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1. Introduction 

 

Doubly interval censored (DIC) data 

mostly arise in epidemiology study due to the 

natural of disease or the structure of the study 

design. Let 𝑇 be the lifetime of interest, if 𝑉 is 

the initial event time and 𝑊 is the subsequent 

event time, then 𝑉 ∈ (𝑉𝐿, 𝑉𝑅] , 𝑊 ∈ (𝑊𝐿 , 𝑊𝑅] 
and 𝑇 = 𝑊 − 𝑉, with 𝑉𝐿 ≤ 𝑉𝑅  and 𝑊𝐿 ≤ 𝑊𝑅 . 

A special case of DIC data occurs when 𝑉 is 

interval censored (IC) and 𝑊 is right censored 

(RC). In this paper, we named the lifetime as 

doubly interval censored-2 (DIC2) to 

differentiate it from DIC data. The doubly 

interval censored data also includes usual 

interval censored, right censored and 

uncensored (UC) data as special cases.  

The aim of this study is to extend the log 

logistic model to incorporate DIC data and its 

special cases. The log logistic distribution is 

useful to model lifetime in survival analysis 

due to its ability to accommodate 

nonmonotonic hazard function. It is usually 

used to analyze lifetime of cancer patients, see 

[1,2]. 

The analysis of doubly interval censored 

data begins when De Gruttola and Lagakos [3] 

proposed a nonparametric estimation 

procedure based on the Turnbull’s self-

consistency algorithm.  Following that, the 

analysis of doubly interval censored data has 

been studied extensively using nonparametric 

and semiparametric regression approaches. 

Reich et al. [4] proposed that the likelihood 

contribution for a doubly interval censored 

lifetime is  

 

∫ ∫ 𝑓𝑉(𝑣)𝑓𝑇(𝑤 − 𝑣)𝑑𝑤𝑑𝑣
𝑤𝑅

𝑤𝐿

𝑣𝑅

𝑣𝐿

, 

 

where 𝑓𝑉(𝑣) and 𝑓𝑇(𝑡) are density function of 

𝑉 and 𝑇 respectively. They assumed the initial 

event time follows uniform distribution and 

the lifetime of interest follows log normal 

distribution.  

Kiani and Arasan [5] adapted Reich et 

al.’s idea and proposed a parametric model by 

assuming both initial event time and lifetime 

follow exponential distribution. In this paper, 

we follow Kiani and Arasan’s procedure and 

assumed that the initial event time follows 

uniform distribution and lifetime follows log 

logistic distribution.  

Researchers often apply imputation on the 

doubly interval censored data in order to ease 

the estimation process. For instance, midpoint 

imputation on interval censored initial event 

times in [6,7]. Law and Brookmeyer [8] 

pointed out that midpoint imputation is a 

reasonably adequate procedure for interval 

widths of 2 years or less if the median of 

lifetime of interest is 10 years.   

 

 

Abstract:  Doubly interval censored data is defined as elapsed time between two related events that is 

subject to interval or right censoring. In this paper, we extended a parametric model to incorporates doubly 

interval-, interval-, right censored and uncensored lifetime data. We assumed the initial event time follows 

uniform distribution and the lifetime follows the log logistic distribution. The interval censored event times 

are imputed using midpoint of their intervals for ease of the estimation process. The estimation procedure is 

studied at different sample sizes and attendance probabilities using simulated data. Finally, we study the 

Wald method of constructing confidence interval estimates for the parameters of the model. Conclusions 

were drawn based on the coverage probability study. 
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2. The model 
 

We assume the initial event, 𝑉~𝑈(𝑎, 𝑏) 

and the lifetime, 𝑇~𝐿𝐿(𝜆, 𝛾) where 𝜆 is scale 

parameter and 𝛾  is shape parameter. The 

density and survival functions of V are given 

by 

 

𝑓𝑉(𝑣) =
1

𝑏 − 𝑎
, 

 

𝑆𝑉(𝑣) =
𝑏 − 𝑣

𝑏 − 𝑎
, 𝑣 > 0. 

