crack,   be   and 

   0,0:),( rr  . Assume that the stress at infinity and the body 
force are absent. Now, equal and opposite shear stresses in the X directions, 

),( yxq are applied to the crack plane and on the planes, the shear stress component is 
given by  

 ),(
1

yxq
v xxz 


  

where   is the Possion’s ratio and  is the shear modulus. Adopted the 
Sogmigliana formula [18], followed by integration by part and making use of the 
relationship of Cauchy principle value and hypersingular equation [20], then, the 
plane crack problem subject to shear loading is given as  [10] 
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(1) where   denotes the crack domain with boundary   , ),( yxw is the unknown 
crack opening displacement, the over bar denote complex conjugation with respect to 

j complex, with 1j , R   is defined as  

 222 )()( oo yyxxR   

and the angle   is 
  cosRxx o  and  sinRyy o  

Equation (1) is solved subjected to 0),( yxw  on  . The notation of  SH . in front 
of the integral sign on the left hand side of equation (1) should be interpreted as 
Hadamard finite part integral [21].  
 
 
3. NEARLY CIRCULAR CRACK 
 
Assume that  is an arbitrary shaped crack with smooth boundary with respect to the 
origin O ,  such that  is written as 
    )(0:),( rr   
where the boundary of  ,  is given by )(r . Next, let the polar coordinate 

defined as  ise   where 1 , hence,  the unit disc D  is given by  

    ,10:),( ssD   
Employed the properties of Rieman mapping theorem,   is mapped onto the unit 
disc, D  using )(afz   where  

 2)(  cf                
(3) 

The domain is circular if 0c  and as 12 c  , a cusp developed.  

Substitution equation (3) into (2) gives [16] : 
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(4) 
 
 
where 0 S  , ),()1(

oK   and ),()2(
oK   are Cauchy-type  and weakly 

singular  kernel [18]  
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  and  are defined as  i
o Se   and  ieff )()( ''   , respectively. The 

notation C. P. is denoted as Cauchy Princinple value integral. The hypersingular 
integral equation over a circular disc D  is to be solved subject to 0W  on 1s  .  
Now, write W  as   

 ),(),(
,

 sYWW
kn

n
k

n
k              

(5) 
where  

  jn
n

k
nn

k esCssY )1(),( 22
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12 


            (6) 

and 
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(7) 
such that the relationship of these two function is  
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where ij  is the Kroneker delta and  
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Both functions ),( sLm
h  and ),( sY m

k  have square-root zeros at 1s . 

Define 
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Subsitute equation (5) into (4) and multiply with equation (6) and perform 
integrateation over  using the relationship of (8) leads to 
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and  
 ),(3),()2(),( )2()1(

ooo vkKvH   . 

In (9) , we have used the following notation : 
 ))sin(,cos()(),,( ooooooooo ssQQs    and  dsdsd oo    

 
Equation (9) is a system of linear equations and is to be solved for the 

coefficients, n
kW , which will be  used later in finding the maximum shear stress 

intensity. The integration in (9) are all regular, solving them should give no much 
difficulties. Here, we have used the Gaussian quadrature and trapezoidal formulas for 
the radial and angular direction, with the appropriate choice of collocation points 

),( s  and ),( oos   , respectively.  
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4. MAXIMUM SHEAR STRESS INTENSITY FACTOR 
 
The maximum shear stress intensity factor is defined as [17] 

 2
3

2
2 )]([)]([)(  KKK           

(10) 
where )(2 K  and )(3 K  are shear and tearing modes stress intensity factor, 

respectively. The stress intensity factor is defines as 
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where jT  is constant,  
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5. NUMERICAL RESULT 
 
Numerical calculation have been carried out and shows that our numerical scheme 
converges rapidly with only a small value of N . 
 
Table 1: Numerical convergence maximum stress intensity factor 21.0)(  f  
N  )00.0(K  

)
4

(2


K  )

2
(


K  )
4

3
(


K  
)(K  

0 1.1397E-06 9.7723E-07 8.1972E-07 1.0053E-06 1.1862E-06 
1 0.0000E+0000 0.0000E+0000 1.4571E-06 0.0000E+0000 0.0000E+0000
2 3.0662E-07 5.0149E-26 1.8584E-06 4.6429E-25 3.1914E-07 
3 1.2477 1.0551 0.8555 1.0137 1.1790 
4 1.2477 1.0551 0.8555 1.0137 1.1790 
5  1.0551 0.8555 1.0137  
6   0.8555   
 
Figure 1, 2 and 3 shows that the variations of  )(K  against  for 001.0c , 

01.0c   and 1.0c , respectively. It can be seen that the maximum shear stress 
intensity has local extremal value when the crack front is at 1)cos(   or 

1)sin(  .  
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Figure 1: The maximum shear stress intensity for 2001.0)(  f . 
 
 

 
 

Figure 2: The maximum shear stress intensity for 201.0)(  f . 
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Figure 3: The maximum shear stress intensity for 21.0)(  f . 
 
 
6. CONCLUSION 
 
In this study, a hypersingular integral equation for crack problem subject to shear 
loading is formulated. Then, a nearly circular crack is mapped conformally onto a 
unit circle where the equation is transformed into a similar hypersingular integral 
equation over a circular crack, which enable us make use of the formula obtained by 
Krenk [22].  By choosing the appropriate collocation points, this equation is reduced 
into a system of linear equations and solved for the unknown coefficients, which are 
later used in finding the maximum shear stress intensity.  The maximum shear stress 
intensity for the mentioned crack subject to shear load presented graphically. Our 
result seems to agree with the previous work by Gao [17].  
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