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1. Introduction 

 

Recent findings reveal that various cancer types 

can be diagnosed using non-clinical approach 

which involves monitoring of the biological 

samples using their genes expression profiles. 

However, this advancement is possible due to 

the enhancement of microarray technology 

which made it possible to observe gene 

expression levels of several gene chips 

concurrently [1, 2]. Several authors have 

discussed the health benefits of the non-clinical 

diagnosis breakthrough, but the major problem 

that still exists is how to adequately identify the 

few subsets of thousands genes whose 

information can be used to reliably classify the 

mRNA samples into their respective biological 

groups. In addition, it has been observed that 

adequacy of any method strongly depends on 

the health problems [3]. 

Several types of machine learning 

algorithms have been proposed to perform the 

task of non-clinical diagnosis mRNA 

(messenger Ribonucleic acid). mRNA samples 

are usually collected one several biological 

features (genes). The resulting data structure 

are of the form 𝑛 ≪ 𝑝, where the number of 

patients 𝑛 is far less than the number of 

biological features. This scenario is often 

termed as High-dimensional data [4]. High-

dimensionality poses serious problem in 

statistical analysis and in-fact when building 

machine learning algorithms. This is because 

most statistical methods require the number of 

patients (equations) to be more than the number 

of attributes (parameters) for a unique solution 

to exist.  

Bayesian procedures are the emerging 

solution to most applications of statistics in the 

recent time. In fact, it has the least error rate in 

theory [5,6]. LDA and QDA are often regarded 

as the Bayesian classifier [2, 7] because they are 

motivated by Bayes theorem.  

Two of the important assumptions of LDA 

and QDA is normality assumption of the feature 

space (𝑥) and also orthogonality of feature 

space [4]. The efficiency or accuracy of LDA 

and QDA classifier strongly relies on these two 

assumptions. The classifiers become unstable 

when the assumptions are not met.    

High-dimensional data usually violates 

these assumptions as in the case of the data used 

in this research. The data do not satisfy the 

normality assumption as well as the 

dimensionality problem often lead to 

multicollinearity. In the light of this, robust 
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methods like Random Forests [8] stochastic 

gradient boosting [9], Bayesian additive 

regression trees [10], Bayesian additive 

regression trees using Bayesian model 

averaging [6]. have been developed. The 

methods are efficient but are computationally 

expensive than the simple LDA and QDA. 

Therefore, in this paper, we developed 

ensemble of LDA and QDA using Bayesian 

model averaging approach in order to increase 

the efficiency of LDA and QDA when 

analysing high-dimensional data. 

 

2. Bayes Classifier 

The foremost Bayesian classification methods 

are linear and quadratic discriminant analysis 

[11]. Specifically, Bayes classifier is defined by 

𝑓𝐶(𝑥) over a random vector X and random 

vector Y where  

        𝑓𝐶(𝑥)  ≡  𝑃𝑟(𝑋 =  𝑥 | 𝑌 =  𝑐)            (1) 

 

denoting the density function of 𝑋 for an 

observation that comes from the Cth class. In 

other words, 𝑓𝐶(𝑥)  is relatively large if there is 

a high probability that an observation in the Cth 

class has 𝑋 ≈  𝑥, and 𝑓𝐶(𝑥)  is small if it is very 

unlikely that an observation in the Cth class has 

𝑋 ≈  𝑥. Then Bayes’ theorem states that; 

                                               

𝑃𝑟(𝑋 =  𝑥 | 𝑌 =  𝑐) =
𝜋𝐶𝑓𝐶(𝑥)

∑ 𝜋𝑙𝑓𝑙(𝑥)𝐶
𝑙=1

           (2) 

 

If we assume x is normally distributed and 

estimate its associated location and scale 

parameter by maximizing the likelihood 

implies we are constructing a Linear 

Discriminant Analysis (LDA) or Quadratic 

Discriminant Analysis (QDA). The classifier 

constructed is LDA if we assuming equality of 

class variance if otherwise its QDA. 

Formally, the discriminant 𝛿𝑐(𝑥) for a 

class c is define as; 

 

                              

𝛿𝑐(𝑥) = 𝑥𝑇Σ−1µ𝐶 −
1

2
𝜇𝐶

𝑇Σ−1µ𝐶 + 𝑙𝑜𝑔𝜋𝑐      (3) 

   

where µ𝐶  is the location mean for class c, and Σ 

is covariance matrix of p predictors for class c. 