 

The density and survival functions of T are 

given by 

 

𝑓𝑇(𝑡) =
𝑒𝜆𝛾𝑡𝛾−1

(1 + 𝑒𝜆𝑡𝛾)2
, 𝜆 ∈ ℝ, 𝛾 > 0, 𝑡 > 0, 

 

𝑆𝑇(𝑡) =
1

1 + 𝑒𝜆𝑡𝛾
, 𝜆 ∈ ℝ, 𝛾 > 0, 𝑡 > 0. 

 

For the case where both 𝑉  and 𝑊  are 

interval censored, 𝑇  is doubly interval 

censored. We impute both 𝑉 and 𝑊 in order to 

reduce 𝑇 to uncensored data with 𝑡𝑈𝐶𝑖
′ = 𝑤𝑖

′ −

𝑣𝑖
′  for 𝑖  = 1, 2, …, 𝑛  where 𝑣𝑖

′ =

(𝑣𝐿𝑖
+ 𝑣𝑅𝑖

) 2⁄  and 𝑤𝑖
′ = (𝑤𝐿𝑖

+ 𝑤𝑅𝑖
) 2⁄ . The 

likelihood contribution would then be 

𝑓𝑇 (𝑡𝑈𝐶𝑖
′) . For the case where 𝑉  is interval 

censored and 𝑊 is right censored, 𝑇 is doubly 

interval censored-2, we impute 𝑉 to reduce 𝑇 

to right censored data with 𝑡𝑅𝐶𝑖
′ = 𝑤𝐿𝑖

− 𝑣𝑖
′ . 

The likelihood contribution would then be 

𝑆𝑇 (𝑡𝑅𝐶𝑖
′). 

If either 𝑉  or 𝑊  is uncensored while the 

other is interval censored, 𝑇 becomes interval 

censored. The interval (𝑡𝐿𝑖
, 𝑡𝑅𝑖

]  is equal to 

(𝑤𝑖 − 𝑣𝑅𝑖
, 𝑤𝑖 − 𝑣𝐿𝑖

]  when 𝑉  is interval 

censored; and (𝑤𝐿𝑖
− 𝑣𝑖, 𝑤𝑅𝑖

− 𝑣𝑖] when 𝑊  is 

interval censored. For this case, the likelihood 

contribution is ∫ 𝑓𝑇(𝑡)𝑑𝑡
𝑡𝑅𝑖

𝑡𝐿𝑖

= 𝑆𝑇(𝑡𝐿𝑖
) −

𝑆𝑇(𝑡𝑅𝑖
) . If 𝑉  is uncensored and 𝑊  is right 

censored, 𝑇  becomes right censored and 

𝑡𝑅𝐶𝑖 = 𝑤𝐿𝑖
− 𝑣𝑖 . For this case, the likelihood 

contribution would be 𝑆𝑇(𝑡𝑅𝐶𝑖 ). If both 𝑉 and 

𝑊 are uncensored, 𝑇 becomes uncensored and 

𝑡𝑖 = 𝑤𝑖 − 𝑣𝑖 . For this case, the likelihood 

contribution is 𝑓𝑇(𝑡𝑖). 

Let us define the following censoring 

indicator variables, 

𝛿1𝑖 = 1 if 𝑇 is DIC, 0 otherwise; 
𝛿2𝑖 = 1 if 𝑇 is DIC2, 0 otherwise;  
𝛿3𝑖 = 1 if 𝑇 is IC, 0 otherwise; 
𝛿4𝑖 = 1 if 𝑇 is RC, 0 otherwise; 
𝛿5𝑖 = 1 if 𝑇 is UC, 0 otherwise. 

 

Note that 𝛿5𝑖 = 1 − (𝛿1𝑖 + 𝛿2𝑖 + 𝛿3𝑖 + 𝛿4𝑖) . 

