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1. Introduction 

Artificial intelligence (AI) plays a pivotal role in security intelligent systems, making it a central focus with profound 

societal implications, particularly for enhancing community security in the coming decades (Jia et al., 2019; Injadat et 

al., 2021). AI is a versatile, general-purpose technology (Vannuccini & Prytkova, 2021) capable of addressing diverse 

challenges across various application contexts. Its core capabilities hold the potential to integrate community-focused 

research into processes, essential for fostering positive advancements in security and interventions for community 

security (Klinger et al., 2018). AI not only improves efficiency but also has the potential to detect and deter security 

interventions that go beyond enhancement (Simon, 2019). Implementing AI in security intervention settings, however, 

Abstract: This study focuses on developing a robust model to augment community security through the 

implementation of AI, while simultaneously investigating the mediating influence of organizational learning within 

the context of vital AI factors in the UAE. The model examines the interplay among key AI elements, such as 

compatibility (COMPAT), complexity (COMPLEX), management support (MS), ethics (ETH), and staff capabilities 

(SC), concerning their impact on the effectiveness of Community Security (ESC). Data collection was conducted via 

a questionnaire survey utilizing the Abu Dhabi Police as a representative case study for public organizations in the 

UAE, involving 138 participants spanning both managerial and operational roles, with responses acquired through 

randomized distribution using online tools. The amassed data was employed to construct the model using SmartPLS 

software, and its evaluation adhered to assessment criteria encompassing measurement and structural components. 

A goodness-of-fit score of 0.751 indicated a high level of overall predictive performance for the model. The study's 

findings revealed that organizational learning (OL) serves as a partial mediator in the relationship between the 

complexity construct (COMPLEX) and the effectiveness of Community Security (ESC), with no observed mediation 

effects in other relationships. The research outcomes culminated in the creation of a versatile model that enhances 

community security through AI technology, applicable across diverse scenarios, and benefiting individuals invested 

in AI and community security, such as academics, researchers, and practitioners. The study's methodology provides 

valuable insights for practitioners and researchers in the UAE and related fields, affording opportunities for 

replication or adaptation to suit specific investigative contexts. 
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requires researchers to consider a broad spectrum of challenges, including those related to community security (Klinger 

et al., 2018). Artificial Intelligence differs from human responses, lacking judgment, intention, and contemplation. It's 

defined as machines consistently responding to stimuli, holding significance in national security (Hurley, 2018). AI 

processes vast surveillance data adaptively and intelligently, while human analysts discern patterns and identify 

suspicious activities, ultimately enhancing community security (Acemoglu & Restrepo, 2019).  

Artificial intelligence is not a mere futuristic concept; it's actively being integrated into various fields, including 

security intelligence systems, with a focus on detecting and deterring security interventions to enhance community 

security (Bryson & Winfield, 2017). AI's impact on the world poses significant challenges and opportunities, demanding 

continuous investigation into critical factors that could weaken the effectiveness of AI security technologies (Carter & 

Nielsen, 2017). In essence, ongoing research is necessary to identify the key elements facilitating the optimal use of these 

security technologies for the benefit of community security. The centrality of artificial intelligence in shaping 

perspectives and confronting critical challenges within security intelligence systems is crucial for enhancing community 

security (Ramos, 2007). While AI systems possess decision-making capabilities (Klinger et al., 2018), emphasizing 

critical factors is essential to maximize the effective utilization of these AI security technologies. Despite the many 

benefits of security technologies, concerns arise in AI networks, including potential technology abuse due to flaws in IA 

security tools (Pan, 2016). Users might also face dissatisfaction, as malicious programs used by criminals can diminish 

the efficiency of AI systems' communication channels and technologies, making it harder for hackers to breach data 

(Pesapane et al., 2018). Addressing these concerns with AI security technology is vital for the overall security of the 

community, particularly regarding technology use (Abubakar, 2019).  

Numerous challenges confront Artificial Intelligence in its role in maintaining community security and effective 

policing of its impacts. The success of AI in this field hinges on the collaboration of researchers and scientists who 

contribute perspectives and identify critical factors in security intelligent systems (Quiggin, 2007). Research focused on 

AI security technologies is imperative, demanding careful attention from researchers. This study seeks to delve into the 

perspectives surrounding the challenges faced in exploring security intelligent systems. Its primary objective is to uncover 

the key factors that enhance the effective utilization of AI security technologies to enhance community security. 

Consequently, this research aims to scrutinize the critical aspects of AI security systems, leading to recommendations for 

optimizing the utilization of these technologies to bolster community security. Previous literature has highlighted 

essential factors and challenges in security technologies, encompassing aspects such as standardization, interoperability, 

data management, trust, identity, confidentiality, integrity, availability, security, and privacy, all of which are critical in 

various IoT applications (Mohanta et al., 2020). Nonetheless, much of the existing literature lacks empirical evidence to 

pinpoint which factors are most crucial for community security in the context of AI security technologies.  

People from around the world, including tourists and expats, find the United Arab Emirates, particularly Dubai and 

Abu Dhabi, appealing due to luxurious accommodations, expansive shopping malls, pleasant climate, and the strong 

emphasis on protection and security. The country experiences relatively low rates of traditional crimes like burglaries 

and robberies, with outdated security measures contributing to a significant portion of serious offenses. However, the 

UAE faces challenges in the form of increasing cybercrime, evidenced by a 300% rise in computer hacking incidents in 

a six-month period in 2014, making it vulnerable to hacker attacks. This underscores the importance of leveraging AI 

technologies to bolster community security (Ammar et al., 2012). The use of AI security technologies plays a crucial role 

in enhancing community security, helping anticipate issues and making decisions that typically require human expertise 

(Haider et al., 2020; Zuiderveen Borgesius, 2018). In line with this, the UAE government introduced the "UAE Strategy 

for Artificial Intelligence (AI)" in 2017, heralding a future driven by technology and aiming to achieve the UAE 

Centennial 2071 objectives. These efforts aim to improve government performance, establish a robust digital 

communication infrastructure for addressing problems effectively, and position the UAE as a leader in AI investments 

across various sectors, including community security (Ahmed et al., 2017).  

