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Abstract: Higher order ordinary differential equations are typically encountered in engineering, physical science,
biological sciences, and numerous other fields. The analytical solution of the majority of engineering problems
involving higher-order ordinary differential equations is not a simple task. Various numerical techniques have been
proposed for higher-order initial value problems (IVP), but a higher degree of precision is still required. In this
paper, we propose a novel two-step backward differentiation formula in the class of linear multistep schemes with
a higher order of accuracy for solving ordinary differential equations of the fourth order. The proposed method was
created by combining interpolation and collocation techniques with the use of power series as the basis function at
some grid and off-grid locations to generate a hybrid continuous two-step technique. The method's fundamental
properties, such as order, zero stability, error constant, consistency, and convergence, were explored, and the
analysis showed that it is zero stable, consistent and convergent. The developed method is suitable for numerically
integrating linear and nonlinear differential equations of the fourth order. Four Numerical tests are presented to
demonstrate the efficiency and accuracy of the proposed scheme in comparison to some existing block methods.
Based on what has been observed, the numerical results indicate that the proposed scheme is a superior method for
estimating fourth-order problems than the method previously employed, confirming its convergence.

Keywords: Hybrid block scheme, self-starting, backward differentiation formula, fourth-order initial value
problems, numerical estimation

1. Introduction

Numerical methods for solving higher order ordinary differential equations have gained serious attention from
contemporary researchers due to their wide applications. Numerous physical problems encountered in virtually all areas
of applied sciences and engineering are majorly transformed into differential equations, which sometimes takes the
form:

y(iv) _ f(X,y,y', yrr,ym) (1)

where [ is a continuous real valued function containing the third, second and first derivatives combined with the
following initial constraints
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Analytical solutions to such physical problems rarely exist in some cases, therefore, this necessitates the need
for suitable numerical techniques that will provide an estimated solution to higher ordinary differential equations. More
so, initial value problems with respect to higher order Ordinary Differential Equations [ODE] play an essential role in
describing various chemical, physical and biological phenomena such as beam theory, fluid dynamics, electric circuit,
viscous fluid, quantum mechanics and neural networks, especially in the case of fourth order ODEs [1]. Authors in [2,
3] applied some numerical methods such as Homotopy continuation technique and Ostrowski Homotopy continuation
technique for obtaining solutions to nonlinear ODEs. In recent times, numerical solution of higher order ODEs have
been investigated through some kind of numerical techniques by several authors [4, 5, 6, 7, 8, 9]. Usually, the
procedure for solving (1) is to reduce it into a system of first order initial value problems and use a suitable numerical
technique for first order ODEs. Over the years, numerical techniques have been constructed to model solutions of (1),
such techniques include; linear multistep technique, hybrid technique, block technique and Runge-Kutta technique [10,
11, 12, 13]. Recently, few researchers have made tremendous effort in developing block hybrid techniques for solutions
to (1) directly, among them are [1, 14, 15, 16]. However, direct solutions of (1) through the approach of Backward
differentiation formula technique have not been fully utilized, hence this motivates us to develop a hybrid block
backward differentiation formula for computing fourth order ordinary differential equations utilizing power series as a
basis function, to develop an implicit two-step hybrid block method with ten off grid points.

The main concept of this present work is concerned with the implementation of the proposed two-step linear
multistep technique to directly provide estimated solutions for (1) in combination with the initial conditions in (2). The
proposed scheme is designed as self-starting with high order of accuracy to provide an efficient scheme than some
similar schemes available in literature. Some numerical properties in relation to the scheme will be examined for
convergence and stability. It is expected that the scheme will handle fourth order problems efficiently. The introductory
part of this work is discussed in section one, the second section concentrates on derivation of the proposed scheme and
its convergence analysis are presented in the third section. We validate the convergence of the new scheme through
some numerical experimentations in section four and conclusion of the research work is presented in section five.