Then, the likelihood function for the full 

sample is written as 

 

𝐿(𝜆, 𝛾) = ∏ [𝑓𝑇 (𝑡𝑈𝐶𝑖
′)]

𝛿1𝑖
× [𝑆𝑇 (𝑡𝑅𝐶𝑖

′)]
𝛿2𝑖

𝑛

𝑖=1

× [𝑆𝑇(𝑡𝐿𝑖
) − 𝑆𝑇(𝑡𝑅𝑖

)]
𝛿3𝑖

× [𝑆𝑇(𝑡𝑅𝐶𝑖
)]

𝛿4𝑖

× [𝑓𝑇(𝑡𝑈𝐶𝑖
)]

𝛿5𝑖
. 

 

The first and second partial derivatives of log 

likelihood function ℓ(𝜆, 𝛾) is given as follows, 

 

𝜕ℓ(𝜆,𝛾)

𝜕𝜆
= ∑ {𝛿1𝑖 [1 −

2𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾

1+𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾 ] −𝑛

𝑖=1

𝛿2𝑖 [
𝑒𝜆𝑡

𝑅𝐶𝑖
′

𝛾

1+𝑒𝜆𝑡
𝑅𝐶𝑖

′
𝛾 ] + 𝛿3𝑖 [1 −

𝑒𝜆𝑡𝐿𝑖

𝛾

1+𝑒𝜆𝑡𝐿𝑖

𝛾 −
𝑒𝜆𝑡𝑅𝑖

𝛾

1+𝑒𝜆𝑡𝑅𝑖

𝛾 ] −

𝛿4𝑖 [
𝑒𝜆𝑡𝑅𝐶𝑖

𝛾

1+𝑒𝜆𝑡𝑅𝐶𝑖

𝛾 ] + 𝛿5𝑖 [
2𝑒𝜆𝑡𝑖

𝛾

1+𝑒𝜆𝑡
𝑖
𝛾]} , 

 

𝜕ℓ(𝜆,𝛾)

𝜕𝛾
= ∑ {𝛿1𝑖 [

1

𝛾
+ ln 𝑡𝑈𝐶𝑖

′ −𝑛
𝑖=1

2𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾

ln 𝑡
𝑈𝐶𝑖

′

1+𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾 ] − 𝛿2𝑖 [

𝑒𝜆𝑡
𝑅𝐶𝑖

′
𝛾

ln 𝑡
𝑅𝐶𝑖

′

1+𝑒𝜆𝑡
𝑅𝐶𝑖

′
𝛾 ] +

𝛿3𝑖 [
𝑡𝑅𝑖

𝛾
ln 𝑡𝑅𝑖

−𝑡𝐿𝑖

𝛾
ln 𝑡𝐿𝑖

𝑡𝑅𝑖

𝛾
−𝑡𝐿𝑖

𝛾 −
𝑒𝜆𝑡𝐿𝑖

𝛾
ln 𝑡𝐿𝑖

1+𝑒𝜆𝑡𝐿𝑖

𝛾 −

𝑒𝜆𝑡𝑅𝑖

𝛾
ln 𝑡𝑅𝑖

1+𝑒𝜆𝑡𝑅𝑖

𝛾 ] − 𝛿4𝑖 [
𝑒𝜆𝑡𝑅𝐶𝑖

𝛾
ln 𝑡𝑅𝐶𝑖

1+𝑒𝜆𝑡𝑅𝐶𝑖

𝛾 ] +

𝛿5𝑖 [
1

𝛾
+ ln 𝑡𝑖 −

2𝑒𝜆𝑡𝑖
𝛾

ln 𝑡𝑖

1+𝑒𝜆𝑡𝑖
𝛾 ]} , 

 

𝜕2ℓ(𝜆,𝛾)

𝜕𝜆2 = ∑ − {2𝛿1𝑖 [
𝑒𝜆𝑡

𝑈𝐶𝑖
′

𝛾

(1+𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾

)