The UAE government strongly backs the integration of AI technologies across all sectors, aligning with the Vision 

2030 plan for full automation by 2030 (UAE 2031, 2018). AI security technologies are pivotal in achieving this goal by 

ensuring community security. Despite this, the essential determinants of AI technology effectiveness within the UAE 

context remain unexplored. Thus, the present research aims to fill this gap by specifically identifying these crucial factors 

within the realm of AI security technologies and their impact on community security in the UAE. This study intends to 

conduct a comprehensive investigation, highlighting the key factors influencing the success or failure of AI security 

technologies, particularly within the UAE, with insights gleaned from professionals actively involved in AI security 

technology. 

 

2. Literature Review  

2.1 Use of Artificial Intelligence Security Technology 

The technological context encompasses all technologies relevant to the firm, both internal and external, and 

investigates their impact on technology adoption (Tornatzky & Fleischer, 1990). As highlighted by Collins et al. (1988), 

the current internal technology within the firm plays a pivotal role in defining the limits of the firm's capacity to handle 

technological change. Similarly, an external technology not yet present within the firm can be characterized in terms of 
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the capabilities required by the firm to enhance the likelihood of adoption. External technologies, as identified by Hage 

(1980) and Tushman and Nadler (1986), introduce incremental, synthetic, or discontinuous changes, each of which places 

distinct demands on the organization's capabilities. Incremental changes entail the lowest level of disruption and risk, 

involving the addition of new functionality or a new version of existing technology. Synthetic change, on the other hand, 

involves the amalgamation of existing technology and ideas to drive change, carrying a higher level of risk compared to 

incremental change. Lastly, discontinuous change represents the most significant and risky type of transition, describing 

scenarios where new product and process development have occurred. 

 

2.1.1 Compatibility 

The compatibility factor highlights the significance of technology aligning with an organization's existing workflow, 

along with softer aspects such as values and norms. It is defined as the "degree to which an innovation is perceived as 

consistent with existing values, cultural norms, experiences, and needs of potential users" (Rogers 2003). While 

compatibility can encompass a range of elements, this study specifically examined the alignment of AI security 

technologies with employee needs and skills. Therefore, it is postulated that the Compatibility of Artificial Intelligence 

security technologies has a positive impact on the effectiveness of community security. 

 

2.1.2 Complexity 

Complexity is characterized as the "degree to which innovation is perceived as somewhat difficult to comprehend 

and apply" (Rogers, 2003). This attribute is believed to negatively impact the adoption of innovation, as more intricate 

technologies require personnel to acquire new skills and knowledge (Tidd & Bessant, 2009). AI should be recognized as 

a complex technology (Alsheibani et al. 2020); however, different AI applications may vary in complexity, making it a 

critical factor that could impede the adoption of AI security technologies. Hence, it is hypothesized that a low level of 

complexity in Artificial Intelligence security technologies has a positive impact on the effectiveness of community 

security 

 

2.1.3 Ethics of Artificial Intelligence 

According to Sun et al. (2018), prior TOE research has had limited coverage of critical concerns such as security, 

privacy, and ethics, although this trend is changing. While Sun et al. (2018) argued for placing ethical considerations 

within an environmental framework, Mittelstadt (2019) demonstrates that ethics should be viewed as integral 

organizational processes. Although AI ethics encompasses a wide range of subjects, this study narrows its focus to three 

aspects of the black box dilemma: bias, integrity, and transparency. The study aims to restrict the examination of these 

factors to how the organization operates in relation to them, thereby embedding the component of AI ethics within the 

organizational context. This encompasses how employees interact with data and processes to address the ethical 

challenges presented by these facets. The potential for biases in pre-trained datasets for existing language models 

(Sahlgren & Olsson, 2019) underscores the significance of preventing these biases from leading to discrimination against 

citizens, especially for authorities. Therefore, ethics plays a pivotal role in enhancing the effective use of AI technologies 

for community security improvement. Consequently, it is hypothesized that the Ethics of Artificial Intelligence security 

technologies has a positive impact on the effectiveness of community security. 

 

2.1.4 Staff Capability 

As per Scaccia et al. (2015), staff capability encompasses the general abilities, education, and competence possessed 

by the workforce. Having individuals with the requisite knowledge and skills is crucial for the successful implementation 

of innovations. It is advisable that individuals with programming proficiency in languages conducive to AI development 

and a solid understanding of the organization work on AI-related projects (Pumplun et al., 2019). Given the growing 

demand for programmers in the job market, companies may encounter difficulties in attracting personnel with the 

necessary skills. Additionally, research indicates that organizations often prioritize technology over the essential expertise 

and implementation methods (Alsheibani et al., 2018). Consequently, the skills and capabilities of the staff play a 

significant role in optimizing the use of AI to bolster community security. Thus, it is hypothesized that the staff's 

capability in Artificial Intelligence security technologies has a positive impact on the effectiveness of community 

security. 

