
INTERNATIONAL JOURNAL OF SUSTAINABLE CONSTRUCTION ENGINEERING AND TECHNOLOGY  

VOL. 14 NO. 4 (2023) 129-141 

   

 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

 

IJSCET 

 

http://publisher.uthm.edu.my/ojs/index.php/ijscet 

ISSN : 2180-3242     e-ISSN : 2600-7959 

International 

Journal of 

Sustainable 

Construction 

Engineering and 

Technology 

   
 

*Corresponding author: aizat@uthm.edu.my 
2023 UTHM Publisher. All rights reserved. 

publisher.uthm.edu.my/ojs/index.php/ijscet 

129 

A Model of Factors Influencing the Implementation of 

Artificial Intelligent in Crisis Management: A Case Study of 

National Crisis and Emergency Management Authority 

(NCEMA)  
 

Ahmed Saeed Ali Rashed Aladawi1, Ahmad Nur Aizat Ahmad1* 
 
1Faculty of Technology Management and Business, 

 Universiti Tun Hussein Onn Malaysia, MALAYSIA 

 

*Corresponding Author 

 

DOI: https://doi.org/10.30880/ijscet.2023.14.04.011 

Received 21 November 2023; Accepted 21 November 2023; Available online 21 November 2023 

 

1. Introduction 

Crises can emerge unpredictably, regardless of location or timing. Crisis can happen from two sources which are due 

to natural occurrences and human actions. Natural disasters exemplify instances where nature exhibits its might, while at 

other times, crises emerge due to the deterioration of the human-nature relationship. To assert dominance over the natural 

world, humans engage in various societal, economic, political, and technological pursuits that can exacerbate these crises. 

Regardless of their origins, crises subject individuals to immense stress, eliciting emotional responses. Organizations are 

not immune to crises; they share vulnerability with individuals. Crises disrupt the stability, functionality, and objectives 

of organizations, exerting significant pressure on their financial, physical, and emotional foundations. In some cases, 

crises can even threaten an organization's survival (Klann, 2018).  

Several tragedies that create crisis such as due to terrorist attacks, hurricanes, tsunamis, and others have exerted a 

significant impact on human society, the economy, and the environment. Then, crisis response which is describe as the 

swift protection of life and property during crisis is aiming to prevent casualties and injuries. Crisis response entails 

Abstract: This paper outlines the development of a structural equation model focusing on factors influencing the 

implementation of AI in crisis management within the UAE National Crisis and Emergency Management Authority. 

Literature has identified 28 factors which are categorized into seven domains that influencing the implementation of 

AI in crisis management for the model. The model was constructed and evaluated using SmartPLS software. The 

model was evaluated at its measurement and structural components. The results revealed that at the measurement 

component, the model met all evaluation criteria. While, at the structural component, the relationship between 'CoV' 

and 'CrM' was statistically significant (T-statistic = 2.633, P-value = 0.009), indicating a robust connection. However, 

the links between 'ReF' and 'CrM' and 'LSM' and 'CrM' were not statistically significant (P-values = 0.999 and 0.949, 

respectively), suggesting limited impact on 'CrM.' Relationships between 'RoB,' 'IoT,' 'DeL,' and 'NLP' with 'CrM' 

showed moderate evidence but lacked statistical significance, possibly due to data limitations. Furthermore, the 

model demonstrated a strong fit, with an R-squared (R²) value of 0.761, explaining approximately 76.1% of the 

variance in "CrM" with the seven independent variables. Lastly, for predictive relevance, the "CrM" as a dependent 

construct displayed a Q² value of 0.608, indicating that around 60.8% of the variation in "CrM" is explained by the 

model beyond random chance, confirming its strong predictive value.  
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immediate action and the coordination of resources, programs, and facilities. This encompasses actions taken both prior 

to the crisis event, such as receiving storm warnings, as well as responding to the immediate aftermath and maintaining 

continuous efforts during the ongoing crisis. The magnitude and complexity of a crisis determine the scale of the response, 

often involving a collaborative effort spanning multiple organizations, including various levels of government, 

businesses, volunteer groups, media outlets, and the general public. These organizations collaborate virtually to save 

lives, safeguard infrastructure and community resources, and restore order to affected areas (Kamil, 2020).  

