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1. Introduction

The understanding of Internet traffic modeling helps in finding probabilistic processes to represent the pattern or

behavior of any network traffic. Following [1], self-similarity can be described mathematically as an incremental 

process  whose average in non-overlapped blocks of size  is i.e;

. (1) 

Then  is self-similar if  is approximately ;  which is in fact equivalent to; 

. (2) 

where  is the scale parameter and H is the Hurst parameter. For instance, when  process  and 

process  have the same distribution without any decay. The Hurst parameter,  is used to measure the burstiness of 

Internet traffic process, where 0.5 < H >1 indicates that a process is self-similar or otherwise. 

Abstract: Modeling Internet traffic data with the inherent condition of concurrent arrival of packets requires the 

use of heavy-tailed distributions. In this paper, we present log-normal distribution as a suitable heavy-tailed 

distribution for modeling self-similar Internet arrival process. Specifically, we developed its approximate 

performance measures for large buffer size. Results using the simulated data confirm the adequacy of the proposed 

model. 
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2. The Internet Traffic Model

R. Zheng et. al. proposed a stochastic resource scheduling framework for real-time in mobile cloud networks to

pre-allocate resources using bilayer dynamic Markov decision processes [2]; G.M. Goerg described a bi-jective 

transformation to simulate heavy-tailed versions of arbitrary random variables, X for modeling the Internet traffic data 

[3]. The simulation was based on, 𝑋, being Gaussian which reduces to Tukey’s ℎ distribution but X ,does not 

adequately provide a self-similar process that  can be applied to any other distributions apart from the distribution 

generated in the transformation; [4] observed that in modeling the Internet traffic, researchers are contemplating of 

changing Poisson process with another distribution in form of Compound Poisson Process, Markov Modulated Poisson 

Process or use of Pareto model with its facility to cater for burstiness to track actual traffic characteristics. These 

approaches are practically inadequate for a self-similar Internet data analyses. 

3. Distribution of Packets in the System in a G/M/1 Traffic

The  queue is a single-server queue, where the arrivals process is general and the service process has an 

exponential distribution. Request-packets arrive individually and their inter-arrival times are independently and 

identically distributed. [5] gave the stationary distribution  of packets in a  traffic as; 

. (3) 

Where  is interpreted as the traffic intensity and it is computed from the relation given below; 

. (4) 

Where  is the laplace transform of the arrival process evaluated at  and . 

3.1   G/M/1 where G is Lognormal 

The probability density function (PDF) of Log-normal distributed variable T with mean  variance  as 

described by [6] is given as: 

; .  (5) 

Lemma 1:  If the random variable t is log-normally distributed with mean  variance , then  has a 

normal distribution with mean  variance . 

Since there exist no close form for the Laplace transform of the lognormal distribution, in this paper, we 

approximate it by using Laplace transform of the normal distribution. The most important thing is to transform the 

original inter-arrival times observed to normal by obtaining its natural logarithm before applying the model proposed in 

this paper. 

Thus, the Laplace transform  of the normal distribution [7] is; 

 . (6) 

Now using lemma 1, the Laplace transform of log of lognormal random variable  is (4). Thus, we derive; 

. (7) 
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In this paper, using numerical approximation beginning the iterative process with  [5], the successive 

iteration is, 

(8) 

We can define the optimal traffic intensity as  at final iterations in a  where G is lognormal. Once  is 

obtained, in this paper, the specific derived approximations are obtain as follow. 

The corresponding distribution of packets in the system is; 

(9) 

Therefore, the distribution of packets in the system is; 

. (10) 

The probability of having packets in the system often interpreted as blocking probability is; 

. (11) 

In the same line, the optimal buffer size  given  is; 

    .  (12) 

The above derivation indicate a close link with the  traffic with intensity parameter, , the mean number in 

the system for   [8] is ;  where . 