 

2.1.5 Management Support 

According to Scaccia et al. (2015), management support is characterized as the extent to which authoritative figures 

articulate and endorse organizational operations. Often referred to as top management support, it stands as a frequently 

mentioned component in the TOE (Technology, Organization, and Environment) literature (Alsheibani et al. 2020). Key 

metrics highlighted for the deployment of new technologies, such as AI or cloud-based computing, include the presence 

of a manager with a favourable attitude toward change (Yang et al. 2015), a sound understanding of the technology 
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(Pumplun et al. 2019), and active participation in the project, all considered vital aspects in grasping the concept of 

management support. Furthermore, Alsheibani et al. (2018) emphasize that a lack of management support not only affects 

an organization's competitive position but also increases the likelihood of new technology adoption failures. Therefore, 

top management support is pivotal in enhancing the effectiveness of AI security technologies, particularly in augmenting 

community security. Therefore, it is can be hypothesised that Management support for Artificial Intelligence security 

technologies positively affect the effectiveness of community security. 

 

2.2 Artificial Intelligence and Organizational Learning 

Organizations fostering a culture of organizational learning can expect improved employee proficiency in utilizing 

current technological advancements, including artificial intelligence (Terziyan et al., 2018; Dalenogare et al., 2018). 

However, there remains substantial uncertainty surrounding the impact of Technology 4.0 on sociocultural aspects, such 

as the integration of organizational learning among employees. Previous research has indicated that improper 

implementation or inadequate integration of Industry 4.0 technology can negatively influence organizational practices 

and employee behaviour, potentially impacting the future adoption of technology within the organization (Shamim et al., 

2016). Therefore, the variable of organizational learning has the potential to either facilitate or hinder technology adoption 

within the organization, significantly influencing the relationship between IT technologies and community security.  

The organizational context encompasses internal elements that influence the adoption of technology, including 

resources and organizational characteristics that can either facilitate or impede effective technology utilization 

(Aboelmaged 2014). Depending on the type of organization, the framework can incorporate various theoretical 

approaches. As demonstrated by Karahanna et al. (1999), work networks play a significant role in shaping subjective 

norms among individuals within an organization both before and after the adoption of technology. Similarly, Rogers 

(2015) identifies this as a component of the social system, a pivotal factor in disseminating new ideas. Rogers highlight’s 

structure, opinion leadership, and the type of innovation-decision as key areas within the social system. Establishing and 

maintaining internal linking processes in such social systems, transcending boundaries, and connecting distinct units, can 

enhance technology utilization (Tushman and Nadler 1986). According to Weyer et al. (2015), the anticipated 

technology-driven, highly automated movement resulting from current technological breakthroughs will not lead to 

reduced human interaction or completely workerless production facilities. However, Dworschak and Zaiser (2014) as 

well as Beneová and Tupa (2017) emphasize that advanced technology such as artificial intelligence in the context of the 

Fourth Industrial Revolution 4.0 will likely demand specific skills and knowledge for successful adoption in the 4.0 era. 

Furthermore, the inherent complexity of artificial intelligence within the Industry4.0 technological era may drive the 

enhancement of particular learning capabilities within organizations (Schuh et al., 2015), suggesting a synergistic 

relationship with the development of organizational learning (Faller & Feldmüller, 2015).  

Indeed, certain research streams indicate that the level of organizational learning development is directly related to 

an organization’s process design and workplace management, supporting the assumption of a positive relationship 

between current advanced technologies and organizational learning (Beneová & Tupa, 2017). Furthermore, as current 

technological advancements, such as artificial intelligence, enable a faster and clearer understanding of the status quo of 

products, processes, and services within a company or throughout the value chain (Terziyan et al., 2018), organizations 

that foster organizational learning development can expect their learning and information sharing to be catalysed by these 

technologies (Fang et al., 2016; Dalenogare et al., 2018).  

However, there remains uncertainty about Industry 4.0 technology's interaction with sociocultural elements, such as 

organizational learning growth. Previous research suggests that misinterpretation or insufficient integration of Industry 

4.0 technologies could negatively impact organizational routines and human habits, potentially impeding future digital 

automation projects (Erol et al., 2016; Shamim et al., 2016; Hecklau et al., 2016). Similar impacts were observed during 

the Computer-Integrated Manufacturing period (Tamás et al., 2016). Furthermore, Pirvu et al. (2015) argue that 

companies choosing to participate in the Fourth Industrial Revolution and utilizing advanced technologies like artificial 

intelligence must revisit, adapt, and update their communication and information sharing processes to align with the 

implications of such technologies. However, the absence of organizational tools and methodologies that integrate these 

technologies into conventional organizational learning processes may negatively affect operational performance (Mittal 

et al., 2018). Consequently, misalignment with current organizational learning skills may undermine the successful 

adoption of artificial intelligence and other advanced technologies, leading to resistance and undermining envisioned 

benefits. 

 

2.3 Artificial Intelligence Enhanced Community Security 

Cities are rapidly adopting AI technologies for public safety and defence purposes, with a projected full reliance on 

these technologies by 2030 in North American cities. Implementations include surveillance cameras detecting potential 

crimes, drones, and predictive policing apps, offering advantages and disadvantages that require earning public trust. 

While concerns about AI-assisted policing becoming intrusive exist, the potential for focused, necessity-driven usage 

exists, with AI's ability to reduce human bias under proper implementation (Srivastava et al., 2017). AI analytics show 

promise in detecting white-collar crimes, such as credit card fraud, impacting cybersecurity, and aiding commanders in 
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resource allocation. Although not fully automated yet, AI advancements, especially in machine and transfer learning, 

could enable more feasible automation. Cameras play a greater role in crime investigation than prevention, but AI's 

progress could enhance incident classification and video analysis, leading to more significant surveillance. Drones are 

already utilized for surveillance in various cities, likely expanding to maintain security in key areas, raising concerns 

about privacy and safety (Srivastava et al., 2017).  

