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1. Introduction 

Crises can strike at any time and in any place. Nature and humans are the two fundamental forces that cause crises. 

Natural disasters are crises caused by nature when it shows its might, and it also generates crises when its relationship 

with humans deteriorates. And, to preserve its presence and rule nature, humans cause crises through social, economic, 

political, and technological activities. Whatever the causes of crises, they put people under a lot of stress and cause 

emotional reactions (Reynolds et al., 2012). Organizations, like individuals, are prone to crises. Organizational stability, 

function, and goals are all disrupted by crises (Maphanga et al., 2019). Crises can put a lot of strain on an organization's 

financial, physical, and emotional structures, and they can even put the organization's survival in jeopardy.  

Even though crisis is unpleasant and dangerous, it also presents possibilities especially public organisations. Crisis 

teaches a lot about how to prepare for future crises (Parker et al., 2020). It provides opportunities to examine the 

performance of government institutions under duress (Parker et al., 2020). Crisis could undermine the status quo and 

delegitimize the policies and institutions that support it because of their size, uncertainty, and sensitivity (Ansell et al., 

2019). More crucially, from a political standpoint, political learning and change processes that occur at a slower rate 

under normal circumstances may be dramatically accelerated during crisis conditions, since societal and political forces 

frequently overcome usual inertia and opposition to change (Boin et al., 2005).  

In the context of UAE organisations, the causes of crisis is human error which emanate as a result of recklessness of 

an employee in an organization, human error caused many crisis in UAE organization, this human error also emanate as 

Abstract: This paper presents a study on the Factors Influencing the Adoption of Artificial Intelligence (AI) in Crisis 

Management. The research identifies 28 AI usage factors categorized into seven groups: Large-Scale Machine 

Learning, Deep Learning, Reinforcement Learning, Robotics, Computer Vision, Natural Language Processing, and 

Internet of Things. The study conducted a questionnaire survey among 281 employees at the UAE National Crisis 

and Emergency Management Authority, using purposive sampling to assess their opinions regarding the impact of 

these usage factors on the adoption of AI in crisis management. The collected data underwent descriptive analysis to 

determine the ranking of AI usage factors within each of the seven groups. In terms of group rankings, Robotic 

emerged as the top-ranking factor, followed by Reinforcement Learning. Large-Scale Machine Learning occupied 

the next position, succeeded by Natural Language Processing, Deep Learning, Internet of Things, and Computer 

Vision, which held the lowest rank. Furthermore, when examining the correlation between these usage factor groups, 

it was discovered that most of them exhibited strong positive correlations, with correlation coefficients ranging from 

0.634 to 0.934. This indicates that changes in one variable are associated with predictable changes in another variable. 

While this information can be instrumental in understanding relationships and making predictions, it does not 

establish a causal relationship. 
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a result of poor training or inadequate training among employees especially with the invention of new technology that 

lead most of the organizations in UAE (Al-Gamrh et al., 2018). Similarly, poor maintenance in UAE organizations result 

in many crises in the country, maintenance plays a very vital role in making the equipment of an organization safe and 

perfectly work, but poor maintenance resulted in damages and posed threat to the life of many employees in UAE 

organizations (Mirzaei, 2019). Material failure is among the main problems and causes of crisis in UAE organizations, it 

is a failure or breakdown of an object (such as metal, concrete, or plastic) due to various factors that affect the strength, 

stability and chemical composition of the object's structure, many construction organizations faced these problems and 

tremendously lead to a huge crisis in UAE organizations. This issue immensely affects the public organizations in UAE 

(Al-Karaki et al., 2021).  