2. Derivation of the Ten Points Block Scheme

In this section, we derive a numerical estimation to the fourth order ODE in (1) by making use of the power series
as basis function

Y(x)z Z gjx-’ 3)

where d and ¢ are numbers of interpolation and collocation points respectively, x € [xo,xN] ,and g f 's are
unknown coefficients to be determined. The fourth derivatives of (3) is given as:

d+c—1 4

Al _ Py . . =
()= 2 iG-N0-2)(-3)g @

=

Hence equation (1) is equivalent to
d+c-1

Sy, y)= 20 i -1)(-2)(i-3)gx"" )

Jj=0

The unknown coefficients g; 's are obtained from resolving a system of 13 x 13 system of non-linear algebraic

equations in form of KX = B which is generated from
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(6)

By applying inversion of matrix technique, values of g ; 's are obtained and inserted into (7) to obtain the

continuous scheme of the Proposed method as:

y(x)=a,, +a, (x)ym% +a
+ a% (x)ym-%—%

1
4

ta, ('x)ym+

ta, (x)ymg ta, (x)ym%

3

(x)ym-#% + a% (x)ym+8

(7
A Y + Ay (x)ymg ta, (x)ymg
4
3 + a% (x)ym+% +h' B, ('x)fm+2
xm+§ > xm+% > xm+% > xm+% > xm+§ ’ xm+% > X1 s xm+% > xm+% ’

Evaluating (7) at x = x,,,, and its derivatives at x,,

by x ., and x, , gives the sufficient number
m+ m+

3
m+2

schemes are presented below:

134133238254457 565215331

of schemes needed to implement as a block mode. The discrete
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3. Convergence Properties of the Method
In this section, we examine the order and error constant for consistency and also zero stability. According [17],
zero stability and consistency of a linear multistep method implies its convergence.

3.1 Order and Error Constant

Extending the analysis approach of [18] the local truncation error of fourth order equations can be written in the
form:
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k
L[y (x)sh]= (@20, = hroz, ~H w2, = 18w, (B, f,.,))  @0)

Jj=0

we can expand the terms in (20) as a Taylor series about the point x to obtain the expression
L[y(x);h] =coy(x)+chy(x)+..+c,h"y(x)+... (21)

where the constant ¢,,p = 0,1,... are given as follows

k
6=a
=0
k
¢ =Zja‘/.
j=1
1 &,
6 EZ(]) o,
1";1 (22)
A3
C3__Z(]) ;)
35
1 &, e L
! _EZ(]) Q; _Z'BJ
j=1 j=0
6 =0 @t 2
Y A PR TIPS
The numerical method is said to be of order p if ¢, =¢ =...=¢, =0 and Cpia #0 . From the

aforementioned analysis, the block method is of uniform order and the error constant is obtained and presented in the
table below:
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Table 1 - Order and error constants of the method

Equation Order Error constant
(13) 9 -6.2017x 1010
(14) 9 2.5260x 10714
(15) 9 5.6815x 10
(16) 9 -2.4552x 10713
17) 9 -9.7287%x 1071
(18) 9 -2.0830x 10714
(19) 9 -5.5669x 10714
(20) 9 8.5000x 104
2n 9 3.2946x 10714
(22) 9 -4.1699%x 101
(23) 9 3.0376x 107!
(24) 9 -1.6244 % 10710

And hence the method is consistent by virtue of order p =7>1.

3.2 Zero Stability

In order to characterize the method for stability, we rewrite the schemes (8) to (19) as a matrix difference equation
as follows:

PYY =POY  +hyz +huZ, + 0w, +h'QVF, 23)
Where
T
Yw=£y DY DY 5V 1Y 5V VY 00 5V 5 7,yn+zj
— Z n+§ n+5 n+§ n+z n+§ n+z n+5 ’HZ

z—f n n n
8 2 8 4 8 4 2 4

4

T
( Y Y 5V l,ys,yna,yn_l,yn9,y5,y3,yn7,yn_2)

T
f 1af 1,f 39f 1,f 59f 3,fn+1, 9’f 5sf 39f 7,fn+2J
n+ n+ n+ mhg by mbo by
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and P(l) R P(O), Q(l) are matrices whose entries are given by the coefficients of the block method.