Predictive policing, a technique pioneered by the New York Police Department, is already in use by many police 

forces. Machine learning enhances the ability to forecast where and when crimes are likely to happen, as well as 

identifying potential perpetrators. The strategic deployment of AI prediction tools could mitigate human bias, aiming to 

ensure a positive impact. AI can be utilized to create intelligent simulations for training law enforcement officers in 

effective communication, addressing challenges in international collaborations among police forces. Initiatives like the 

European Union's Horizon 2020 and projects such as LAW-TRAIN aim to foster such cooperation, progressing from 

simulation to real investigations with the necessary resources. AI tools are employed to scan social media platforms like 

Twitter for specific events that may impact security. For instance, AI can aid social network research to safeguard 

individuals at risk of radicalization by violent groups. While law enforcement agencies are increasingly leveraging social 

media to identify disruptive event plans and monitor large gatherings for security assessment, concerns about potential 

privacy invasions are valid. Security agencies like the US Transportation Security Administration (TSA) and Coast Guard 

are likely to expand their use of AI to significantly enhance productivity and effectiveness. Techniques like vision, speech 

analysis, and gait analysis using AI can be applied by interviewers, interrogators, and security personnel to detect 

potential deception and criminal behaviour. The TSA is working on a comprehensive airport security project, including 

DARMS, a personalized protection system based on risk categories and flight details (Koch, 2014). 

 

2.4 Conceptual Model 

This study seeks to analyse the impact of specific factors related to artificial intelligence security technologies on the 

overall performance of public organizations with respect to community security. Five independent variables, namely 

compatibility, complexity, management support, ethics of artificial intelligence, and staff capabilities, are examined for 

their influence on the dependent variable of security effectiveness within the community. Additionally, organizational 

learning is incorporated as a mediator between these independent variables and the dependent variable, as illustrated in 

Figure 1, which presents the conceptual model for this research. 

 

 

Fig 1 - Conceptual model of this study 

 

3. Data Collection 

This study utilized a questionnaire survey to collect data, focusing on the Abu Dhabi Police as a case study to 

represent public organizations in the UAE. The survey was directed at both managerial and operational staff within the 

organization. The survey research design involved a sample size of 138 participants, with the questionnaire distributed 

randomly to individuals accessible through various online tools and applications. Ultimately, 138 individuals from the 

intended target respondents provided responses to the survey.  

The analysis of respondents' backgrounds in terms of age revealed the following distribution: 35 (25.4%) were in the 

21-30 age group, 45 (32.6%) in the 31-40 age group, 33 (23.9%) in the 41-50 age group, and 25 (18.1%) were over 50 

years old. The gender breakdown indicated that there were 103 (74.6%) male respondents and 35 (25.4%) female 

respondents. In terms of educational level, the analysis showed that 20 (14.5%) had a certificate/diploma, 80 (57.9%) 

held a bachelor's degree, 33 (23.9%) had a master's degree, and 5 (3.7%) had a Ph.D. Regarding work experience, 8 

(5.8%) respondents had less than 1 year of experience, 28 (20.3%) had 2-5 years of experience, 52 (37.6%) had 6-10 

years of experience, and 32 (23.2%) had 11-15 years of experience. 

To ensure the reliability of multiple-item architectures, internal consistency is essential. Pallant (2011) highlights 

that reliability is determined by the extent to which research measurements are free from random errors and the scale's 
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ability to produce consistent results upon repeated measurement of the same variable. The widely utilized measure of 

reliability is Cronbach's alpha, which evaluates the consistency of the measurement scale (Hair et al., 2011; Wong, 2013). 

Table 1 below presents the values for the Cronbach's Alpha reliability assessment on this study collected data. 

 

Table 1 - Cronbach’s Alpha reliability test 

No. Constructs/group Code  No. of factors Cronbach's Alpha 

1 Ethics of Artificial Intelligence ETH 5 0.840 

2 Compatibility COMPAT 6 0.821 

3 Complexity COMPLEX 5 0.836 

4 Efficiency of Community Security ESC 6 0.828 

5 Management support MS 6 0.836 

6 Organizational Learning OL 5 0.833 

7 Staff Capability SC 5 0.836 

 

Table 1 indicates that the internal consistency as defined as Cronbach's alpha exceeding 0.7. The overall perception 

scale showed satisfactory internal consistency with alpha values ranging from 0.821 to 0.840 across all dimensions.  

 

4. Modelling PLS-SEM Technique 

Partial Least Squares Structural Equation Modelling (PLS-SEM) is a statistical technique used for analysing complex 

relationships among multiple variables. It's particularly useful when dealing with small sample sizes or highly 

dimensional data. PLS-SEM focuses on both predicting the dependent variables and understanding latent constructs by 

modelling the relationships between observed indicators and latent variables, making it a versatile approach in various 

research fields. It combines components of regression analysis and factor analysis, allowing researchers to assess direct 

and indirect effects while providing flexibility in model specification. Hence, the PLS-SEM model of this study was 

constructed using the SmartPLS software, encompassing three primary processes: the PLS Algorithm, Blindfolding, and 

bootstrapping, as elaborated in the subsequent subsection. 

 

4.1 PLS Algorithm 

After creating the conceptual model in SmartPLS software and assigning the data, we proceeded with the modelling 

process using the PLS Algorithm function. Following this, the resulting measurement values were analysed to ensure 

they met specific criteria. In cases where these criteria were not met, factors were removed, and the modelling process 

with the PLS Algorithm was iterated until the measurement component criteria were satisfied. 

 

Fig 2 - Model after First modelling using PLS Algorithm 
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4.1.1 Checking Collinearity Statistics [VIF] 

In regression analysis, collinearity of two variables means that strong correlation exists between them, making it 

difficult or impossible to estimate their individual regression coefficients reliably. 