Based on the described studies, crisis management is one of the areas that is anticipated to be greatly improved with 

the introduction of Artificial Intelligence (AI). AI able to discover correlations in data that are not so visible even to the 

finest human eye. For example, AI can help project managers uncover value and solutions for things like risk estimation 

which is important element in crisis management. In risk management which covers risk identification, analysis, planning, 

monitoring, regulating, and communication, it is possible for AI to extract parametric data, for instance, previous start 

and end dates can be utilised to predict exact timelines for upcoming projects. Numerous AI (AI) technologies, including 

neural networks, fuzzy logic, and machine learning, have been developed to learn data gathered to detect 

interdependencies of causes and effects, compute the likelihood of failure occurring, and evaluate the magnitude of risk 

from both the non-numerical and quantitative perspectives. When faced with uncertainty, AI may be utilised by various 

teams and work environments to track, identify, analyse, and forecast potential risks in terms of protection, quality, 

efficiency, and cost. This capability has been primarily employed for risk detection, evaluation, and prioritising. 

Furthermore, AI-based risk analysis can provide analytical and adaptive insights on risky issues, enabling project 

managers to manage impending risks and choose proactive measures rather than risk mitigation, such as automating 

operational processes on the job, adjusting staff organisation, and monitoring projects' on-time and budget completion 

(Afzal et al., 2019).  

Hence, AI presents exceptional opportunities in crisis management. As the world becomes increasingly 

interconnected and complex, the ability to anticipate, prepare for, and respond to crises swiftly and effectively is 

paramount. AI, with its powerful data analysis and predictive capabilities, has the potential to revolutionize how 

organizations approach crisis management. AI can sift through vast amounts of data, identifying early warning signs and 

patterns that may signify an impending crisis. It can provide real-time monitoring of events, helping organizations 

respond proactively rather than reactively. Additionally, AI-driven risk assessment and predictive modelling can assist 

in the development of comprehensive crisis management strategies. The speed and accuracy of AI in processing 

information are particularly advantageous during high-stress, time-critical situations. AI-driven chatbots and virtual 

assistants can provide immediate responses, guidance, and support to stakeholders, ensuring clear and consistent 

communication during a crisis (Wut et al., 2021).  

Furthermore, AI enhances the resilience of organizations by enabling efficient resource allocation, enhancing 

decision-making processes, and optimizing response efforts. It can also facilitate post-crisis analysis and learning, 

allowing organizations to continually refine their crisis management strategies. While AI offers great promise, it is 

important to acknowledge that human expertise and judgment will remain essential in crisis management. AI should 

complement and assist human decision-makers rather than replace them. The effective integration of AI into crisis 

management will require a strategic approach, continuous learning, and collaboration between human and machine. In 

this ever-evolving landscape of challenges and uncertainties, organizations that harness the capabilities of AI in crisis 

management stand to gain a significant advantage in safeguarding their reputation, resilience, and long-term success 

(Frank, Dalenogare, & Ayala, 2019). 

 

2. Crisis Management 

A crisis is an infrequent but severe event that imperils the survival of an organization. It is characterized by 

uncertainty regarding its origins, consequences, and the necessary actions, often demanding prompt decision-making. 

Defining a crisis is challenging due to the subjectivity of human perspectives (Paraskevas et al., 2019). Nevertheless, 

these definitions share commonalities. Firstly, a crisis is a high-impact incident that can significantly affect individuals 

and an organization's ability to endure. Secondly, crises often manifest suddenly, with minimal forewarning, potentially 

jeopardizing an organization's relationships with its stakeholders (Saroj et al., 2020). Dai et al. (2020) further elaborate 

that a crisis is a substantial event with the potential for negative repercussions, impacting not only the organization but 

also its stakeholders, products, and services. 

Conventional view of crisis management has traditionally focused on extinguishing the immediate crisis, with crisis 

managers closely monitoring the situation as it deteriorates and after the damage has occurred. However, recent shifts in 

thinking have brought about a change in perspective. To effectively address potential future developments in businesses, 

it is essential to always have a well-defined set of strategies and action plans in place. Crisis management now emphasizes 

the importance of anticipation and preparedness for addressing issues that could threaten a company's reputation, 

profitability, or even its very existence. Additionally, managers should be vigilant about potential future events and 
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remain ready to handle unforeseen circumstances as they arise. It is crucial to differentiate between crisis management 

and public relations management (Wut et al., 2021).  