2] +𝑛
𝑖=1

𝛿2𝑖 [
𝑒𝜆𝑡

𝑅𝐶𝑖
′

𝛾

(1+𝑒𝜆𝑡
𝑅𝐶𝑖

′
𝛾

)

2] + 𝛿3𝑖 [
𝑒𝜆𝑡𝐿𝑖

𝛾

(1+𝑒𝜆𝑡𝐿𝑖

𝛾
)

2 +
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𝑒𝜆𝑡𝑅𝑖

𝛾

(1+𝑒𝜆𝑡𝑅𝑖

𝛾
)

2] + 𝛿4𝑖 [
𝑒𝜆𝑡𝑅𝐶𝑖

𝛾

(1+𝑒𝜆𝑡𝑅𝐶𝑖

𝛾
)

2] +

2𝛿5𝑖 [
𝑒𝜆𝑡𝑖

𝛾

(1+𝑒𝜆𝑡𝑖
𝛾

)
2]} , 

 

𝜕2ℓ(𝜆,𝛾)

𝜕𝜆𝜕𝛾
= ∑ − {2𝛿1𝑖 [

𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾

ln 𝑡
𝑈𝐶𝑖

′

(1+𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾

)

2 ] +𝑛
𝑖=1

𝛿2𝑖 [
𝑒𝜆𝑡

𝑅𝐶𝑖
′

𝛾
ln 𝑡

𝑅𝐶𝑖
′

(1+𝑒𝜆𝑡
𝑅𝐶𝑖

′
𝛾

)

2 ] + 𝛿3𝑖 [
𝑒𝜆𝑡𝐿𝑖

𝛾
ln 𝑡𝐿𝑖

(1+𝑒𝜆𝑡𝐿𝑖

𝛾
)

2 +

𝑒𝜆𝑡𝑅𝑖

𝛾
ln 𝑡𝑅𝑖

(1+𝑒𝜆𝑡𝑅𝑖

𝛾
)

2] + 𝛿4𝑖 [
𝑒𝜆𝑡𝑅𝐶𝑖

𝛾
ln 𝑡𝑅𝐶𝑖

(1+𝑒𝜆𝑡𝑅𝐶𝑖

𝛾
)

2 ] +

2𝛿5𝑖 [
𝑒𝜆𝑡𝑖

𝛾
ln 𝑡𝑖

(1+𝑒𝜆𝑡𝑖
𝛾

)
2]} , 

 

𝜕2ℓ(𝜆,𝛾)

𝜕𝛾2 = ∑ − {𝛿1𝑖 [
1

𝛾2 +𝑛
𝑖=1

2𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾

(ln 𝑡
𝑈𝐶𝑖

′)
2

(1+𝑒𝜆𝑡
𝑈𝐶𝑖

′
𝛾

)

2 ] + 𝛿2𝑖 [
𝑒𝜆𝑡

𝑅𝐶𝑖
′

𝛾
(ln 𝑡

𝑅𝐶𝑖
′)

2

(1+𝑒𝜆𝑡
𝑅𝐶𝑖

′
𝛾

)

2 ] +

𝛿3𝑖 [
𝑡𝑅𝑖

𝛾
𝑡𝐿𝑖

𝛾
(ln 𝑡𝑅𝑖

−ln 𝑡𝐿𝑖
)

2

(𝑡𝑅𝑖

𝛾
−𝑡𝐿𝑖

𝛾
)

2 +
𝑒𝜆𝑡𝐿𝑖

𝛾
(ln 𝑡𝐿𝑖

)
2

(1+𝑒𝜆𝑡𝐿𝑖

𝛾
)

2 +

𝑒𝜆𝑡𝑅𝑖

𝛾
(ln 𝑡𝑅𝑖

)
2

(1+𝑒𝜆𝑡𝑅𝑖

𝛾
)

2 ] + 𝛿4𝑖 [
𝑒𝜆𝑡𝑅𝐶𝑖

𝛾
(ln 𝑡𝑅𝐶𝑖

)
2

(1+𝑒𝜆𝑡𝑅𝐶𝑖

𝛾
)

2 ] +

𝛿5𝑖 [
1

𝛾2 +
2𝑒𝜆𝑡𝑖

𝛾(ln 𝑡𝑖)2

(1+𝑒𝜆𝑡
𝑖
𝛾

)
2 ]} . 