 

Table 3 - Generated VIF values 

First modelling  Second modelling 

FACTORS VIF  FACTORS VIF 

COMPAT1 2.039  COMPAT1 1.996 

COMPAT2 2.076  COMPAT2 2.072 

COMPAT3 1.757  COMPAT3 1.622 

COMPAT4 1.807  COMPAT4 1.771 

COMPAT5 10.714  COMPLEX1 1.702 

COMPAT6 10.462  COMPLEX2 1.609 

COMPLEX1 1.702  COMPLEX3 2.138 

COMPLEX2 1.609  COMPLEX4 2.331 

COMPLEX3 2.138  COMPLEX5 1.704 

COMPLEX4 2.331  ECS1 1.655 

COMPLEX5 1.704  ECS2 1.778 

ECS1 1.655  ECS3 1.927 

ECS2 1.778  ECS4 1.827 

ECS3 1.927  ECS5 1.973 

ECS4 1.827  ESC6 1.751 

ECS5 1.973  ETH1 1.978 

ESC6 1.751  ETH2 2.71 

ETH1 1.978  ETH3 1.464 

ETH2 2.71  ETH4 2.629 

ETH3 1.464  ETH5 1.63 

ETH4 2.629  MS1 1.849 

ETH5 1.63  MS2 2.016 

MS1 1.849  MS3 2.087 

MS2 2.016  MS4 2.059 

MS3 2.087  MS5 2.359 

MS4 2.059  MS6 1.63 

MS5 2.359  OL1 1.785 

MS6 1.63  OL2 1.81 

OL1 1.785  OL3 1.673 

OL2 1.81  OL4 2.221 

OL3 1.673  OL5 2.297 

OL4 2.221  SC1 1.963 

OL5 2.297  SC2 2.1 

SC1 1.963  SC3 1.887 

SC2 2.1  SC4 1.833 

SC3 1.887  SC5 1.852 

SC4 1.833    

SC5 1.852    

Generally, a VIF above 4 or tolerance below 0.25 indicates that multicollinearity might exist, and further 

investigation is required. When VIF is higher than 10 or tolerance is lower than 0.1, there is significant multicollinearity 

that needs to be corrected. Hence, based on table 3 COMPAT5 and COMPAT6 factors have to be deleted and the model 

was again run by PLS Algorithm function and the final model is as figure 3.  
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Fig 3 - Model after second modelling using PLS Algorithm  

 

4.1.2 Outer Loading   

Outer loading represents a fundamental idea within factor analysis, especially concerning confirmatory factor 

analysis (CFA) and structural equation modelling (SEM). It quantifies how robustly an observable variable (indicator or 

item) connects with its associated latent construct. Elevated outer loadings, usually presented as standardized factor 

loadings, suggest that the observable variable effectively reflects the underlying construct, supporting the legitimacy of 

the measurement model. 

Table 4 - Outer loading 

 COMPAT COMPLEX ESC ETH MS OL SC 

COMPAT1 0.842       

COMPAT2 0.851       

COMPAT3 0.759       

COMPAT4 0.808       

COMPLEX1  0.770      

COMPLEX2  0.734      

COMPLEX3  0.806      

COMPLEX4  0.844      

COMPLEX5  0.729      

ECS1   0.745     

ECS2   0.763     

ECS3   0.689     

ECS4   0.726     

ECS5   0.777     

ESC6   0.701     

ETH1    0.802    

ETH2    0.855    

ETH3    0.678    

ETH4    0.880    

ETH5    0.676    

MS1     0.704   

MS2     0.721   

MS3     0.718   

MS4     0.804   

MS5     0.786   
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MS6     0.710   

OL1      0.708  

OL2      0.779  

OL3      0.740  

OL4      0.798  

OL5      0.840  

SC1       0.811 

SC2       0.776 

SC3       0.800 

SC4       0.712 

SC5       0.781 

 

Table 4 displays the strength of relationships (outer loadings) between latent variables and their indicators in a factor 

analysis. Each latent variable has several indicators, with loadings ranging from 0.676 to 0.88, indicating the extent to 

which each indicator contributes to measuring the latent construct. Higher loadings signify a stronger association. This 

information is crucial for evaluating the validity of the latent variables and understanding the measurement properties of 

the model. 

 

4.1.3 Construct Reliability and Validity 

Construct reliability signifies the consistency and stability of measurements across repeated tests, often evaluated 

using metrics like Cronbach's alpha, indicating the correlation between items within a construct. High construct reliability 

indicates consistent measurement of the same underlying construct. Conversely, construct validity ensures that a 

measurement tool effectively captures the intended theoretical construct. It encompasses elements such as content validity 

(item coverage), criterion validity (external correlation), and convergent/divergent validity (consistent correlations with 

similar/different constructs). Ensuring both reliability and validity is crucial for meaningful and accurate research results, 

providing a strong foundation for data analysis and interpretation. Results of construct reliability and validity from the 

model of this study are generated as in table 5 

 

Table 5 - Construct reliability and validity 

Constructs 
Cronbach's 

Alpha 
rho_A 

Composite 

Reliability 

Average Variance 

 Extracted (AVE) 

COMPAT 0.832 0.839 0.888 0.665 

COMPLEX 0.836 0.846 0.884 0.605 

ESC 0.828 0.831 0.875 0.539 

ETH 0.84 0.866 0.887 0.613 

MS 0.836 0.844 0.88 0.55 

OL 0.833 0.845 0.882 0.6 

SC 0.836 0.843 0.884 0.603 

 

Table 5 summarizes key metrics for assessing the quality of the measurement model in a study involving several 

constructs. It includes Cronbach's Alpha, a measure of internal consistency, which ranges from 0.828 to 0.84 across the 

constructs. Another reliability measure, rho_A, falls between 0.831 and 0.866. Composite Reliability, indicating the 

overall reliability of the latent construct, ranges from 0.875 to 0.888. The Extracted Average Variance (AVE), a measure 

of convergent validity, varies from 0.539 to 0.665. Overall, these metrics collectively suggest that the measurement model 

is well-constructed with consistent and reliable indicators for each construct, providing a solid foundation for the research 

analysis. 