As Larry Smith, director of the Institute for Crisis Management, points out, a significant disruption within an 

organization that garners significant media attention and piques public interest can have far-reaching effects on daily 

operations, potentially disrupting political, legal, financial, and governmental aspects. Furthermore, there are often 

warning signs that indicate potential problems, allowing for proactive measures to mitigate crises rather than being caught 

off guard. This concept bears an intriguing resemblance to the biological model of crises, as described by Bundy et al. 

(2017), where a crisis may follow a sequence like a person's life stages, including birth, growth, maturity, decline, or 

even termination. 

 

3. Application of AI in Crisis Management   

AI is now an integral part of our daily lives and gains more prominence in society, the focus has shifted from merely 

creating intelligent systems to creating intelligent systems that are reliable and mindful of human interaction. Numerous 

factors have driven the AI revolution, with the most significant being the advancement of machine learning. This progress 

has been greatly aided by the availability of cloud computing resources and the widespread collection of data via the 

internet. Machine learning has made significant strides, particularly due to deep learning, a form of adaptive artificial 

neural networks trained through a process called back propagation. Together with these improvements in information 

processing algorithms, there have been major advancements in hardware technology, especially in areas like sensing, 

vision, and object recognition (Wenger, 2014).  

The growth of AI has been made possible by the rise of new platforms and markets that heavily rely on data-driven 

products. Moreover, there are financial incentives to encourage the development of innovative products and the 

exploration of fresh markets. Currently, significant areas of AI research that garner attention include Large-Scale Machine 

Learning Factors, Deep Learning Factors, Reinforce Learning Factors, Robotic Factors, Computer Vision Factors, 

Natural Language Processing Factors, and Internet of Things Factors. It is important to emphasize that the current 

popularity of these areas does not necessarily equate to their greater worth or significance compared to other domains. 

Some of the fields currently in the spotlight may have been less prominent in the past, while others may see a resurgence 

in the future (Gasser et al., 2014; Afzal et al., 2019; Wut et al., 2021). 

 

3.1 Large-Scale Machine Learning 

Large-scale machine learning is a vital part of artificial intelligence (AI) that deals with processing and learning from 

massive datasets. In a world where enormous amounts of data are generated, this field specializes in managing and 

making sense of this information efficiently. It uses powerful algorithms that can work in parallel across many machines, 

making it possible to handle vast amounts of data quickly. Large-scale machine learning finds applications in various 

areas, such as natural language processing, computer vision, fraud detection, and self-driving cars. However, it comes 

with challenges related to data storage, computational resources, and ensuring privacy and security. The potential of 

large-scale machine learning is immense, as it helps AI systems uncover valuable insights from extensive datasets, 

leading to more accurate predictions and recommendations in various industries. (Gasser et al., 2014). 

 

3.2 Deep Learning  

Deep learning is a vital part of AI that has transformed the field by allowing machines to learn complex patterns 

from large datasets automatically. It relies on neural networks inspired by the human brain and excels at handling 

unstructured data like images, audio, and text. One of its key strengths is its ability to represent data effectively, 

eliminating the need for manual feature engineering. Deep learning has various architectures like Convolutional Neural 

Networks (CNNs) for images and Recurrent Neural Networks (RNNs) for sequential data. It thrives on extensive datasets 

and has powered applications like image recognition, speech understanding, and self-driving cars. Despite its progress, 

challenges like model interpretability and computing power persist. Ongoing research in deep learning continues to push 

the boundaries of AI capabilities, making it a fundamental driver of AI advancement. 

 

3.3 Reinforcement Learning 

Reinforcement learning is a pivotal approach that holds the potential to drive AI further into the realm of 

understanding and executing actions in the real world. In stark contrast to classical machine learning, which has 

predominantly focused on uncovering patterns, reinforcement learning places its emphasis on the art of decision-making. 