 

The maximum likelihood estimator (MLE) 

of the parameters is obtained using Newton-

Raphson algorithm. 

 

3. Simulation study 
 

A simulation study using 𝑁  = 1500 

replications of sizes, 𝑛 = 50, 250 and 450 was 

conducted to examine the estimation 

procedure.  The initial event time, 𝑉  is 

assumed to follows 𝑈(0,16) and the lifetime, 

𝑇 is assumed to be log logistically distributed 

with parameters 𝜆 and 𝛾. The values -4.3 and 2 

were chosen as the parameter value of 𝜆 and 𝛾 

respectively. We assumed the study lasted for 

60 months with examination scheduled on 

monthly basis. We further assumed that 

subjects will attend scheduled examination 

with attendance probabilities, 𝑞 = 1.0 and 0.7. 

For each subject in the sample, 𝑣𝑖  is 

simulated from 𝑈(0,16) . A random number 

𝑢1𝑖  is generated from 𝑈(0,1)  to produce 𝑡𝑖 

where 

 

𝑡𝑖 = [𝑒−𝜆 (
1

𝑢1𝑖
− 1)]

1
𝛾⁄

. 

 

Then 𝑤𝑖 = 𝑡𝑖 + 𝑣𝑖  is calculated. In order to 

obtain the intervals (𝑣𝐿𝑖
, 𝑣𝑅𝑖

]  and (𝑤𝐿𝑖
, 𝑤𝑅𝑖

] 

for 𝑣𝑖  and 𝑤𝑖  respectively, we generated a 

sequence of potential examination times and a 

sequence of actual examination times. 

Assuming all subjects will have the same 

sequence of potential examination times, 

𝑃𝐸 = (𝑝𝑒1, 𝑝𝑒2, … , 𝑝𝑒60). Subjects will attend 

examination at each 𝑝𝑒𝑗  with attendance 

probabilities 𝑞 where 𝑗 = 2, 3, …, 60. Hence 

each subject will have their own sequence of 

actual examination times, 𝐴𝐸𝑖 =

(𝑎𝑒𝑖1, 𝑎𝑒𝑖2, … , 𝑎𝑒𝑖ℎ𝑖
)  where 0 ≤ ℎ𝑖 ≤ 60 

which is simulated from the Bernoulli 

distribution with predefined attendance 

probabilities. Following this, we simulated 

random number 𝑢𝑗  from 𝑈(0,1) where 𝑗  = 2, 

3, …, 60 and assume 𝑢1 = 0. In this simulation 

study, we assumed all subject will not miss the 

first scheduled examination time, hence 

𝑎𝑒𝑖1 = 𝑝𝑒1. We defined an indicator variable 

for 𝑝𝑒𝑗’s, 

 

𝐼𝑗 = {
1, if subject attend 𝑝𝑒𝑗 (𝑢𝑗 ≤ 𝑞);

0, if subject miss 𝑝𝑒𝑗 (𝑢𝑗 > 𝑞).    
 

 

Then, ℎ𝑖 = ∑ 𝐼𝑗
60
𝑖=1 . The intervals for 𝑣𝑖 and 𝑤𝑖 

is obtained from 𝐴𝐸𝑖  using the following 

guidelines: 

 

𝑣𝐿𝑖
 = largest element of 𝐴𝐸𝑖 which is less than 

𝑣𝑖; 

𝑣𝑅𝑖
 = smallest element of 𝐴𝐸𝑖 which is greater 

than 𝑣𝑖; 

𝑤𝐿𝑖
 = largest element of 𝐴𝐸𝑖 which is less than 

𝑤𝑖; 