In pursuit of enhancing crisis management processes, artificial intelligence (AI) plays a major role by utilizing 

robotics for urban search and rescue operations, improving information sharing through ontologies, providing crisis 

responders with tailored queries, and offering multi-agent systems for real-time support and simulated environments (Al-

Karaki et al., 2021). AI endeavours to enhance the effectiveness of crisis response efforts. Hence, this paper presents a 

study on constructing a Partial Least Squares Structural Equation Modelling (PLS-SEM) model that explains the factors 

influencing the utilization of Artificial Intelligence (AI) within Crisis and Emergency Management Organizations. It 

gives an understanding the intricate relationships among various factors that impact the adoption and deployment of AI 

technologies in organizations, where timely and effective response to crises and emergencies is crucial. 

 

2. Crisis Management 

Crisis management aims to control rather than eliminate a crisis, involving quick decision-making based on the best 

available information (Schulman, 1993; Pearson, 2002). It enhances an organization's ability to respond swiftly to crises 

and goes beyond technical decisions, encompassing political and governmental aspects (Lockwood, 2005; McConnell & 

Stark, 2002; Boin et al., 2005). Definitions of crisis management vary: some see it as pre-determined activities for 

responding to disasters, while others view it as rescue, preparedness, and mitigation (Lockwood, 2005; Waugh & Streib, 

2006; Boin et al., 2005; Smith, 2006). Effective crisis management requires coordination, communication, collective 

decision-making, and control responsibilities (Valackiene, 2011), applying management principles in crisis situations 

(Samal et al., 2005).  

The crisis management process includes different stages: Petak (1985) identifies mitigation, preparedness, recovery, 

and response; Fink (1986) divides it into prodromal, acute, chronic, and resolution stages; Augustine (1995) outlines 

prevention, preparation, recognition, containment, resolution, and profiting stages. Burnett (1998) focuses on obstacles 

and defines crisis management as actions to overcome time constraints, control challenges, danger levels, and reaction 

constraints. Boin et al. (2005) emphasize leadership tasks of sense-making, decision-making, meaning-making, 

terminating, and learning. Coombs (2007a) outlines pre-crisis, crisis, and post-crisis stages, encompassing signal 

detection, prevention, crisis preparation, crisis recognition, containment, information distribution, stakeholder 

communication, message development, reputation management, and learning. 

 

2.1 Crisis Management in UAE 

Multiple studies have investigated into crisis management in the UAE, shedding light on various aspects. 

Almarshoodi et al. (2021) expanded the Situational Crisis Communication Theory (SCCT) to mitigate reputational 

threats, finding that employees' positive perceptions may be due to their view of crises as manageable, often attributing 

crisis responsibility to circumstances rather than the UAE police. Thomas et al. (2021) emphasized the need for 

psychological intervention after disasters and highlighted the intersection of public health and disaster risk reduction as 

essential, advocating for new health-disaster risk reduction paradigms in disaster policy. Alketbi (2020) explored the 

impact of cultural difference courses in the Dubai Police Academy, revealing that students faced challenges in cross-

cultural interactions but expressed positive attitudes toward dedicated cultural awareness training. Sahu (2021) 

investigated public policy measures for COVID-19 crisis management, commending the UAE's effective control of the 

virus through centralized decision-making, administrative capacity strengthening, collaboration, successful 

communication, financial resource allocation, and high citizen trust in the government. These studies collectively enrich 

our understanding of crisis management in the UAE. 

 

3. Implementation of AI in Crisis Management 

Understanding the adoption of innovation is critical to assessing the associated dangers for consumers, as highlighted 

by Mohamed et al. (2013). A particular implementation of technology carries a multitude of risks, and evaluating these 

risks requires a thorough comprehension of the implementation process. In today's business landscape, one of the 

foremost risks is the potential loss of market share, a concern raised by Wu et al. (2013). This risk is exacerbated by 

businesses swiftly embracing new technologies without sufficient understanding. The failure to adapt to technological 

advancements is a prevalent issue.  