This technique has served as a model for experience-driven sequential decision-making for many years. However, the 

practical application of reinforcement learning has often been hindered by challenges related to representation and 

scalability. Nonetheless, reinforcement learning has witnessed significant advancements, largely owing to the integration 

of deep learning techniques. A noteworthy example of the transformative power of reinforcement learning is AlphaGo, 

a computer program developed by Google DeepMind. AlphaGo gained international acclaim by defeating a human Go 

champion in a five-game match. Initially, AlphaGo was trained using a database of insights from human experts. 
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However, its performance was greatly enhanced by competing against itself in a substantial number of games, all while 

utilizing reinforcement learning techniques to refine its decision-making processes (Michalski et al., 2013). 

 

3.4 Robotics 

In robotics, significant progress has already been made in the navigation of robots, particularly in static 

environments. The primary focus of current research in this field centres around how to effectively train a robot to interact 

with the external world in a consistent and universally applicable manner. Another noteworthy area of ongoing research 

pertains to manipulation, a fundamental aspect that finds its roots in social contexts. The integration of deep learning, 

which has already revolutionized various AI fields, is now gradually beginning to impact robotics. This delay in adoption 

can be attributed to the relative scarcity of massive labelled datasets for robotic applications compared to other AI 

domains. To address this gap, reinforcement learning emerges as a promising avenue, as it does not rely on labelled data. 

However, it necessitates the development of systems capable of exploring a policy space safely, without committing 

errors that could pose risks to the system or others. The trajectory of robotics is poised for significant advancement, 

largely due to the continual improvement in reliable machine perception technologies. These technologies encompass 

various facets, including computer vision, force sensing, and tactile sensing, and are increasingly driven by machine 

learning techniques, heralding a promising future for the field of robotics (Varakantham et al., 2017). 

 

3.5 Computer Vision 

In contemporary AI, computer vision stands as the most prevalent form of machine perception. The advent of deep 

learning has brought about a transformative impact on this facet of AI. Until just a few years ago, support vector machines 

were the preferred method for most visual classification tasks. However, several converging factors, including the 

availability of substantial computational power, especially in the form of GPUs, the accessibility of vast datasets via the 

internet, and the continuous evolution of neural network algorithms, have collectively driven substantial improvements 

in performance on standard tasks, such as ImageNet classification. A noteworthy milestone is that, for the first time, 

computers have outperformed humans in various broadly defined visual classification tasks, a testament to the significant 

strides made in this field. Currently, substantial research efforts are dedicated to the domain of automatic image and video 

captioning, reflecting the ongoing exploration and advancement in this area (Varakantham et al., 2017). 

 

3.6 Natural Language Processing 

Natural Language Processing (NLP), often integrated with automatic speech recognition, stands as a highly dynamic 

and progressive domain within the field of machine perception. Notably, for major languages endowed with extensive 

data sets, NLP is swiftly transitioning from a specialized field to a mainstream technology. This transformative 

technology not only comprehends human language but also enables meaningful interactions with individuals through 

spoken communication, rather than merely responding to predefined commands. The fusion of NLP with automatic 

speech recognition is catalysing an era where machines can engage in natural, context-aware conversations, marking a 

significant milestone in human-computer interaction and further underscoring the pivotal role of NLP in reshaping the 

way we communicate and interact with technology (Kodratoff et al., 2014). 

 

3.7 Internet of Things (IoT) 

IoT represents a expanding field of study cantered on the idea that a diverse array of devices can be interconnected 

to collect and exchange sensory data. These devices encompass a wide range, including appliances, vehicles, buildings, 

cameras, and various objects. While wireless networking and technology are essential for connecting these devices, it's 

artificial intelligence (AI) that can make sense of the extensive data generated and utilize it for intelligent and practical 

purposes. Currently, these devices communicate using a complex mix of incompatible protocols. Artificial intelligence 

has the potential to streamline and harmonize this intricate network of communication protocols, essentially acting as a 

unifying force (Kodratoff et al., 2014). 