Definition: A block linear multistep method is said to be zero stable if the roots (ﬂ,k ) of the difference equation in (23)
as h >0 is |/1k| <1, k =1,...4 and the multiplicity of the roots |ﬂ.k| =l is not greater than the order of the ODE
[17].

The first characteristics polynomial is given as: p(ﬂ,) = |/1P(1) —P(0)| =" (ﬂ, +1). Hence our method is zero
stable.

4. Numerical Experiments, Results and Discussion

Problem 1: We consider the following homogenous linear equation:

P =2y"(1)=y"(1)+2(1); ¥(0)=1,y'(0)=-1, »"(0)=0, y"(0)=1, 0<r<I

Exact solution:

y (t) = (l - i\/gj e%(ﬁﬂ)t + (% + % \/g) e_%t(ﬁ_l) - % \/ge%[ sin [% \/gtj

Table 2 - Comparison of the exact solution and the computed solution for problem 1 (4=0.1)

t

Exact Solution

Computed Results

0.1 0.9001795070863683729033744 0.9001795070863683729332272
0.2 0.8015444630147737801474346 0.8015444630147737804332314
0.3 0.7055988869753891027869434 0.7055988869753891034635962
0.4 0.6142389312914689286895104 0.6142389312914689289607135
0.5 0.5298081433937220262303676 0.5298081433937220237235878
0.6 0.4551605259035641675330235 0.4551605259035641574099734
0.7 0.3937326833438546937618270 0.3937326833438546679099793
0.8 0.349626585274874939064009 0.3496265852748748851633473
0.9 0.327704761421510586558073 0.3277047614215104870919633
1.0 0.333700082480454521066471 0.3337000824804543523292853

Table 3 - Comparison of absolute errors for problem 1 (4=0.1)

t

(1

Proposed method

0.1 3.603x10°"® 2.985x 102
0.2 3.038x10"7 2.858x 107"
0.3 2.649x 1071 6.767x10"
0.4 9.765x 106 2.712%x107%
0.5 2.938x 10715 2.507x 10718
0.6 4.622x 10715 1.012x 10"
0.7 3.555x 10 2.585x 10"
0.8 1.839x 1013 5.390x 107
0.9 5.624x101 9.947x10"7
1.0 1.305x 10712 1.687x 1017

Problem 2. We consider the oscillatory problem:

Y = y(1)+3sin(2r+1);

y(0)=1, y'(0)=1y"(0)1, y"(0)=0, 0<r<1
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Exact solution:

Ly L 1 3 Lgnmle+[ Lot i
y(t)— 5sm(2t+1) 6sm(1)cost+(10cos(1)+4+20 sm(l)je +[2 3cos(l))smt
+(%+%sin(l)—%cos(l)]e‘t

Table 4 - Comparison of the exact solution and the computed solution for problem 2 (4#=0.1)

t Exact Solution Computed Results
0.1 1.105007842811623187927536 1.105007842811623187951979
0.2 1.220128092730374411413894 1.220128092730374411629472
0.3 1.345661071542168229377346 1.345661071542168230060028
0.4 1.482127177330882548657100 1.482127177330882550258303
0.5 1.630280849447188408304729 1.630280849447188411613245
0.6 1.791121672193654017393253 1.791121672193654023430134
0.7 1.965902794734732817499420 1.965902794734732827557497
0.8 2.156137022961170458526985 2.156137022961170473856943
0.9 2.363601107916017626772622 2.363601107916017648602769
1.0 2.590338908970541769003346 2.590338908970541798128341