While the widespread replacement of humans by computers remains a theoretical concern, it underscores the 

importance of people having a grasp of AI technology to maintain corporate effectiveness. This underscores the role of 

a highly advanced technical infrastructure as a potential risk factor for businesses. Kerzner (2013) emphasizes that 

companies face significant risks, including insufficient staff technological expertise, heightened market competition, 



Ahmed Saeed et al., International Journal of Sustainable Construction Engineering and Technology Vol. 14 No. 4 (2023) p. 129-141 

 

 131 

rapid technological shifts, the safeguarding of organizational data privacy, and data security risks, among others, which 

can lead to market failure.  

To effectively manage risks in organizational processes, businesses must employ efficient solutions. AI-related risks 

in these processes encompass concerns such as data loss, data encryption, and the maintenance of well-structured 

organizational workflows, as pointed out by Debortoli et al. (2014). However, mitigating these risks necessitates a 

comprehensive understanding of AI applications and their management. Ineffectively managed risks in business 

processes can result in organizational process failures.  

The link between AI and risk management is most noticeable in modern business organisation. To manage risks 

effectively in this context, it is essential to study risk factors and understand technological advancements. This helps 

businesses better handle the risks associated with AI in their operations. This study aims to explore the relationships 

among seven domains of AI influencing factors in crisis management: Large-Scale Machine Learning, Deep Learning, 

Reinforcement Learning, Robotics, Computer Vision, Natural Language Processing, and Internet of Things. 

 

3.1 Large-scale Machine Learning in Crisis Management 

Crisis management is a complex process that involves the coordination of various stakeholders and resources to 

mitigate the impact of a crisis. With the increasing availability of big data, machine learning has emerged as a promising 

approach to support crisis management.  

Large-scale machine learning is transforming crisis management by making use of extensive data sources for more 

effective responses. It is capable of early warning systems by processing real-time information from various sources, 

predicting crisis outcomes, offering real-time decision support, and optimizing resource allocation during emergencies. 

However, it comes with challenges, including data privacy and ethical concerns. By addressing these challenges and 

leveraging the power of large-scale machine learning, it can enhance the ability to respond swiftly and efficiently to 

crises, ultimately leading to safer outcomes (Lwakatare, L.E. et.al. 2020; Sevilla, J. et.al. 2022) 

Several studies have explored the use of machine learning in crisis management. Abboodi, B., et.al. (2023) discussed 

the use of artificial intelligence to detect crises related to events in a firm, which can lead to efficient crisis management. 

Kraft, A. and Usbeck, R., (2022) reviewed automated machine learning approaches for emergency response and 

coordination via social media in the aftermath of a disaster. Boumahdi, A., et.al. (2020) leveraged human and machine 

learning for crisis mapping during disasters using social media.  

 

3.2 Deep Learning in Crisis Management 

Deep learning, a subset of artificial intelligence, is making waves in the world of crisis management. This technology, 

inspired by the human brain's neural networks, offers innovative solutions for handling emergencies. Deep learning's 

applications in crisis management are diverse and impactful. It can predict disasters like hurricanes, analyse images and 

videos in real-time to identify hazards, understand and process text data from sources like social media, and optimize the 

allocation of resources during crises.  

However, there are challenges to consider, such as the need for abundant high-quality data, ensuring the fairness and 

ethics of these systems, and making the models understandable. Despite these challenges, deep learning's potential to 

enhance emergency response is evident. As it continues to advance, it holds promise for saving lives, minimizing damage, 

and improving the way we handle crises, ultimately contributing to a safer world (Sarker, I.H., 2021; Taye, M.M., 2023; 

Sabharwal, R., et.al., 2022) 

 

3.3 Reinforce Learning in Crisis Management 

Reinforcement learning is a branch of AI that trains algorithms to make sequential decisions. Unlike traditional AI, 

which relies on preset rules, RL agents learn from their environment. It receives feedback in the form of rewards or 

penalties and continually improve their decision-making to maximize long-term rewards. In crisis management, RL's 

adaptability, optimization, and automation capabilities are well-suited for dynamic crisis scenarios. It can adjust to 

changing circumstances and make decisions that save lives and reduce harm. Applications of RL in crisis management 

include resource allocation, efficient evacuation planning, disease spread prediction, and infrastructure resilience. It can 

help optimize resource distribution, plan effective evacuations, predict disease spread, and monitor critical infrastructure 

during crises. However, there are challenges, including ethical concerns about data privacy and the transparency of AI 

decision-making. Ensuring that AI operates ethically and without bias is essential in crisis situations.  