 

4. Factors Influencing Adoption of AI Crisis Management 

Adoption of AI in crisis management is influenced by several key factors. Firstly, the recognition of AI's potential 

to enhance decision-making, improve response times, and provide critical insights during crises is a significant driver. 

Secondly, the availability of advanced AI technologies, including machine learning and natural language processing, 

plays a pivotal role in adoption. Additionally, organizational readiness, including the willingness to invest in AI 

infrastructure and data analytics capabilities, is a key factor. Moreover, the regulatory environment, data privacy 

concerns, and ethical considerations impact the adoption process. Finally, successful pilot projects and the ability to 

demonstrate tangible benefits and return on investment serve as catalysts for broader adoption in crisis management. 

Based on this information, the adoption factors are as in table 1.  
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Table 1 - List of factors influencing adoption of AI crisis management 

Code Large-Scale Machine Learning Factors 

LSM1 
To what extent do you agree that large-scale machine learning can improve the utilization of data for better 

crisis assessment and decision-making? 

LSM2 
How strongly do you agree that real-time data analysis using large-scale machine learning algorithms is 

crucial for timely crisis response? 

LSM3 
To what extent do you agree that large-scale machine learning can provide accurate predictions of crisis 

developments and outcomes? 

LSM4 
How strongly do you agree that large-scale machine learning can optimize the allocation of resources during 

crisis management? 

Code Deep Learning Factors 

DeL1 
To what extent do you agree that deep learning can improve the utilization of data for better crisis assessment 

and decision-making? 

DeL2 
How strongly do you agree that real-time data analysis using deep learning algorithms is crucial for timely 

crisis response? 

DeL3 
To what extent do you agree that deep learning can provide accurate predictions of crisis developments and 

outcomes? 

DeL4 
How strongly do you agree that deep learning can optimize the allocation of resources during crisis 

management? 

Code Reinforce Learning Factors 

ReF1 
To what extent do you agree that reinforcement learning can improve real-time decision-making and policy 

implementation during crises? 

ReF2 
How strongly do you agree that reinforcement learning algorithms can adapt and learn from dynamic crisis 

situations for better response strategies? 

ReF3 
To what extent do you agree that reinforcement learning can optimize the allocation of resources during 

crisis management? 

ReF4 
How strongly do you agree that reinforcement learning can provide accurate predictions of crisis 

developments and outcomes? 

Code Robotic Factors 

RoB1 To what extent do you agree that robotics can automate certain tasks and processes, thereby improving the 

efficiency of crisis response? 

RoB2 How strongly do you agree that robotic systems can operate in hazardous environments, reducing the risk to 

human responders? 

RoB3 To what extent do you agree that robotics can optimize the allocation of resources during crisis management? 

Code Computer Vision Factors 

CoV1 
To what extent do you agree that computer vision can improve the utilization of visual data for better crisis 

assessment and decision-making? 

CoV2 
How strongly do you agree that real-time analysis of visual data using computer vision algorithms is crucial 

for timely crisis response? 

CoV3 
To what extent do you agree that computer vision can optimize the allocation of resources during crisis 

management? 

CoV4 
How strongly do you agree that computer vision can provide accurate predictions of crisis developments and 

outcomes based on visual data analysis? 

Code Natural Language Processing Factors 

NLP1 
To what extent do you agree that NLP can improve the utilization of text data for better crisis assessment 

and decision-making? 

NLP2 
How strongly do you agree that real-time analysis of text data using NLP algorithms is crucial for timely 

crisis response? 

NLP3 
To what extent do you agree that NLP can extract critical information and generate summaries from large 

volumes of text data during crises? 

NLP4 
How strongly do you agree that NLP's ability to process multiple languages is advantageous for global crisis 

management efforts? 

CODE Internet of Things Factors 

IoT1 
To what extent do you agree that IoT can enable real-time data collection and monitoring during crises, 

improving situational awareness? 

IoT2 
How strongly do you agree that IoT sensors and devices can provide valuable insights into environmental 

conditions and hazards? 