 

4.1.4 Discriminant Validity 

Discriminant validity is a critical concept in the field of research, especially in the context of construct measurement 

and validation. It assesses the extent to which distinct constructs, which are supposed to measure different underlying 

concepts, are indeed distinct from one another. One common way to demonstrate discriminant validity is by examining 

the correlations between constructs and ensuring that they are lower than the square root of the average variance extracted 

(AVE) for each construct. Demonstrating discriminant validity is essential because it ensures that the measurement 

instrument can accurately differentiate between the intended constructs, preventing issues of construct overlap or 

confusion in statistical analyses. This is particularly important when constructing multi-dimensional scales or using latent 

variables in techniques like structural equation modelling. 
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Table 6 - Discriminant validity 

 COMPAT COMPLEX ESC ETH MS OL SC 

COMPAT 0.816       

COMPLEX 0.623 0.778      

ESC 0.75 0.713 0.734     

ETH 0.666 0.569 0.735 0.783    

MS 0.744 0.709 0.96 0.813 0.741   

OL 0.625 0.973 0.704 0.574 0.72 0.774  

SC 0.945 0.665 0.826 0.732 0.818 0.661 0.777 

 

Table 6 presents a symmetric matrix of correlation coefficients between different constructs: COMPAT, COMPLEX, 

ESC, ETH, MS, OL, and SC. The diagonal entries are all 1.0, indicating perfect correlation of each construct with itself. 

Off-diagonal entries show the strength of correlation between pairs of constructs, ranging from 0.569 to 0.973. Notably, 

the highest correlation is between OL and COMPLEX (0.973), while the lowest is between ETH and COMPLEX (0.569). 

These correlation coefficients offer valuable insights into the interrelationships among the constructs, helping to 

understand potential associations and dependencies in the research context. 

 

4.1.5 Model Fit [R Square Values] 

R-squared (R²) is a statistical metric commonly used to assess the goodness of fit of a regression model. It measures 

the proportion of the total variation in the dependent variable that is explained by the independent variables in the model. 

A higher R-squared value indicates that the model can explain a larger portion of the variability in the data, suggesting a 

better fit. However, it's essential to consider the context and the nature of the data; a high R-squared doesn't necessarily 

imply a meaningful or predictive model, and other factors such as model complexity and theoretical relevance should 

also be evaluated. R-squared is particularly useful when comparing different models to select the one that best explains 

the variation in the data. 

Table 7 - R Square values   

Constructs Name  R Square R Square Adjusted 

Dependent   ESC 0.943 0.94 

Mediator OL 0.949 0.947 

 

 

4.1.6 Model Fit [Goodness of Fit] 

In contrast to covariance-based structural equation modelling, PLS-SEM lacks a universally accepted global 

goodness of fit metric (Vinzi et al., 2010). To address this issue, Tenenhaus et al. (2004) introduced the "GoF" index, a 

comprehensive criterion for evaluating model fit. This index combines the geometric mean of the average communality 

(AVE) and the average coefficient of determination (R2), and it can be computed using the following formula: 

 

𝐺𝑜𝐹 = √𝐴𝑉𝐸̅̅ ̅̅ ̅̅  𝑋 𝑅2̅̅̅̅   
 

The purpose of the GoF index is to assess the performance of the PLS model, encompassing both the measurement 

and structural aspects, with a specific emphasis on the overall predictive capability of the model (Memon & Rahman, 

2013). In the formula, the R2 component pertains to the structural model, while the AVE assesses the quality of the 

index's measurement models. When the calculated GoF index takes values of 0.1, 0.25, or 0.36, it is interpreted as small, 

medium, or large, respectively (Akter et al., 2011). The values of the averaged AVE and averaged R2 for this study's 

model are provided in Table 8. 

Table 8 - Averaged values 

Constructs  
Average Variance 

 Extracted (AVE) 
R square   

COMPAT 0.665  

COMPLEX 0.605  

ESC 0.539 0.943 

ETH 0.613  

MS 0.550  

OL 0.600 0.949 
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SC 0.603  

Average values  0.596 0.946 

 
After substituting the values from Table 8 into the formula, the resulting calculated GoF index for the model is as 

follows: 

𝐺𝑜𝐹 = √𝟎. 𝟓𝟗𝟔𝑥 𝟎. 𝟗𝟒𝟔 
 

𝐺𝑜𝐹 = √0.564 
 

𝐺𝑜𝐹 = 0.751 
 

Above is a formula for calculating the goodness of fit index. The GoF of the model was 0.751. which according to 

Akter et al. (2011), the GoF value indicates a high level of goodness of fit, suggesting that the research model is of high 

quality. 

 

4.2 Bootstrapping  

Bootstrapping is a versatile statistical technique used in both hypothesis testing and structural equation modeling. In 

hypothesis testing, it helps assess the significance of statistics like mean differences, while in structural equation 

modelling, it's used to evaluate the significance and stability of path coefficients representing relationships between 

variables. Bootstrapping provides robust inferences, especially when assumptions about data distribution or sample size 

are uncertain. It creates resampled distributions, allowing the construction of confidence intervals and the assessment of 

statistical significance without relying on traditional assumptions. By addressing these challenges, bootstrapping 

enhances the reliability of results in both contexts. 

