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Abstract 

 
This paper introduces a method of computing functions of trapezoidal fuzzy variable. The method 
is based on the implementation of an unconstrained optimisation technique over the  -cut of 
fuzzy interval. To show the effectiveness of the proposed method, we provide several numerical 
examples in computing the solutions of linear and non-linear fuzzy differential equations. The 
final results showed that the proposed method is capable to generate convex fuzzy solutions on 
time domain.  
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1. INTRODUCTION 
 
In fuzzy set theory, the extension principle has been extensively used in many areas of discipline, 
namely in fuzzy optimisation problem (Shiang-Tai, 2004), fuzzy differential equation (Ma et al., 
1999), fuzzy dynamical system (Ahmad and De Baets, 2009) and many more. Basically, the 
extension principle is the theoretical basis of fuzzy arithmetic, i.e., a process of extending real-
valued functions to functions accepting fuzzy interval as arguments. The idea is very simple, but 
in practice, it is a complex problem.  
 
Recently, Ahmad and Hasan (2011) have proposed an efficient computational method in order to 
compute functions accepting fuzzy interval as arguments. The proposed method is easy to 
implement and can be used in many practical problems. The convexity of fuzzy output is also 
guaranteed. In this paper, we will demonstrate the capability of the proposed method in order to 
approximate the solutions of linear and non-linear fuzzy differential equations.  
 
 
2. THE EXTENSION PRINCIPLE 

 
The extension principle (Zadeh, 1975a, Zadeh, 1975b) becomes an important tool in fuzzy set 
theory and applications. The idea is that each function VUf :  induces another function 

: ( ) ( )f F U F V  defined for each fuzzy set A  in U  by  
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If f  is one to one mapping, we have  
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To demonstrate the extension principle, we consider :f R R  defined by  
 

 32=)( xxf  
 

and the fuzzy interval A R  (a fuzzy set defined on real line) is given by  
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Then from Eq. (2), we can easily obtain : ( ) ( )f F R F R  as follow:  
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Figure 1: (a) The trapezoidal fuzzy interval A ; (b) The output from the extension 
principle. 

 
The graphs of (3) and (4) are depicted in Figs. 1(a) and 1(b), respectively. In general, if f  is non-
monotone function, then the calculation of (1) is not an easy task. This needs a contribution on 
developing an efficient computational algorithm for computing (1).  
 
 
3. THE METHOD 
 

Let ),,,(= dcbaA  be a trapezoidal fuzzy interval. The  -cut of A  is denoted by ],[=][ 21
 aaA  

for (0,1] , where )(=1 abaa   and )(=2 cddb  . First, we discretise   in the form 

nn  <<...<< 110  , where 0=0  and 1=n . The discretised   are equally spaced, that is 

hjj 0= , for nj 0,1,2,...,=  and 0>
1

=
n

h . In this study, h  is called the discretisation 

spacing. After discretisation, we have a set of   with 1)( n  elements:  
 

  .,...,,...,= 0 nj                                                                                          (5) 

 
 This leads to a set of I  with 1)( n  intervals:  
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 For the different  -cuts of A  the following property holds (Möler and Reuter, 2007):  
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 for 12,...,,0,1= nj .  
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Figure  2.  -discretisation of a trapezoidal fuzzy interval (Ahmad and Hasan, 2011). 

 
Since this property holds for all [0,1] , the  -cuts of A  can be constructed as the union of sub-
intervals as shown in the following equation (see Fig. 2):  

 .],[],[],[=][ 2
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Let :f R R  be a continuous function. Given a fuzzy interval A  defined in R . In order to find 

)(= AfB  at each level of j  for nj 0,1,2,...,= , we need to solve the following equations:  
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Then, by using linear spline interpolation we interpolate the desired results ),( 1 j
jb 


 as well as 

),( 2 j
jb 


 to obtain a fuzzy interval B . The next section, we will use this method in order to 

approximate the solution of fuzzy differential equations.  
 
 
4. NUMERICAL EXAMPLES 
 
In this section, we provide two numerical examples of computing the solution of linear and non-
linear fuzzy differential equations. For this purpose, the method proposed in Section 3 will be 
incorporated into the generalised fuzzy Euler method proposed by Ahmad and Hasan (2010).  
 
Example 1 Consider the linear fuzzy differential equation:  
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According to Ahmad et al. (2011), we need to solve the following system of ordinary differential 
equations:  
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 The analytical solutions of (12) are  
 

 ,3/2)(5/2=)( 2
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 .3/2)(11/2=)( 2
2  tety  . 

 
It is clear that  

 )](),([=)]([ 21 tytytY   
 

is the solution of fuzzy differential equation (11). It is illustrated in Fig. 3(a).  
 

 
Figure 3. (a) The exact solution of Example 1; (b) The approximate solution of Example 1 with 

0.02=h  and 50=N . 
 

Using the generalised fuzzy Euler method (Ahmad and Hasan, 2010), the results are shown in Fig. 
3(b). From the graph, we can see that the approximate solution converges to the exact solution. 
The numerical results of exact and approximate solution, and their errors at 0.5=t  are listed in 
Table 1. 
 

Table 1: The numerical results of Example 1 at 0.5=t  
 

  (0.5)1
y  

0.5,1y  
left0.5,E  (0.5)2

y  
0.5,2y  

right0.5,E  

1.0 8.013986 7.830427 0.183559 10.732268 10.496263 0.236004 
0.9 7.742158 7.563843 0.178314 11.004096 10.762847 0.241249 
0.8 7.470330 7.297259 0.173070 11.275924 11.029430 0.246493 
0.7 7.198501 7.030676 0.167825 11.547752 11.296014 0.251738 
0.6 6.926673 6.764092 0.162581 11.819580 11.562598 0.256982 
0.5 6.654845 6.497508 0.157336 12.091409 11.829181 0.262227 
0.4 6.383017 6.230925 0.152091 12.363237 12.095765 0.267472 
0.3 6.111189 5.964341 0.146847 12.635065 12.362348 0.272716 
0.2 5.839360 5.697758 0.141602 12.906893 12.628932 0.277961 
0.1 5.567532 5.431174 0.136358 13.178721 12.895516 0.283205 
0.0 5.295704 5.164590 0.131113 13.450550 13.162099 0.288451 
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Example 2 Consider the non-linear fuzzy differential equation:  
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Since the exact solution of (13) cannot be found analytically, we approximate its solution using 
the generalised fuzzy Euler method (Ahmad and Hasan, 2010). Using the step size 0.04=h  and 

100=N , we obtain the approximate solution of (13) as plotted in Fig. 4(a). From the graph, we 
can see that the approximate solution of (13) is periodic as t  increases. However, if we use the 
conventional fuzzy Euler method (Ma et al., 1999), the approximate solution of (13) is diverging 
as t  increases (see Fig. 4(b)). This shows us that the generalised fuzzy Euler method is capable to 
generate periodic solution on the time domain.  
 

 
Figure 4: (a) The approximate solution of Example 2 using the method proposed by Ahmad and 
Hasan (2010); (b) The approximate solution of Example 2 using the method proposed  by Ma et 

al. (1999). 
 
 

5. CONCLUSIONS 
 
In this paper, we have introduced a method of computing functions of a trapezoidal fuzzy 
variable. The method has two advantages: (a) the convexity of the output is ensured even if f  is a 
non-monotone function; (b) it can be incorporated into any numerical method in order to 
approximate the solution of linear and non-linear fuzzy differential equations. This is a stronger 
requirement since there is no attention has been made, especially in solving non-linear fuzzy 
differential equations.  
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