IoT3 
To what extent do you agree that IoT data analytics can provide early warning systems and predictive 

capabilities for crisis events? 
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IoT4 
To what extent do you agree that IoT can facilitate the coordination of crisis response efforts through 

automated processes and communication? 

IoT5 
How strongly do you agree that IoT-connected devices can be used to remotely control critical infrastructure 

during crises? 

 

The factors in table 1 were used as the main content in designing a questionnaire that was used to gauge the 

respondents’ opinions in influencing the adoption of AI in crisis management.  

 

5. Results and Analysis 

This study investigates the AI factors affecting crisis management in United Arab Emirates (UAE) organisation. The 

study adopted a quantitative approach of data collection using structured questionnaire and the collected data was 

analysed statistically. The questionnaire was designed based on factors influencing the adoption of AI in crisis 

management. Respondents were required to gauge each of the factors using 5-points Likert scale on the agreeability of 

the factor in influencing the adoption of AI in crisis management. The population of this research is the total number of 

employees in the UAE National Crisis and Emergency Management Authority. A total of 300 questionnaires sets were 

distributed using a purposive sampling technique. However, the study managed to secure 281 valid responses for the 

analysis.  

 

5.1 Normality Test  

Skewness and kurtosis analysis serves the purpose of understanding data distribution characteristics. Skewness 

measures asymmetry in the data, while kurtosis indicates the tailedness and peakedness of the distribution. Thus, 

skewness and kurtosis provide essential insights into the shape and nature of data, facilitating informed decision-making 

and analysis. In assessing a dataset normality, skewness value of 0 and kurtosis value of 3 are typical for a normal 

distribution. Deviations from these values can suggest non-normality (George, D. and Mallery, P., 2018). 

 

Table 2 - Result of skewness and Kurtosis 

Factors’ 

Code 

N Skewness Kurtosis 

Statistic Statistic Std. Error Statistic Std. Error 

LSM1 281 -3.306 .145 10.574 .290 

LSM2 281 -2.614 .145 5.865 .290 

LSM3 281 -2.277 .145 4.327 .290 

LSM4 281 -2.701 .145 6.964 .290 

DeL1 281 -2.701 .145 6.964 .290 

DeL2 281 -2.472 .145 5.566 .290 

DeL3 281 -3.089 .145 9.499 .290 

DeL4 281 -2.751 .145 7.245 .290 

ReF1 281 -2.647 .145 6.646 .290 

ReF2 281 -2.497 .145 5.781 .290 

ReF3 281 -2.717 .145 6.881 .290 

ReF4 281 -2.770 .145 7.221 .290 

RoB1 281 -2.878 .145 8.067 .290 

RoB2 281 -2.472 .145 5.566 .290 

RoB3 281 -2.324 .145 4.580 .290 

CoV1 281 -2.530 .145 5.744 .290 

CoV2 281 -2.906 .145 8.116 .290 

CoV3 281 -2.587 .145 6.080 .290 

CoV4 281 -2.324 .145 4.580 .290 

NLP1 281 -2.424 .145 5.129 .290 

NLP2 281 -2.837 .145 7.654 .290 

NLP3 281 -2.691 .145 6.869 .290 

NLP4 281 -3.219 .145 10.339 .290 

IoT1 281 -3.219 .145 10.339 .290 

IoT2 281 -2.530 .145 5.744 .290 

IoT3 281 -2.770 .145 7.221 .290 

IoT4 281 -2.707 .145 6.816 .290 

IoT5 281 -3.423 .145 11.973 .290 
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Table 2 shows that the skewness values for all the factors are negative, indicating a left-skewed distribution for each 

of them. This suggests that the data for these factors are skewed towards the lower end of the scale, with a longer tail on 

the left side. While the kurtosis values for most factors are well above 3, which is the kurtosis value for a normal 

distribution. This indicates that the distributions of these factors are leptokurtic, meaning they have heavier tails and are 

more peaked compared to a normal distribution (Marshall, G. and Jonker, L., 2010). This indicates that many of the 

factors exhibit similar skewness and kurtosis values, suggesting a degree of consistency in their data distributions. 