𝑤𝑅𝑖
 = smallest element of 𝐴𝐸𝑖 which is greater 

than 𝑤𝑖. 
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If 𝑤𝑖 > 𝑎𝑒𝑖ℎ𝑖
, then 𝑊  is right censored 

with (𝑎𝑒𝑖ℎ𝑖
, ∞). We further defined two time- 

windows in order to randomly select some 

subjects that are uncensored on 𝑉 or 𝑊 . The 

time-window for uncensored 𝑉 is 

 

[𝐺1𝑖, 𝐺2𝑖] = [𝑣𝐿𝑖
+ (𝑣𝑅𝑖

− 𝑣𝐿𝑖
)𝑢2𝑖 − 𝜖, 𝑣𝐿𝑖

+ (𝑣𝑅𝑖
− 𝑣𝐿𝑖

)𝑢2𝑖 + 𝜖], 

 

and for uncensored 𝑊 is  

 

[𝐺3𝑖, 𝐺4𝑖] = [𝑤𝐿𝑖
+ (𝑤𝑅𝑖

− 𝑤𝐿𝑖
)𝑢3𝑖 − 𝜖, 𝑤𝐿𝑖

+ (𝑤𝑅𝑖
− 𝑤𝐿𝑖

)𝑢3𝑖 + 𝜖], 

 

where 𝜖  = 0.25 and 𝑢2𝑖  and 𝑢3𝑖  are random 

numbers generated from 𝑈(0,1). If both 𝑣𝑖 and 

𝑤𝑖 fall in the same interval, these observations 

are discarded. Two new values of 𝑣𝑖 and 𝑡𝑖 are 

generated to calculate 𝑤𝑖 and repeat the above 

process again. This simulation algorithm will 

yield five possible types of data, 

 

1) Both 𝑉 and 𝑊 are IC, then 𝑇 is DIC; 

2) 𝑉 is IC, 𝑊 is RC, then 𝑇 is DIC2; 

3a) 𝑉 is IC, 𝑊 is UC, then 𝑇 is IC; 

3b) 𝑉 is UC, 𝑊 is IC, then 𝑇 is IC; 

4) 𝑉 is UC, 𝑊 is RC, then 𝑇 is RC; 

5) Both 𝑉 and 𝑊 are UC, then 𝑇 is UC. 

 

Before we proceed to the estimation, we 

imputed 𝑉  and 𝑊  with the midpoint of their 

interval when the lifetime, 𝑇 is doubly interval 

censored or doubly interval censored-2.  

 

3.1 Simulation results 

 

Table 1 shows the proportion of different 

types of data generated with different 

attendance probabilities. From the results, we 

noticed that more doubly interval censored and 

doubly interval censored-2 lifetime data is 

observed at lower attendance probabilities. 

This is due to the fact that chances of 

producing interval censored data on both 𝑉 

and 𝑊 are higher at wider intervals. Also, the 

average percentage of uncensored lifetime data 

increase with an increase in the attendance 

probabilities. This is due to the fact that 

chances of producing uncensored data on both 

𝑉  and 𝑊  are higher at narrower intervals. 

Similar to interval censored lifetime data, the 

chances of producing uncensored data on 

either 𝑉 or 𝑊 are higher at narrower intervals. 

Therefore, more interval censored lifetime data 

is observed at higher attendance probabilities. 

Table 2 gives the bias, standard error (SE) 

and root mean square error (RMSE) of the 

parameter estimates at various sample sizes 

and attendance probabilities. From the results, 

we observed that both bias and standard error 

values are relatively low for all parameter 

estimates. The values of bias, standard error 

and RMSE decrease with an increase in the 

sample size and attendance probabilities. 

Therefore, based on the RMSE of both 

parameter estimates, we concluded that the 

procedure performs well in estimating the 

parameters of the model. In addition, the 

procedure performs better at higher attendance 

probabilities. 