 
 

Fig 4 - Model after bootstrapping process 

 

4.2.1 Indirect [Hypothesis Testing and Path Coefficient] 

In a Partial Least Squares (PLS) model, the path coefficient shows the intensity and direction of the association 

between components inside the model. It illustrates how much change in the dependent construct corresponds to a unit 

change in the independent construct when all other variables are held constant. In PLS models, path coefficients are 

generally displayed as arrows indicating the direction of influence. PLS is a useful strategy for dealing with complex 

models with latent variables since these coefficients are calculated using data and reflect the underlying latent constructs. 

Understanding and interpreting path coefficients is critical for finding causal linkages and determining their significance 

in a PLS model. 
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Table 9 - Indirect relationship   

Relationship Path coefficient/beta values Significant/Not significant   Rank 

COMPAT -> ESC -0.039 Not significant -NA-   

COMPAT -> OL 0.078 Not significant -NA-   

COMPLEX -> ESC 0.366 Significant 3 

COMPLEX -> OL 0.931 Significant 2 

ETH -> ESC -0.167 Significant 5 

ETH -> OL -0.01 Not significant -NA-   

MS -> ESC 0.972 Significant 1 

MS -> OL 0.093 Not significant -NA-   

OL -> ESC -0.349 Significant 4 

SC -> ESC 0.178 Not significant -NA-   

SC -> OL -0.101 Not significant -NA-   

 

Table 9 provides path coefficients, significance levels, and ranks for relationships between different constructs in a 

model. Notably, the relationship between MS and ESC is the most influential with a highly significant positive path 

coefficient of 0.972, ranking first. COMPLEX also has significant positive relationships with both ESC and OL, ranking 

second and third, respectively, with path coefficients of 0.366 and 0.931. COMPAT has non-significant relationships 

with both ESC and OL, while ETH have a significant negative relationship with ESC but a non-significant relationship 

with OL. SC does not exhibit significant relationships with either ESC or OL. 

 

4.2.2 Direct [Hypothesis Testing and Path Coefficient] 

Hypothesis testing in the context of a model involves the systematic evaluation of specific conjectures (hypotheses) 

about the relationships between variables or the parameters of the model. It aims to determine whether the observed data 

provides sufficient evidence to support or reject these hypotheses based on statistical significance criteria. This process 

helps researchers draw meaningful conclusions about the validity and significance of proposed relationships or model 

parameters, enhancing the understanding of the underlying phenomena. While, A path coefficient in a structural equation 

model (SEM) is essential as it reveals the strength and direction of the connection between latent or observed variables. 

It measures how an independent variable (predictor) influences a dependent variable (outcome) within the larger model, 

with positive or negative effects. The magnitude and statistical significance of these coefficients offer valuable insights 

into the underlying causal relationships and the theoretical framework under examination within the SEM. 

Table 10 - Direct relationship   

Relationships  Path coefficient  T Statistics P Values Remarks 

COMPAT -> ESC -0.039 0.512 0.609 Not significant 

COMPAT -> OL 0.078 0.97 0.332 Not significant 

COMPLEX -> ESC 0.366 3.252 0.001 Significant 

COMPLEX -> OL 0.931 34.382 0 Significant 

ETH -> ESC -0.167 3.423 0.001 Significant 

ETH -> OL -0.01 0.22 0.826 Not significant 

MS -> ESC 0.972 13.086 0 Significant 

MS -> OL 0.093 1.908 0.057 Not significant 

OL -> ESC -0.349 3.038 0.003 Significant 

SC -> ESC 0.178 1.664 0.097 Not significant 

SC -> OL -0.101 1.018 0.309 Not significant 
# significant p-values<0.05 

 

Table 10 shows results of eleven direct relationships with OL.  as a mediator and ESC dependent construct. However, 

only five of the relationships are significant. These relationships are COMPLEX -> ESC; COMPLEX -> OL; ETH -> 

ESC; MS -> ESC; and OL -> ESC. The following is the generated results of indirect relationships of the model from 

bootstrapping process as in table 11. 
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 Table 11 - Indirect relationship   

Relationships  Original Sample (O) T Statistics P Values Remarks 

MS -> OL -> ESC -0.032 1.688 0.092 Not significant  

SC -> OL -> ESC 0.035 1.005 0.315 Not significant 

COMPLEX -> OL -> ESC -0.325 2.966 0.003 Significant 

COMPAT -> OL -> ESC -0.027 0.988 0.324 Not significant  

ETH -> OL -> ESC 0.003 0.250 0.802 Not significant  
# significant p-values<0.05 

 

Table 11 shows results of five indirect relationships with OL as a mediator. It indicates that only one of the 

relationships is significant with T and P values comply with the criteria values. The significant indirect relationship is 

COMPLEX -> OL -> ESC.   

 

4.2.3 Mediation Effect   

A mediating effect within a PLS structural model takes on the form of a dynamic driving force, propelled by the 

involvement of a third variable termed the mediator. This mediator operates as a catalyst, unveiling the intricate 

mechanisms that lie beneath the surface of the relationship between an independent variable (IV) and a dependent variable 

(DV). Positioned as an intermediary, the mediator not only brings the primary causal pathway to light but also uncovers 

indirect routes, enriching our understanding of the model's multifaceted interplay. When the mediating impact 

demonstrates statistical significance, it not only validates but also accentuates the mediator's pivotal role in tightly linking 

the IV and the DV.  

The mediating effect in a PLS structural model, is assessed through statistical tests and theoretical considerations. 