Hence, reinforcement learning is a game-changer in crisis management. Its adaptability and decision optimization 

make it invaluable for responding to emergencies. As we continue to develop RL systems, they have the potential to save 

lives, minimize damage, and improve crisis management overall, ensuring a safer future (Knox, W.B. and Stone, P., 

2015; Akalin, N. and Loutfi, A., 2021; Singh, V., et.al., 2022). 
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3.4 Robotic in Crisis Management 

Robotics is an interdisciplinary engineering activity that involves the design, manufacture, operation, and 

maintenance of robots and other computer actions. Integrating robotics and artificial intelligence (AI) in crisis 

management is about using sturdy robots with advanced sensors and different levels of autonomy to assist during 

emergencies. These robots can go into challenging and dangerous situations, like disaster areas, and provide real-time 

data to help response teams. For example, it can map disaster-stricken areas, detect hazardous materials, or navigate 

through debris. The choice of autonomy level determines how much robots can operate independently. Some work closely 

with human teams, while others handle specific tasks without constant supervision. This technology helps improve safety, 

data collection, and response efficiency, ultimately saving lives and reducing damage during crises. (Abioye, S.O., et.al, 

2021; Denecke, K. and Baudoin, C.R., 2022). 

 

3.5 Computer Vision in Crisis Management 

Computer vision, a branch of artificial intelligence, plays a crucial role in crisis management, aiding first responders 

and emergency services in comprehending and addressing various emergencies. It offers diverse applications, as shown 

in recent studies (Lopez-Fuentes, L et.al. 2018; Kim, D., et.al. 2022; Ulhaq, A. et.al. 2020; Al-Faris, M., et.al. 2020). 

First, computer vision is employed for disaster assessment, using satellite imagery and machine learning to evaluate the 

extent of damage caused by natural disasters like floods, earthquakes, and hurricanes. This method is effective in 

identifying affected areas by analysing pre- and post-disaster images and associated damage labels. 

Secondly, computer vision is proving valuable in controlling the spread of COVID-19. It assists in monitoring social 

distancing, detecting mask-wearing compliance, and identifying individuals with elevated body temperatures in public 

spaces. This aids authorities in promptly isolating infected individuals and curbing the virus's transmission. Thirdly, 

computer vision is used for human action recognition, particularly in emergency situations. This technology can identify 

various actions and behaviours in different environmental conditions, enhancing the understanding of crisis scenarios 

and guiding appropriate responses.  

Lastly, computer vision expedites disaster response by automatically detecting damaged areas in satellite images 

through deep learning models. This quick identification enables emergency services to allocate resources efficiently and 

respond promptly to critical areas. Computer vision is an indispensable tool in crisis management, facilitating the rapid 

assessment of disaster damage, monitoring pandemic control measures, recognizing human actions in emergencies, and 

expediting disaster response efforts. As computer vision technology advances, it can anticipate even more innovative 

applications in crisis management. 

 

3.6 Natural Language Processing in Crisis Management 

Natural Language Processing (NLP) is becoming an essential tool in crisis management, where swift communication 

and decision-making are crucial. NLP, a part of artificial intelligence, empowers computers to understand and work with 

human language. It helps during crises in several ways. It swiftly extracts and organizes information from various sources, 

like social media and news, keeping responders up to date. NLP also gauges public sentiment, aiding authorities in 

understanding the emotional context of the situation. Additionally, it offers automated translation for multi-lingual 

environments and chatbots for crisis communication. NLP helps verify the accuracy of information, crucial in preventing 

misinformation from spreading. Challenges include privacy, biases in algorithms, and maintaining transparency. NLP 

enhances crisis management, facilitating better decision-making and communication, ultimately contributing to safer 

crisis responses (Dale, R., Moisl, H. and Somers, H. eds., 2000; Lutkevich, B. and Burns, E., 2021; Patel, A.A. and 

Arasanipalai, A.U., 2021; Gruetzemacher, R., 2023)  

 

3.7 Internet of Things in Crisis Management 

The Internet of Things (IoT) is changing how crises are handled. IoT involves connecting devices and sensors to the 

internet, allowing them to share information. In the context of crisis management, this technology offers several benefits. 