 

Table 1  Average percentages of different 

types of data generated from simulation study 
Attendance probabilities 1.0 0.7 

𝑇 is DIC 30.76 45.15 

𝑇 is DIC2 1.56 1.96 

𝑇 is IC 47.84 42.15 

𝑇 is RC 1.20 0.91 

𝑇 is UC 18.64 9.82 

 

Table 2  Bias, SE and RMSE of the parameter 

estimates 
 Para. est. 𝜆̂ 𝛾̂ 

 Attend. prob. 1.0 0.7 1.0 0.7 

Bias 50 -0.2157 -0.3359 0.0908 0.1345 

  250 -0.1011 -0.2628 0.0401 0.0982 

  450 -0.0796 -0.2455 0.0322 0.0871 

SE 50 0.5847 0.6038 0.2517 0.2584 

  250 0.2550 0.2653 0.1057 0.1106 

  450 0.1860 0.1878 0.0783 0.0790 

RMSE 50 0.6232 0.6909 0.2676 0.2913 

  250 0.2744 0.3734 0.1130 0.1479 

  450 0.2023 0.3091 0.0847 0.1176 

 

4. Confidence interval estimates 

 

Let 𝜽̂  be the vector of MLEs for the 

vector of parameters 𝜽 = (𝜆, 𝛾) . Under the 

mild regularity conditions, 𝜽̂ is asymptotically 

normally distributed with mean 𝜽 and variance 

𝐼(𝜽)−𝟏, where 𝐼(𝜽) is the Fisher information 

matrix evaluated at 𝜽 and is estimated by the 

observed information matrix evaluated at the 

MLEs, 𝑖(𝜽̂). For 𝜆, the estimate of var( 𝜆̂) can 

be obtained from the first diagonal element of 

the inverse of 𝑖(𝜽̂). Then, the 100(1 − 𝛼)% 

CI for 𝜆 could be expressed as 
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(𝜆̂ − 𝑧1−𝛼
2⁄ √var̂(𝜆̂), 𝜆̂ + 𝑧1−𝛼

2⁄ √var̂(𝜆̂)) 

 

where 𝑧1−𝛼
2⁄  is the 1 − 𝛼

2⁄  quantile of the 

standard normal distribution. The Wald 

confidence interval estimates of 𝛾 is obtained 

in the similar manner. 

 

4.1 Coverage probability study 

 

We conducted a coverage probability 

study using 𝑁 = 1500 replications with sample 

sizes 𝑛  = 50, 250 and 450 to compare the 

performance of the Wald confidence interval 

estimates at nominal error probabilities, 𝛼  = 

0.05 and 0.10.  The values of -4.3 and 2 were 

chosen as the parameters of 𝜆  and  𝛾 . Other 

settings are similar to what had previously 

discussed in the simulation study. Following 

that, we calculate the total error probabilities 

by adding the number of times in which the 

interval did not contain the true parameter 

value divided by total replications. The 

estimated total error probability is obtained by 

adding left and right error probability. For 𝜆, 

the left error probability for the Wald intervals 

is 

 

left = # (𝜆̂ − 𝑧1−𝛼
2⁄ √var̂(𝜆̂) > 𝜆 ) 1500⁄ , 

 

and the right error probability is 

 

right = # (𝜆̂ + 𝑧1−𝛼
2⁄ √var̂(𝜆̂) < 𝜆 ) 1500⁄ . 

 

The left and right error probabilities for 𝛾 

are obtained in the similar manner. Following 

Doganaksoy and Schmee [9], the method is 

anticonservative (AC) if the total error 

probability is greater than 𝛼 + 2.58 × SE(𝛼̂). 
The method is conservative (C) if the total 

error probability is less than 𝛼 − 2.58 ×
SE(𝛼̂). The method is asymmetrical (AS) if the 

larger error probability is greater than 1.5 

times the smaller error. The SE(𝛼̂) is defined 

as the standard error of estimated error 

probability and is approximately SE(𝛼̂) =

√𝛼(1 − 𝛼) 𝑁⁄ . 