(2) is often referred to as LDA since we assume 

class variance are the same across predictors. If 

otherwise we can obtain QDA as: 

 

𝛿𝑐(𝑥) = 𝑥𝑇Σ−1µ𝐶 −
1

2
𝜇𝐶

𝑇Σ𝑐
−1µ𝐶 + 𝑙𝑜𝑔𝜋𝑐          (4) 

The estimates of the  unknown parameters 

µ1 , . . . , µ𝐶, 𝜋1 , . . . , 𝜋𝐶 , and 𝛴 are usually 

estimated via Maximum Likelihood  (MLE,  

[11]) as; 

𝜇̂𝐶 =
1

𝑛𝑐
∑ 𝑥𝑖

𝑛𝑐

𝑖:𝑦𝑖=𝐶

 

Σ̂ =
𝑛𝑐 − 1

𝑛 − 𝐶
∑ Σ̂𝑐

𝐶

𝑐=1

 

 

The estimates obtained are then plugged 

into (3) and (4) to determine the LDA and QDA 

classifier. 

3. Bayesian Model Averaging of LDA 

and QDA 

Given a classification rule 𝛿(𝑥) as earlier 

derived, and its associated prior probability 

𝑃(𝛿), then we can define a posterior density 

𝑃(𝛿𝑘|𝑌) =
𝐿(𝛿𝑘(𝑥))𝑃(𝛿𝑘)

∑ 𝐿(𝛿𝑘(𝑥))𝑃(𝛿𝑘)𝑚
𝑘=1

                       (5) 

as density of all m possible classifiers. Usually, 

what determines classifier k is the subset of 

feature x in the matrix. For each k, there exist r 

subset of x space. 

 Following the earlier work of Clyde on 

Bayesian model averaging in [12]. It was 

derived that under regularized prior 𝑃(𝛿) can 

be approximated with the posterior 𝑃(𝛿𝑘|𝑌) as; 

𝑃(𝛿𝑘|𝑌) =
𝑒𝑥𝑝(−0.5𝐵𝐼𝐶(𝛿𝑘))𝑃(𝛿𝑘)

∑ 𝑒𝑥𝑝(−0.5𝐵𝐼𝐶(𝛿𝑘))𝑃(𝛿𝑘)𝑚
𝑘=1

      (6) 

                       

𝑃(𝛿𝑘|𝑌) =
𝑒𝑥𝑝(−0.5𝐵𝐼𝐶(𝛿𝑘))

∑ 𝑒𝑥𝑝(−0.5𝐵𝐼𝐶(𝛿𝑘))𝑚
𝑘=1

                (7) 

where; 

𝐿(𝛿𝑘(𝑥)) = 𝑒𝑥𝑝(−0.5𝐵𝐼𝐶(𝛿𝑘)) 

𝐵𝐼𝐶(𝛿𝑘) = −2𝑙𝑜𝑔[𝐿(𝛿𝑘(𝑥))] + 𝑝𝑙𝑜𝑔(𝑛) 

After posterior estimation, we can then estimate 

parameter of interest by; 

𝑃[∆|𝑌] = ∑ 𝑃(𝛿𝑘|𝑌)𝑃(∆|𝛿𝑘, 𝑌)

𝑚

𝑘=1
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Specifically, for LDA and QDA, the 

posterior class probabilities are: 

For LDA; 

𝑃[𝑋 = 𝑥|𝑌 = 𝑐] =
∑ 𝑃(𝐿𝐷𝐴|𝑌)𝑃(𝑋 = 𝑥|𝐿𝐷𝐴, 𝑌)𝑚

𝑘=1     (8) 

 

For QDA; 

𝑃[𝑋 = 𝑥|𝑌 = 𝑐] =
∑ 𝑃(𝑄𝐷𝐴|𝑌)𝑃(𝑋 = 𝑥|𝑄𝐷𝐴, 𝑌)𝑚

𝑘=1     (9) 

Equation (8) and (9) correspond to 

proposed methods used in this research. 

4. Data Calibration 

The data employed for this study were obtained 

from microarray Princeton repository 

(http://microarray.princeton.edu/oncology/affy

data/index.html.) on colon cancer. The data  

contained  2000 gene  expression  profiles 

measured  on  62  biological  samples  that  

comprised  40 tumorous tissue samples and  22 

normal tissue samples. Details of the micro-

array experiment that produces the data can be 

found in the works of Alon works in [13]. The 

data were also pre-processed using logarithmic 

transformation to base 10 and zero mean unit 

variance normalization as often done with the 

dataset. We compared the performance of the 

methods BMA-LDA and BMA-QDA with 

LDA, QDA, RF, BART and GBM using the 

class specific and overall performance metrics. 