It helps with early warnings by sensing changes in the environment and can give real-time updates during emergencies, 

enabling better decision-making. IoT also monitors infrastructure, ensuring it remains in good condition, and provides 

tools for emergency responders to stay safe and work efficiently. Additionally, it helps distribute resources effectively. 

However, it needs to consider data security and privacy to make the most of IoT in crisis management. IoT is making our 

responses to emergencies more efficient and safer. (Elgazzar, K., et.al. 2022) 

 

4. Data for Modelling    

Data used to develop the model of AI influencing factors in crisis management in United Arab Emirates (UAE) 

organisation was gathered through questionnaire survey. The respondents of the survey were employees in the UAE 

National Crisis and Emergency Management Authority. The main contents of the questionnaire are list of 28 AI 

influencing factors in seven domains and six attributes of crisis management. Respondents were requested to gauge each 
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of the factors and attributes using 5-point Likert scale of the level of agreeability. A total of 300 questionnaires sets were 

distributed using a purposive sampling technique. However. 281 valid responses were used for formulating the model. 

To determine the internal consistency of the collected data, a reliability test was conducted and the result is as in table 1. 

 

Table 1 - Results of reliability test on the collected data 

Constructs Code 
No. of factors or 

attributes 

Cronbach's Alpha 

values 

Computer Vision CoV 4 0.908 

Deep Learning DeL 4 0.897 

Internet of Things IoT 5 0.937 

Large-Scale Machine Learning LSM 4 0.909 

Natural Language Processing NLP 4 0.926 

Reinforcement Learning ReF 4 0.908 

Robotics,  RoB 3 0.880 

Crisis Management  CrM 6 0.747 

 

Table 1 displays eight constructs, with seven, namely CoV, DeL, IoT, LSM, NLP, ReF, and RoB, serving as 

independent variables, while CrM functions as the dependent variable. All the constructs exhibit Cronbach's Alpha values 

ranging from 0.747 to 0.937, indicating strong internal consistency among their respective factors or attributes. The data 

was imported into SmartPLS software in CSV format and utilized for modelling purposes. The developed model is based 

on the framework as in figure 1 

 

 

 Fig, 1 - Model framework 

 

Figure 1 illustrates the connection between AI influencing factors that impact crisis management within an 

organization. There are 28 AI influencing factors grouped into seven domains or constructs, serving as independent 

variables, while crisis management constitutes the dependent construct, comprising six attributes. 

 

5. Modelling of Factors Influencing in the Implementation of AI in Crisis Management 

In this modelling process, the collected data was imported in the SmartPLS software and the model was then 

constructed in the software according to the framework. Once the model was developed, then PLS Algorithm was run to 

evaluate the measurement component of the model. Then, bootstrapping function was run on the model to evaluate the 

structural path of the model. Finally, the blindfolding was run on the model to validate the model predictive relevance 

(Hair Jr, et.al.2016).  

 

5.1 Measurement Evaluation 

After running the PLS Algorithm function on the model, the model outlook is as figure 2. 
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Fig. 2 - Initial modelling 

 

5.1.1 Indicator Reliability 

The first evaluation on the measurement model is to asses the outer loadings of the indicators where all indicators 

should be greater than 0.6 (Hair Jr, et.al.2016). The extracted outer loadings after the first modelling are presented in 

Table 2 

 