Table 5 - Comparison of absolute errors for problem 2 (A=0.1)

t 1] Proposed method
0.1 1.177x 108 2.444x 1020
0.2 1.000x 10" 2.156%x10"
0.3 6.110x 10" 6.827%x10"
0.4 2.446 %101 1.601x10'®
0.5 6.679%101 3.309%x 108
0.6 1.186%x 1013 6.037x10'8
0.7 3.406x 101 1.006Xx 1077
0.8 1.200x 10714 1.533%x10"7
0.9 3.100x 10714 2.183%x 107"
1.0 6.537x1071 2.912x107"

Problem 3: We also considered the system of linear fourth-order ODE.

Exact solution:

2=y, (1) =341 y,(0)=0, ¥(0)=0,y/(0)=1, »(0)=2, 0<¢<1
2™ =y (0)=175 3,(0)=0, 35 (0)=115(0)=2, »5(0)=3, 0<t<1

1 . 1 N 1
yl(t):17t——cost—§e’—6s1nt+2e”+ ——+Zx/§ e? 2tcos —~2t |+
2 4 4 4 4

R T RN

v, (1)=31- l—lcost—ée —6s1nt+9e —(—l+7f
2 4 4

44

j B cos[ L i

}
I L CELE N (OISR R
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Table 6 - Comparison of the exact solution and the computed solution for problem 3 (4#=0.1)

t

Exact Solution ), (t )

Computed Results ), (tn )

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0053373361705881012526558

0.0227281853728687592939247

0.0542991542581902639454504
0.102241674099460735843777
0.168797961870536684333329
0.256249792595063460097506
0.366910274865422174252677

0.50311875451691018519534

0.667238888199921522642550
0.861659829232760281676616

0.005337336170588101252487778

0.02272818537286875929285773
0.05429915425819026394237055
0.1022416740994607358378167
0.1687979618705366843291029
0.2562497925950634601070174
0.3669102748654221742980689
0.5031187545169101853094820
0.6672388881999215228176294
0.8616598292327602817759447

Table 7 - Comparison of the exact solution and the computed solution for problem 3 (4#=0.1)

x Exact Solution y, (x) Computed Results y, ( xn)
0.1 0.1104985847621473221798622 0.1104985847621473221780658
0.2 0.2439547606956488032809573 0.2439547606956488032687760
0.3 0.4031568508078514524899636 0.4031568508078514524520482
0.4 0.590555687251049340149771 0.5905556872510493400405476
0.5 0.808097804945184635366405 0.8080978049451846351158607
0.6 1.057060273201680465889844 1.057060273201680465383110
0.7 1.337887389382948267530319 1.337887389382948266628800
0.8 1.650029462637979404344419 1.650029462637979402870930
0.9 1.991783918939935203311369 1.991783918939935201092457
1.0 2.360138961328219279871556 2.360138961328219276693779

Table 8 - Comparison of absolute errors for problem 3 (4=0.1)
x 1] Proposed method

|yl (x)_yl (xn) |y2 (x)_yz(xn)| |yl (x)_yl (xn) |y2 (x)_yz(xn)

0.1 1.177% 10716 8.839x 1010 1.690x 1022 1.796 % 102!
0.2 5.00x 10 5.775x10% 1.073%x 102! 1.218%102°
0.3 1.065%x 10713 9.557x 108 4.285%x102! 3.792x 1020
0.4 1.732%x 10713 2.493 %1077 1.566x102° 1.092x101°
0.5 1.280%x 10! 8.721x 107 4.781%x10%° 2.507%x107"°
0.6 8.137x 10! 1.847%107 1.324%x107"° 5.077%x107"°
0.7 3.901x 1010 1.761x10% 3.205% 10" 9.054%x 10"
0.8 4.131%x10% 1.046%x 10703 6.913%x10"° 1.484 %1018
0.9 4.371%x1008 3.187x10°% 1.323%x1018 2.240% 1018
1.0 2.774 %10 3.187x 10 2.345%x 1078 3.207x10°'8

Problem 4: We also consider the nonlinear fourth-order ODE initial value problem: [10].