 

5.2 Ranking of Factors in Implementation of AI in Crisis Management 

Ranking the AI factors offers valuable insights into how these factors are perceived within their respective domains 

by the survey respondents. The data collected through the questionnaire survey reflects the opinions of participants 

regarding the level of agreement with each AI factor's impact on their organization's crisis management. Respondents 

used a 5-point Likert scale to rate these factors. Descriptive analysis of this data was conducted using SPSS software to 

calculate the mean and standard deviation scores for each factor. Consequently, the ranking is determined by comparing 

the mean scores of each factor with others in its domain. In cases where mean scores are tied, factors with lower standard 

deviation values receive a higher rank (Marshall, G. and Jonker, L., 2010). The resulting rankings for AI factors across 

seven domains are presented in Table 3. 

 

Table 3 - Rank of the AI factors affecting crisis management 

 Group  Factors N Mean Std. Deviation Rank  

 Large-Scale 

Machine 

Learning 

LSM1 281 4.91 .297 1 

 LSM2 281 4.67 .337 2 

 LSM3 281 4.31 .383 4 

 LSM4 281 4.42 .407 3 

 Deep 

Learning 

DeL1 281 4.18 .407 4 

 DeL2 281 4.22 .389 3 

 DeL3 281 4.88 .371 1 

 DeL4 281 4.68 .373 2 

 Reinforce 

Learning 

ReF1 281 4.44 .410 4 

 ReF2 281 4.63 .419 2 

 ReF3 281 4.53 .444 3 

 ReF4 281 4.88 .352 1 

 Robotic RoB1 281 4.87 .365 1 

 RoB2 281 4.55 .389 3 

 RoB3 281 4.75 .380 2 

 Computer 

Vision 

CoV1 281 4.16 .366 3 

 CoV2 281 4.88 .344 1 

 CoV3 281 4.56 .363 2 

 CoV4 281 4.05 .380 4 

 Natural 

Language 

Processing 

NLP1 281 4.25 .373 4 

 NLP2 281 4.48 .348 2 

 NLP3 281 4.36 .376 3 

 NLP4 281 4.90 .327 1 

 Internet of 

Things 

IoT1 281 4.90 .327 1 

 IoT2 281 4.06 .366 5 

 IoT3 281 4.28 .352 3 

 IoT4 281 4.17 .356 4 

 IoT5 281 4.78 .338 2 

 

Table 3 provides a summary of mean scores, standard deviations and rank for various AI factors within different 

groups or domains. For Large-Scale Machine Learning, the factors within this group have mean scores ranging from 4.31 

to 4.91. LSM1 has the highest rank. Deep Learning, the factors in the Deep Learning category have mean scores ranging 

from 4.18 to 4.88. DeL3 has the highest rank. Reinforcement Learning, the factors in the Reinforcement Learning group 

have mean scores ranging from 4.44 to 4.88. ReF4 has the highest rank.  The Robotic group consists of three factors with 

mean scores ranging from 4.55 to 4.87. RoB1 has the highest rank within this group. The Computer Vision group includes 

four factors with mean scores ranging from 4.05 to 4.88. CoV2 has the highest rank within this group. Natural Language 

Processing factors have mean scores ranging from 4.25 to 4.90. NLP4 has the highest rank within this group. Finally, for 
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Internet of Things (IoT): IoT factors have mean scores ranging from 4.06 to 4.90. IoT1 has the highest rank within this 

group.  

 

5.3 Ranking of Factors’ Groups 

In order to establish the ranking of AI factors within each group, the mean values of all the factors in a given group 

are averaged to obtain the group's mean score. Subsequently, these mean scores for each group are compared with one 

another to determine the rankings, as depicted in Figure 1. 