Table 2 - Outer Loading after first PLS Algorithm process 

 Constructs 

Factors CoV CrM DeL IoT LSM NLP ReF RoB 

CoV1 0.803               

CoV2 0.897               

CoV3 0.927               

CoV4 0.915               

CrM1   0.916             

CrM2   0.911             

CrM3   0.897             

CrM4   0.917             

CrM5   -0.005             

CrM6   0.011             

DeL1     0.825           

DeL2     0.877           

DeL3     0.916           

DeL4     0.877           

IoT1       0.921         

IoT2       0.878         

IoT3       0.910         

IoT4       0.908         

IoT5       0.851         

LSM1         0.839       

LSM2         0.905       

LSM3         0.905       

LSM4         0.898       

NLP1           0.934     

NLP2           0.960     

NLP3           0.941     

NLP4           0.784     

ReF1             0.923   

ReF2             0.919   

ReF3             0.910   
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ReF4             0.786   

RoB1               0.840 

RoB2               0.916 

RoB3               0.937 

 

Table 2 shows that there are two indicators having outer loading less than 0.6. Hence, these indicators which are 

CrM5 with -0.005 and CrM6 with 0.011 need to be deleted from the model. Then the model was then rerun using PLS 

Algorithm and the final model outlook is as in figure 3.  

 

 

Fig. 3 - Final model 

 

Then, the extracted outer loadings after the second modelling process are presented in Table 3 

 

Table 3 - Outer Loading after second PLS Algorithm process 

 Constructs 

Factors  CoV CrM DeL IoT LSM NLP ReF RoB 

CoV1 0.803               

CoV2 0.897               

CoV3 0.927               

CoV4 0.915               

CrM1   0.916             

CrM2   0.911             

CrM3   0.897             

CrM4   0.917             

DeL1     0.825           

DeL2     0.877           

DeL3     0.916           

DeL4     0.877           

IoT1       0.921         

IoT2       0.878         

IoT3       0.910         

IoT4       0.908         

IoT5       0.851         

LSM1         0.839       
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LSM2         0.905       

LSM3         0.905       

LSM4         0.898       

NLP1           0.934     

NLP2           0.960     

NLP3           0.941     

NLP4           0.784     

ReF1             0.923   

ReF2             0.919   

ReF3             0.910   

ReF4             0.786   

RoB1               0.839 

RoB2               0.916 

RoB3               0.937 

 

Table 3 shows that all the indicators are having values of more than 0.6. Hence, it can be considered that all the 

indicators have achieved item reliability.  

 

5.1.2 Construct Reliability and Validity 

In PLS modelling, construct reliability assesses how well latent constructs represent observed variables, while 

construct validity ensures constructs measure their intended concepts accurately. Both are vital for model credibility and 

utility. Careful model design and rigorous assessments are crucial for reliability and validity. Researchers typically assess 

construct reliability using metrics like composite reliability (CR), which should ideally exceed 0.7, and construct validity 

using metrics like Average Variance Extracted (AVE), which should ideally exceed 0.5 (Hair Jr, et.al.2016). 

 

Table 4 - Construct reliability and validity 

 Constructs  
Cronbach's 

Alpha 
rho_A 

Composite 

Reliability 

Average Variance 

Extracted (AVE) 

CoV 0.908 0.912 0.936 0.786 

CrM 0.931 0.932 0.951 0.828 

DeL 0.897 0.903 0.928 0.764 

IoT 0.937 0.947 0.952 0.799 

LSM 0.909 0.912 0.937 0.787 

NLP 0.926 0.933 0.949 0.824 

ReF 0.908 0.919 0.936 0.786 

RoB 0.880 0.886 0.926 0.807 

 

Table 4 provides insights into the reliability and validity of various constructs of the model. The constructs exhibit 

high internal consistency, with Cronbach's Alpha values exceeding 0.7 for all constructs. Composite Reliability (rho_A) 

values also confirm strong reliability. While the Average Variance Extracted (AVE) values, which assess construct 

validity, generally demonstrate moderate to good convergent validity, a few constructs fall slightly below the ideal 

threshold of 0.7. Overall, the PLS model is reliable and valid for research purposes. 

 

5.1.3 Discriminant Validity   

Fronell-Larcker criterion is one of the most popular techniques used to check the discriminant validity of 

measurements models. According to this criterion, the square root of the average variance extracted by a construct must 

be greater than the correlation between the construct and any other construct (Hair Jr, et.al.2016). 