Exact solution:
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y(iv) :(yr)2 "4 4t (1_4x+x2); y(O) —1, y'(O) _ l,y"(O) _3, y"’(O) -1

y()c):x2 +e"
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Table 9 - Comparison of the exact solution and the computed solution for problem 4

X Exact Solution y (x) Computed Results y (xn )
0.031250 1.032719969999102670938748 1.032719969999102670975280
0.062500 1.068400708917859429563391 1.068400708917859429846103
0.093750 1.107074202807825848650210 1.107074202807825849655353
0.125000 1.148773453066826316829007 1.148773453066826320056659
0.156250 1.193532508669504402298185 1.193532508669504410658578
0.187500 1.241386499420980710655586 1.241386499420980729237603
0.218750 1.292371670266095154946199 1.292371670266095191390574
0.250000 1.346525416687741484073421 1.346525416687741549360843
0.281250 1.403886321228865568935238 1.403886321228865677743025
0.312500 1.464494191173796362838757 1.464494191173796534346352
Table 10 - Comparison of absolute errors for problem 4
X [19] [10] Proposed method
0.031250 1.149x 10712 1.788x 10710 3.653x 1020
0.062500 1.885x 107! 1.134x 10 2.827x 107"
0.093750 9.780x 10! 1.196 X 107 1.005x 10718
0.125000 3.166x 1010 6.401x 10 3.228x 1018
0.156250 7.909x 1010 2.349 %100 8.360x 1013
0.187500 1.676x10% 6.573x107% 1.858x 10"
0.218750 3.169x10% 1.610x 100 3.644x 10"
0.250000 5.512x10% 3.501x10% 6.529x 10"
0.281250 8.995x 10 6.985x10% 1.088x 10716
0.312500 1.396 x 10% 1.245x 109 1.715x 10716

4.1 Discussion of Results

Problem 1 is a homogeneous linear equation solved by the proposed method, and its exact and numerical solutions
are listed in Table 2. The comparison in Table 3 between the proposed method and that of [1] demonstrates that the
proposed method is more accurate. Table 4 displays the oscillatory problem's exact and numerical solutions, which
differ by a negligible amount. Table 5 demonstrates that the absolute errors of the proposed method are less than those
of [1]. In addition, we considered the system of fourth-order equations in problem 3, whose exact and numerical
solutions are presented in tables 6 and 7. Table 8 displays the corresponding absolute errors relative to [1]. The
Proposed method is then used to solve the nonlinear ODE of fourth order in problem 4. The Proposed method is better
than those of [10], [19] as shown by a comparison of the absolute errors.

5. Conclusion

This paper considers the derivation and implementation of a class of linear multistep method in providing an
estimate solution to general fourth order ordinary differential equations involving a set of initial conditions. The paper
specifically considers a two-step backward differentiation formula with some off-grid points in the derivation process.
Direct implementation of the derived method on general fourth order initial value problems is possible (without
necessarily need to reduce to system of first order equations) due to the self-starting nature of the method. The point
collocation technique adopted in deriving the method enables us to get the continuous form of the method through
which all the necessary schemes required to implement the method directly on fourth order equations are generated to
form the block method. The result of comparing the estimated solutions with the exact solutions exhibited very
negligible errors, thus clearly confirming that the method is not only convergent, but very effective in handling a
general fourth order initial value problems. Further validation of the suitability of our method is carried out by
comparing the absolute errors with the recent methods in the literature as cited therein, which shows that our method is

63



Audu et al., J. of Science and Technology Vol. 14 No. 2 (2022) p. 52-65

superior in terms of accuracy than those methods. In future study, we plan to investigate the application of the proposed
method to partial integro-differential equations and fractional differential problems.
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