 

 

Fig. 1 - Ranks of AI factors groups 

In Figure 1, the average scores for the seven groups range from 4.41 to 4.72. The findings indicate that Robotic 

achieved the highest ranking, followed by Reinforcement Learning. Large-Scale Machine Learning came next, followed 

by Natural Language Processing, Deep Learning, Internet of Things, and Computer Vision, which was ranked the lowest. 

  

5.4 Correlation of Factors’ Groups 

Pearson correlation analysis is used to understand and quantify linear relationships between seven groups of AI 

factors. It reveals how one variable's changes relate to another's. This analysis also uncovers patterns, confirms 

hypotheses, and aids predictive modelling. Strong correlations can simplify data and spot data quality problems 

(Marshall, G. and Jonker, L., 2010). These insights support data-driven decision-making across different fields, as seen 

in Table 4. 

 

Table 4 - Results of Pearson correlation among the 7 AI groups 

 LSM DeL ReF RoB CoV NLP IoT 

LSM 

Pearson 

Correlation 
1 .863** .864** .773** .793** .829** .784** 

Sig. (2-tailed)  .000 .000 .000 .000 .000 .000 

DeL 

Pearson 

Correlation 
.863** 1 .853** .750** .838** .799** .742** 

Sig. (2-tailed) .000  .000 .000 .000 .000 .000 

ReF 

Pearson 

Correlation 
.864** .853** 1 .839** .856** .854** .764** 

Sig. (2-tailed) .000 .000  .000 .000 .000 .000 

RoB 

Pearson 

Correlation 
.773** .750** .839** 1 .824** .818** .793** 

Sig. (2-tailed) .000 .000 .000  .000 .000 .000 

CoV 

Pearson 

Correlation 
.793** .838** .856** .824** 1 .934** .845** 

Sig. (2-tailed) .000 .000 .000 .000  .000 .000 
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NLP 

Pearson 

Correlation 
.829** .799** .854** .818** .934** 1 .878** 

Sig. (2-tailed) .000 .000 .000 .000 .000  .000 

IoT 

Pearson 

Correlation 
.784** .742** .764** .793** .845** .878** 1 

Sig. (2-tailed) .000 .000 .000 .000 .000 .000  

Table 4 provides Pearson correlation coefficients between seven groups of AI Usage factors. These coefficients 

measure the strength and direction of linear relationships between these variables. All correlations are statistically 

significant at the 0.01 level (2-tailed). Strong positive correlations are observed among most variables, with coefficients 

ranging from .634 to .934. It can be summarised that there are strong and statistically significant relationships among 

many of them. When variables have a strong correlation, it means that changes in one variable are associated with 

predictable changes in the other variable. This information can be valuable in understanding relationships and making 

predictions, but it does not prove relationship. 

 

6. Conclusion 

This paper presents a study on the Factors Influencing the Adoption of Artificial Intelligence (AI) in Crisis 

Management. The research identifies 28 AI usage factors categorized into seven groups: Large-Scale Machine Learning, 

Deep Learning, Reinforcement Learning, Robotics, Computer Vision, Natural Language Processing, and Internet of 

Things. The study conducted a questionnaire survey among employees at the UAE National Crisis and Emergency 

Management Authority, using purposive sampling to assess their opinions regarding the impact of these usage factors on 

the adoption of AI in crisis management. The collected data underwent descriptive analysis to determine the ranking of 

AI usage factors within each of the seven groups. In terms of group rankings, Robotic emerged as the top-ranking factor, 

followed by Reinforcement Learning. Large-Scale Machine Learning occupied the next position, succeeded by Natural 

Language Processing, Deep Learning, Internet of Things, and Computer Vision, which held the lowest rank. Furthermore, 

when examining the correlation between these usage factor groups, it was discovered that most of them exhibited strong 

positive correlations, with correlation coefficients ranging from 0.634 to 0.934. This indicates that changes in one variable 

are associated with predictable changes in another variable. While this information can be instrumental in understanding 

relationships and making predictions, it does not establish a causal relationship. 
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