 

Table 5 - Discriminant validity 

 Constructs  CoV CrM DeL IoT LSM NLP ReF RoB 

CoV 0.887               

CrM 0.862 0.91             

DeL 0.838 0.767 0.874           

IoT 0.854 0.781 0.748 0.894         

LSM 0.79 0.731 0.858 0.786 0.887       

NLP 0.934 0.839 0.799 0.883 0.827 0.907     

ReF 0.856 0.762 0.856 0.766 0.861 0.855 0.887   

RoB 0.814 0.706 0.749 0.789 0.772 0.816 0.839 0.899 
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Table 5 presents the Fornell-Larcker values of the model. These values show the discriminant validity of the model's 

constructs. In the context of Fornell-Larcker values, the diagonal elements represent the square root of the Average 

Variance Extracted (AVE) for each construct, while the off-diagonal elements indicate the correlations between 

constructs. Strong diagonal values compared to off-diagonal values suggest good discriminant validity, signifying that 

the constructs are well-differentiated from one another in the model. 

 

5.2 Structural Evaluation 

5.2.1 Path Coefficients 

Path coefficients represent the strength and direction of the relationships between latent constructs or factors within 

the model. These coefficients indicate how much change in one construct is associated with a unit change in another 

construct, considering the entire model (Hair Jr, et.al.2016). 

 

Table 6 - Path coefficients 

 Dependent Construct  

Independent Constructs  CrM 

CoV 0.523 

DeL 0.138 

IoT 0.111 

LSM 0.009 

NLP 0.203 

ReF 0.000 

RoB -0.082 

 

Table 6 provides the relationships between the dependent construct "CrM" and seven independent constructs. Among 

these relationships, "CoV" stands out as having the strongest positive influence on "CrM" with a substantial path 

coefficient of 0.523. This indicates that as "CoV" increases, there is a notable increase in "CrM." Additionally, "NLP" 

and "DeL" also contribute positively to "CrM" but to a somewhat lesser extent, with path coefficients of 0.203 and 0.138, 

respectively, signifying moderate positive influences. "IoT," while exhibiting a positive influence, has a weaker effect 

with a path coefficient of 0.111. On the other hand, "LSM" and "ReF" appear to have minimal to no direct impact on 

"CrM," as their path coefficients are close to zero. Furthermore, "RoB" has a negative influence on "CrM," as indicated 

by a path coefficient of -0.082, suggesting that an increase in "RoB" is associated with a decrease in "CrM." These 

findings help illuminate the complex web of relationships within the structural model, offering valuable insights for 

analysis and decision-making. 

 

5.2.2 Model Fitness 

In Partial Least Squares (PLS) modelling, the R-squared (R²) value gauges how much of the dependent variable's 

variance is explained by the model's factors. A high R² suggests a strong relationship, but it should be assessed alongside 

other metrics due to PLS's suitability for complex data. Careful factor selection is vital as it affects R² and model accuracy 

(Hair Jr, et.al.2016). The R-squared (R²) value for this model is as in table 7. 

 

Table 7 - R squared value of the model 

 Dependent Construct  R Square R Square Adjusted 

CrM 0.761 0.755 

 

Table 7 shows that the PLS-SEM regression model has a strong fit, with an R-squared (R²) value of 0.761, indicating 

that approximately 76.1% of the variance in "CrM" is explained by the seven independent variables. The adjusted R-

squared value, at 0.755, reaffirms this strong model fit, considering the model's complexity. In summary, the model 

effectively captures a significant portion of the variability in "CrM," making it a robust representation of the relationship 

between the dependent and independent variables. 

 

5.2.3 Hypothesis Testing 

Bootstrapping is a critical component of hypothesis testing in Partial Least Squares (PLS) modelling. It involves 

resampling the data multiple times to re-estimate model parameters. This process assesses the stability and significance 

of these parameters, allowing researchers to test their hypotheses. By calculating p-values or confidence intervals for 
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parameters, researchers can determine whether relationships in the PLS model are statistically significant. Bootstrapping 

ensures robust inference, aiding in the assessment of the validity and significance of model hypotheses within PLS 

modelling (Hair Jr, et.al.2016). After the bootstrapping process, the established model is as figure 4 

 

 