Thus, in this paper by analogy, the mean number in the system for  where the inter-arrival time 

distribution is lognormal is;  

 . (13) 

Similarly, the derived mean number on the traffic is ; where 

. (14) 

Since there exist close association between  and  traffic, the only difference is the utilization factor, 

which in  traffic is . The distribution of time spent in   is given below as; 

. (15) 

While the distribution of time spent on the traffic is; 

. (16) 

Now, assuming lognormal distribution as the inter-arrival distribution where it has been derived earlier in this paper 

that  . The corresponding distributions of time spent in the system and on the traffic as derived in this paper are; 
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 .  (17) 

 

And, 

 

 . (18) 

 

It is obvious that the above distributions follow exponential distribution with parameter . Thus, the derived 

mean times in the system and on the traffic in this paper are; 

 

 .  (19) 

 

And, 

 

 .  (20) 

 

 

4. Simulation Study 

Self-similar arrival time  and exponential distributed transmission time  were first generated using packages 

fArma and stat respectively in R. Then using successive random addition method, the performance (U, L, Lq, W & 

Wq) of the self-similar traffic were observed and saved at time t. The Empirical performance measures (U, L, Lq, W & 

Wq) for the traffic model G/M/1 when G is Lognormal were recorded using package arqas in R. The theoretical 

performance of the models for the distribution Lognormal were obtained using (8), (13), (14), (19) and (20). 

The parameters used for the simulation are; 

i. Self-similarity level H: 0.6, 0.7, 0.8 and 0.9 indicating low through high self-similar traffic. 

ii. Traffic intensity;  indicating low and heavy traffic. 

 

4.1   Simulation Results 

In this sub-section, we present the results of the empirical and theoretical performances of the proposed traffic models 

vis-a-vis true self-similar traffic and the standard  traffic model on the simulated network data as shown in 

Table 1-4 and Fig. 1 and 2. 

 

Table 1 - Performance measures of various empirical and theoretical models when the true traffic intensity is 0.5 

and self-similar indices 0.6 & 0.7. 
 

 

Hurst Index (H) 

 

 

Model 

Performance Measures 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

True Self-similar 

Traffic 
0.4899 0.8564 0.3664 0.0119 0.0051 

M/M/1 

Empirical 
0.4898 0.9574 0.4676 0.0122 0.0060 

M/M/1 

Theoretical 
0.4888 0.9562 0.4674 0.0122 0.0060 

Ln/M/1 

Empirical 
0.4659 0.8203 0.3543 0.0110 0.0047 

Ln/M/1 

Theoretical 
0.4659 0.8725 0.4066 0.0117 0.0054 

 

 

 

 

 

 

True Self-similar 

Traffic 
0.4872 0.7724 0.2853 0.0205 0.0076 

M/M/1 

Empirical 
0.4882 0.9516 0.4633 0.0251 0.0122 

M/M/1 

Theoretical 
0.4872 0.9500 0.4628 0.0251 0.0122 

Ln/M/1 

Empirical 
0.4834 0.6784 0.1949 0.0181 0.0052 

Ln/M/1 

Theoretical 
0.4834 0.9357 0.4523 0.0250 0.0121 

***Note: The proposed model is denoted by Ln/M/1. 
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Table 2 - Performance measures of various empirical and theoretical models when the true traffic intensity is 0.5 

and self-similar indices 0.8 & 0.9. 
 
 

Hurst Index (H) 

 

 

Model 

Performance Measures 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

True Self-similar 

Traffic 

0.4830 0.731 0.2478 0.0427 0.0145 

M/M/1 

Empirical 

0.4839 0.9350 0.4512 0.0545 0.0262 

M/M/1 

Theoretical 

0.4829 

 

0.9342 0.4512 0.0545 0.0264 

Ln/M/1 

Empirical 

0.4816 0.6224 0.1407 0.0364 0.0082 

Ln/M/1 

Theoretical 

0.4816 0.9294 0.4477 0.0544 0.0262 

 

 

 

 

 

 

Self-similar 

Traffic 

0.4904 

 

0.7342 0.2438 0.1142 0.0379 

M/M/1 

Empirical 

0.4917 0.9647 0.4730 0.1495 0.0732 

M/M/1 

Theoretical 

0.4904 0.9622 0.4719 0.1496 0.0733 

Ga/M/1 

Empirical 

0.4906 0.6181 0.1275 0.0961 0.0198 

Ga/M/1 

Theoretical 

0.4904 

 

0.9622 0.4719 0.1497 0.0734 

Ln/M/1 

Empirical 

0.4901 0.6169 0.1267 0.0959 0.0197 

Ln/M/1 

Theoretical 

0.4901 

 

0.9611 0.4710 0.1495 0.0733 

***Note: The proposed model is denoted by Ln/M/1. 

 

Table 3 - Performance measures of various empirical and theoretical models when the true traffic intensity is 0.9 

and self-similar index 0.6. 
 