The metrics used include overall accuracy, 

balance accuracy, sensitivity, specificity, 

negative predictive value, positive predictive 

value, false positive and false negative. The 

metrics are computed based on the confusion 

matrix between 10 folds cross validated test 

samples and the actual class. The confusion 

matrix is presented in Table 1 as observed in 

[14]; 

Table 1 Confusion matrix 

 

True 

Class              

Predicted Class 

 0  1

 1 

Total 

0 

1 

TN FP N 

FN TP P 

Total  N* P* T 

0: Normal, 1: Tumour 

where TN represents True Negative, FP is the 

False Positive, FN represents False Negative 

and TP is the True Positive. Also, N* is the total 

predicted negative and P* represents total 

predicted positive. Similarly, N is the total 

actual negative while P is the total actual 

positive. T represents the total number of 

observation equivalent to; 

𝑇 = 𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁    (10) 

Here negative means normal cells while 

positive means tumour cells.  

Accuracy (ACC): %𝐴𝐶𝐶 = 100 × (
𝑇𝑁+𝑇𝑃

𝑇
) 

 

Sensitivity:%𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 100 × (
𝑇𝑃

𝑃
) 

 

Specificity:%𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 100 × (
𝑇𝑁

𝑁
) 

 

Balance Accuracy (BACC):  

 

%𝐵𝐴𝐶𝐶 =
%𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + %𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

Positive Predictive Value (PPV): 

 

%𝑃𝑃𝑉 = 100 × (
𝑇𝑃

𝑃∗
) 

 

Positive Predictive Value (PPV): 

 

%𝑁𝑃𝑉 = 100 × (
𝑇𝑁

𝑁∗
) 

 

 

False Positive Rate (FPR):  

%𝐹𝑃𝑅 = 100 − %𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 

False Negative Rate (FNR):  

%𝐹𝑁𝑅 = 100 − %𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 
 

Misclassification Error Rate (MER):  

%𝑀𝐸𝑅 = 100 − %𝐴𝐶𝐶 
 

 

 

 

 

 

 

 

 

 

 

http://microarray.princeton.edu/oncology/affydata/index.html
http://microarray.princeton.edu/oncology/affydata/index.html
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5. Results and Discussion 

Table 2 and Table 3 show the results based on 

𝑣 − 𝑓𝑜𝑙𝑑𝑠 cross validation where 𝑣 = 10. The 

overall performance measure using accuracy 

revealed that the most accurate classifier for 

diagnosing colon cancer is either BMA-LDA or 

BMA-QDA. To control class imbalance, we 

computed the balance accuracy which also 

reveals that BMA-LDA or BMA-QDA are the 

most accurate classifiers.  

 

Table 2 Performance measures in (%) for 

BMA-LDA, BMA-QDA, LDA and QDA based 

on average of 10 folds cross validation. 

 

 

Metrics 

Methods 

BMA-LDA BMA-QDA LDA QDA 

sens 96.7 96.7 91.7 53.3 

specs 95.0 95.0 87.5 92.5 

PPV 93.3 93.3 83.3 85.4 

NPV 97.5 97.5 95.5 80.5 

FP 5.0 5.0 12.5 7.5 

FN 3.3 3.3 8.3 46.7 

mer 4.5 4.5 11.2 22.1 

acc 95.5 95.5 88.8 77.9 

BACC 95.8 95.8 89.6 72.9 

 

Table 3 Performance measures in (%) for RF, 

BART and GBM based on average of 10 folds 

cross validation. 

 

 

Metrics 

Methods 

RF BART GBM 

sens 68.3 40.0 76.7 

specs 87.5 90.0 90.0 

PPV 81.7 76.2 85.2 

NPV 85.0 75.2 90.2 

FP 12.5 10.0 10.0 

FN 31.7 60.0 23.3 

mer 19.3 27.4 14.5 

acc 80.7 72.6 85.5 

BACC 77.9 65.0 83.3 

 

The class specific metrics is very important 

when diagnosing cancer. The procedure must 

be highly sensitive for it to be able to detect its 

presence as early as possible. Sensitivity result 

in Table 1 shows that the most sensitive 

classifiers are BMA-LDA and BMA-QDA with 

about 97% sensitivity.  

6. Conclusion 

In this paper, we have presented Bayesian 

model averaging approach of LDA and QDA 

for non-clinical diagnosis of colon cancer. The 

results using the real life dataset indicated that 

BMA-LDA and BMA-QDA are the best in 

terms of overall diagnostic accuracy as well as 

class specific accuracy.  
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