Fig. 4 - Model outlook after bootstrapping process 

   Based on figure 4, the generated results of the bootstrapping process on the model is as in table 7   

 

Table 7 - Hypothesis testing results 

 Relationship  
T Statistics 

(|O/STDEV|) 

P 

Values 

RoB -> CrM 0.766 0.444 

ReF -> CrM 0.002 0.999 

LSM -> CrM 0.065 0.949 

IoT -> CrM 0.673 0.501 

DeL -> CrM 1.058 0.290 

NLP -> CrM 0.833 0.405 

CoV -> CrM 2.633 0.009 

 

Table 7 presents the results of hypothesis testing for the relationships between the independent constructs (RoB, 

ReF, LSM, IoT, DeL, NLP, CoV) and the dependent construct (CrM). It can be concluded that the relationship between 

‘CoV’ and ‘CrM’ stands out as statistically significant, as indicated by a T statistic of 2.633 and a corresponding P value 

of 0.009. This suggests strong evidence supporting a meaningful relationship between ‘CoV’ and ‘CrM.’ However, the 

relationships between ‘ReF’ and ‘CrM,’ as well as ‘LSM’ and 'CrM,' are not statistically significant. Their associated P 

values of 0.999 and 0.949, respectively, suggest that these relationships may not have a meaningful impact on 'CrM.' The 

relationships between 'RoB,' 'IoT,' 'DeL,' and 'NLP' with 'CrM' show moderate T statistics, indicating some evidence of 

a relationship. However, their associated P values are relatively high, suggesting that these relationships are not 

statistically significant at conventional significance levels. This phenomenon may be attributed to the data collected, 

which may not provide sufficient strength to establish significant relationships for all the hypothesized paths. 

 

5.3 Predictive Relevance 

Blindfolding in PLS modelling assesses predictive relevance, guards against overfitting, validates the model, and 

guides refinement. It ensures the model's ability to make accurate predictions on unseen data, enhancing its real-world 

applicability (Hair Jr, et.al.2016). The main result of blind folding is Construct Cross Validated redundancy as in table 8. 
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Table 8 - Results of Construct Cross Validated redundancy 

Constructs  SSO SSE Q² (=1-SSE/SSO) 

CoV 1124 1124  

CrM 1124 440.377 0.608 

DeL 1124 1124  

IoT 1405 1405  

LSM 1124 1124  

NLP 1124 1124  

ReF 1124 1124  

RoB 843 843  

 

 

Table 8 presents the results Construct Cross Validated redundancy. It focuses on the Q² metric, which assesses 

predictive relevance. The dependent construct “CrM” exhibits a Q² value of 0.608, indicating that the model explains 

approximately 60.8% of the variation in “CrM” beyond random chance, demonstrating reasonably good predictive 

relevance. 

 

6. Conclusion 

This paper has presented the development of structural equation modelling of AI influencing factors in crisis 

management for UAE National Crisis and Emergency Management Authority. This study has identified 28 AI influencing 

factors that are classified in seven domains that influence the crisis management in the UAE National Crisis and 

Emergency Management Authority. The model was developed and evaluated in SmartPLS software. The evaluation was 

conducted at measurement and structural components of the model. It was found the at the measurement component, the 

model has achieved all the evaluation criteria. While at structural component, it was found that the relationship between 

'CoV' and 'CrM' is statistically significant (T-statistic = 2.633, P-value = 0.009), indicating a strong connection. However, 

the relationships between 'ReF' and 'CrM' and 'LSM' and 'CrM' are not statistically significant (P-values = 0.999 and 

0.949, respectively), suggesting they may not significantly impact 'CrM.' The relationships between 'RoB,' 'IoT,' 'DeL,' 

and 'NLP' with 'CrM' show moderate evidence but aren't statistically significant due to potentially weak data strength. 

Also, found that the model has a strong fit, with an R-squared (R²) value of 0.761, indicating that approximately 76.1% 

of the variance in "CrM" is explained by the seven independent variables. Finally, it was found that for predictive 

relevance, the "CrM" as dependent construct has a Q² value of 0.608, suggesting that the model explains about 60.8% of 

the variation in "CrM" beyond chance, showing strong predictive relevance. 
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