 

 

 

 

4.2 Results and Discussion 

 

Table 3 gives the summary of the 

performance of Wald intervals. At both 𝛼  = 

0.05 and 0.10, the Wald intervals does not 

produce any anticonservative and conservative 

intervals when the attendance probability is 

1.0, regardless of the sample size. However, 

the intervals produce asymmetrical intervals 

for both parameters, at all sample sizes. When 

the attendance probability is 0.7, the Wald 

intervals does not produce any conservative 

intervals. It produces anticonservative 

intervals for both parameters when 𝑛 > 50. In 

addition, intervals are highly asymmetrical.  

 

Table 3  Summary of the interval estimates at 

𝛼 = 0.05 and 0.10 

𝛼 Attend. prob. AC C AS 

0.05 1.0 0 0 6 

 

0.7 4 0 6 

0.10 1.0 0 0 6 

 

0.7 4 0 6 

 

Table 4 gives the estimated error probabilities 

of the Wald confidence interval estimates. We 

could see that the total error probabilities are 

close to the nominal error probabilities when 

attendance probability is 1.0. The total error 

probabilities are far from the nominal when 

attendance probability is 0.7 and 𝑛 > 50. The 

intervals produced rather asymmetrical 

intervals. Fig. 1 illustrates the behavior of left 

and right error probabilities around 𝛼 2⁄ . 

Ideally, we want the error probabilities to be 

close to the 𝛼 2⁄ . However, we clearly 

observed a substantial deviation from the 𝛼 2⁄  

when attendance probability is 0.7 and 𝑛 > 50. 

 

5. Conclusion 

 

In this paper, the MLE for the parameters 

of the log logistic model in the presence of 

doubly interval-, interval-, right censored and 

uncensored data were obtained. A simulation 

result indicates that the bias, standard error and 

RMSE value decrease when the attendance 

probabilities and sample sizes increase. The 

performance of Wald confidence interval 

estimates for parameters of the model is 

studied. It works well at both nominal levels 

when the attendance probabilities in 1.0. This 

method is known to produce asymmetrical 

intervals [10]. Thus, the Wald intervals might 

not be reliable in making inferences to the 
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parameters of this model. Therefore, other 

confidence interval estimation methods such 

as likelihood ratio, jackknife and bootstrap 

methods for the parameters of the model could 

be investigated in future study. The model 

could easily be extended to include covariate 

information. 

 

Table 4  Estimated error probabilities at 𝛼 = 0.05 and 0.10 

 

    𝛼 = 0.05   𝛼 = 0.10  

Para. q n Left  Right Total   Left  Right Total 

𝜆 1.0 50 0.0113 0.0313 0.0427 
 

0.0247 0.0687 0.0933 

 
 

250 0.0053 0.0480 0.0533 
 

0.0207 0.0907 0.1113 

 

  450 0.0080 0.0487 0.0567   0.0147 0.0913 0.1060 

 

0.7 50 0.0040 0.0447 0.0487 
 

0.0120 0.0860 0.0980 

 
 

250 0.0007 0.1380 0.1387AC 
 

0.0033 0.2280 0.2313AC 

    450 0.0020 0.1993 0.2013AC   0.0020 0.3100 0.3120AC 

𝛾 1.0 50 0.0347 0.0120 0.0467 
 

0.0613 0.0280 0.0893 

 
 

250 0.0407 0.0080 0.0487 
 

0.0800 0.0193 0.0993 

 

  450 0.0427 0.0093 0.0520   0.0847 0.0213 0.1060 

 

0.7 50 0.0400 0.0080 0.0480 
 

0.0813 0.0160 0.0973 

 
 

250 0.1120 0.0013 0.1133AC 
 

0.1947 0.0033 0.1980AC 

    450 0.1440 0.0007 0.1447AC   0.2347 0.0033 0.2380AC 

 
𝛼 Attendance probability = 1.0 Attendance probability = 0.7 

0.05 

 

0.10 

 
Fig. 1 Estimated error probabilities at 𝛼 = 0.05 and 0.10 
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