Firstly, the total effect between the independent variable (IV) and the dependent variable (DV) is examined to establish 

their relationship. Then, the direct effect of the IV on the DV, controlling for the mediator, is evaluated. If the indirect 

effect through the mediator is significant and the direct effect becomes insignificant, this indicates mediation. The 

mediating role is supported by both statistical evidence and theoretical plausibility in understanding the complex 

relationships within the model. Table 12 demonstrates the criteria for considering the mediating effect. 

 

Table 12 - Mediation status    

Relationships  T Statistics P Values Remarks Mediation effects  

Direct  COMPAT -> ESC 0.512 0.609 Not significant 
No  

Indirect  COMPAT -> OL -> ESC 0.988 0.324 Not significant  

Direct  COMPLEX -> ESC 3.252 0.001 Significant 
Partial effect 

Indirect  COMPLEX -> OL -> ESC 2.966 0.003 Significant 

Direct  MS -> ESC 13.086 0.000 Significant 
No  

Indirect  MS -> OL -> ESC 1.688 0.092 Not significant  

Direct  SC -> ESC 1.664 0.097 Not significant 
No  

Indirect  SC -> OL -> ESC 1.005 0.315 Not significant 

Direct  ETH -> ESC 3.423 0.001 Significant 
No  

Indirect  ETH -> OL -> ESC 0.250 0.802 Not significant  

 

Table 12 presents results from a statistical analysis of relationships in a model. It highlights significant direct effects 

from COMPLEX and MS to ESC, with partial and strong relationships, respectively. In most other cases, including 

COMPAT -> ESC, SC -> ESC, and ETH -> ESC, the effects are not significant, suggesting limited mediation or no 

mediation in these instances.  

 

4.3 Blindfolding 

Blindfolding, or cross-validation, is used to validate and assess the predictive performance of a model on new data, 

ensuring it doesn't overfit. It also evaluates the stability of the model's results and helps in selecting the optimal 

complexity for the model by testing its performance on subsets of the data. Additionally, blindfolding assists in 

identifying essential features, enhancing the model's reliability and generalizability. Results generated from blindfolding 

process is Construct Cross-Validated Redundancy (CCR) and Construct Cross-Validated Communality (CCV). 
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4.3.1 Construct Cross-Validated Redundancy (CCR) 

CCR evaluates the extent of overlap or shared information among observed variables representing different 

constructs in a model, identifying issues like multicollinearity. It assesses the relationships between constructs in terms 

of redundancy. On the other hand, CCV measures how well observed variables capture the underlying latent construct's 

variance, considering shared variance with other constructs, and ensures its stability across different data subsets. It 

focuses on the adequacy of individual indicators in representing a specific latent construct. 

Table 13 - Results of construct cross validated redundancy 

 Construct  SSO SSE Q² (=1-SSE/SSO) 

COMPAT 552 552   

COMPLEX 690 690   

ESC 828 421.068 0.491 

ETH 690 690  

MS 828 828  

OL 690 312.27 0.547 

Table 13 presents SSO (Sum of Squares Observed), SSE (Sum of Squares Error), and Q² values for various constructs 

in a model. Notable findings include the constructs "ESC" and "OL," which have significant proportions of variance 

explained (Q² = 0.491 and 0.547, respectively) relative to their SSO values. It can be concluded that the constructs "ESC" 

and "OL" demonstrate substantial explanatory power, with Q² values indicating significant proportions of variance 

explained relative to their observed variance (SSO). This suggests that the model is effective in capturing meaningful 

relationships for these constructs, while other constructs may require further investigation due to their inability to explain 

a significant portion of the variance.  

 

4.3.2 Construct Cross-Validated Communality (CCV). 

The following is the results of construct cross validated communality (CCV) generated from blindfolding as table 

14. 

Table 14 - Results of construct cross validated communality 

  SSO SSE Q² (=1-SSE/SSO) 

COMPAT 552 310.464 0.438 

COMPLEX 690 411.331 0.404 

ESC 828 536.629 0.352 

ETH 690 398.237 0.423 

MS 828 521.888 0.37 

OL 690 416.526 0.396 

SC 690 417.643 0.395 

 

Table 14 presents statistical results for several constructs, including SSO (total observed variance), SSE (unexplained 

variance), and Q² (proportion of variance explained by the model). Constructs like "ESC" and "ETH" have relatively 

higher Q² values, indicating better model fit and explanatory power. Lower Q² values for other constructs suggest they 

may need further investigation or refinement to improve their explanatory capabilities 

 

5. Conclusion   

This paper presents a study on developing a PLS-SEM model of community security through the implementation of 

AI, while simultaneously investigating the mediating influence of organizational learning within the context of vital AI 

factors in the UAE. Data collection was conducted via a questionnaire survey utilizing the Abu Dhabi Police as a 

representative case study for public organizations in the UAE, involving 138 participants spanning both managerial and 

operational roles, with responses acquired through randomized distribution using online tools. The collected data was 

employed to construct the model using SmartPLS software, and its evaluation adhered to assessment criteria 

encompassing measurement and structural components. It was found that a goodness-of-fit score of 0.751, suggested that 

the model performed well in terms of overall predictive performance. The study's findings also revealed that 

organisational learning (OL) acts as a partial mediator in the relationship between the complexity construct (COMPLEX) 

and the efficacy of Community Security (ESC), but no mediation effects were identified in other relationships. The 

research findings resulted in the development of a versatile model that improves community security using AI technology, 

is usable in a variety of circumstances, and benefits persons interested in AI and community security, such as academics, 
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researchers, and practitioners. The approach of the study offers useful insights for practitioners and scholars in the UAE 

and adjacent sectors, allowing for replication or adaption to specific investigative situations. 
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