 

Hurst Index (H) 

 

 

Model 

Performance Measures 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

True Self-similar 

Traffic 

0.8799 

 
6.1694 5.2895 0.0438 0.0376 

M/M/1 

Empirical 

0.8800 

 
7.1521 6.2720 0.0504 0.0442 

M/M/1 

Theoretical 

0.8798 

 
7.3229 6.4430 0.0520 0.0458 

Ln/M/1 

Empirical 

0.9223 

 
11.7449 10.8226 0.0826 0.0760 

Ln/M/1 

Theoretical 

0.9247 

 
12.9748 12.0501 0.0921 0.0856 

***Note: The proposed model is denoted by Ln/M/1. 

 
Table 4 - Performance measures of various empirical and theoretical models when the true traffic intensity is 0.9 

and self-similar index 0.7, 0.8 and 0.9. 
 

 

Hurst Index (H) 

 

 

Model 

Performance Measures 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

True Self-similar 

Traffic 

0.8769 

 
4.7282 3.8512 0.0697 0.0567 

M/M/1 

Empirical 

0.8774 

 
6.9854 6.1080 0.1021 0.0892 

M/M/1 

Theoretical 

0.8769 

 
7.1253 6.2484 0.1050 0.0921 

Ln/M/1 

Empirical 

0.8832 

 
5.0394 4.1562 0.0736 0.0606 

Ln/M/1 

Theoretical 

0.8813 

 
5.0306 4.1493 0.0741 0.0611 

 

 

 

 

 

 

True Self-similar 

Traffic 

0.8870 

 
4.7297 3.8427 0.1479 0.1201 

M/M/1 

Empirical 

0.8873 

 
7.7009 6.8135 0.2386 0.2109 

M/M/1 

Theoretical 

0.8870 

 
7.8477 6.9607 0.2454 0.2176 

Ln/M/1 

Empirical 

0.8895 

 
4.8611 3.9715 0.1507 0.1230 

Ln/M/1 

Theoretical 

0.8883 

 
4.8209 3.9326 0.1507 0.1230 

 True Self-similar 0.8888 4.5723 3.6836 0.3869 0.3117 
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Traffic 

M/M/1 

Empirical 

0.8888 
7.7629 6.8740 0.6511 0.5760 

M/M/1 

Theoretical 

0.8888 
7.9890 7.1002 0.6761 0.6009 

Ln/M/1 

Empirical 

0.8908 
4.5910 3.7002 0.3851 0.3099 

Ln/M/1 

Theoretical 

0.8890 
4.5901 3.7010 0.3884 0.3132 

***Note: The proposed model is denoted by Ln/M/1. 

Fig. 1 - Average Waiting Time in the system (W) at various Hurst level for the G/M/1 traffic models when traffic 

intensity is 0.5. 

Fig. 2 - Average Waiting Time in the system (W) at various Hurst level for the G/M/1 traffic models when traffic 

intensity is 0.9. 

5. Conclusion and Future work
We have derived the approximate performance measures for a G/M/1/K class of Internet traffic model where G is

lognormal for large buffer size (waiting room or bandwidth) K. Expression of various performances were given and 

their relationships to the M/M/1 traffic model were also provided. Adequacy of the proposed model was observed for 

modeling high intensity self-similar traffic induced by self-similar arrivals based on the results of simulated data used. 

The current work can be extended by comparing with other classes of traffic models and heavy tailed distributions 

other than lognormal to provide a final stand on modeling self-similar Internet traffic. 
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